School of Medicine
Showing 1-5 of 5 Results
-
Tom Wandless
Professor of Chemical and Systems Biology and, by courtesy, of Chemistry
Current Research and Scholarly Interests We employ an interdisciplinary approach to studies of biological systems, combining synthetic chemistry with biochemistry, cell biology, and structural biology. We invent tools for biology and we are motivated by approaches that enable new experiments with unprecedented control. These new techniques may also provide a window into mechanisms involved in maintaining cellular homeostasis. Protein quality control is a particular interest at present.
-
Paul Wender
Francis W. Bergstrom Professor of Chemistry and Professor, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly Interests Molecular imaging, therapeutics, drug delivery, drug mode of action, synthesis
-
Marius Wernig
Associate Professor of Pathology and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly Interests Epigenetic Reprogramming, Direct conversion of fibroblasts into neurons, Pluripotent Stem Cells, Neural Differentiation: implications in development and regenerative medicine
-
James Whitlock
Professor of Molecular Pharmacology, Emeritus
Current Research and Scholarly Interests We analyze the mechanisms by which mammalian cells adapt to environmental changes, such as exposure to foreign chemicals, hypoxia, or hormones, by altering the transcription of specific sets of genes. We use both biohchemical and genetic approaches and many techniques in molecular and cellular biology. See: http://www.stanford.edu/group/whitlock/
-
Joanna Wysocka
Professor of Chemical and Systems Biology and of Developmental Biology
Current Research and Scholarly Interests The precise and robust regulation of gene expression is a cornerstone for complex biological life. Research in our laboratory is focused on understanding how regulatory information encoded by the genome is integrated with the transcriptional machinery and chromatin context to allow for emergence of form and function during human embryogenesis and evolution, and how perturbations in this process lead to disease.