School of Medicine
Showing 1-10 of 45 Results
-
Maya Adam
Clinical Assistant Professor, Pediatrics - Infectious Diseases
Bio Maya Adam MD is the Director of Health Education Outreach at Stanford's Center for Health Education and the Faculty Lead for the Digital Medical Education International Collaborative in South Africa. Adam has been teaching at Stanford University since 2009. She received her BA in Human Biology from Stanford before studying medicine at the University of British Columbia in Vancouver, Canada. Prior to her post-secondary studies, she spent 10 years as a professional ballet dancer with the State Theater of Saxony in Germany. At the Stanford Center for Health Education, Adam creates online educational content for use in under-served populations, including those in low- and middle-income countries. Adam leads five massive open online health education courses, serving more than 450,000 international learners. In South Africa, her team collaborates with UNICEF and the National Department of Health to create digital educational content for community health workers and mothers as part of the Road to Health initiative. Adam is the author of Food Love Family: A Practical Guide to Child Nutrition.
-
Manuel Amieva
Professor of Pediatrics (Infectious Diseases) and of Microbiology and Immunology
Current Research and Scholarly Interests My laboratory studies how bacteria colonize our bodies for long periods of time, and how interactions between bacteria and the epithelial surfaces of the gastrointestinal tract and skin may lead to disease. Epithelial surfaces are the first barrier against infection, but they also where our bodies meet and co-evolve with the microbial world.. Several of our studies have focused on the epithelial junctions as a target for bacterial pathogens. The host epithelium uses its epithelial junctions to form a tight but dynamic barrier with an external surface that is inhospitable to microbial attachment, secretes anti-microbial compounds, and has a rapid rate of self-renewal. The balance in the microbe-epithelial relationship results in silent commensalism or symbiosis; an imbalance results in diseases ranging from acute bacterial invasive disease to chronic ulcers or carcinoma.
Our laboratory has developed novel microscopy applications such as quantitative 3D confocal microscopy, electron microscopy, time-lapse imaging, microinjection and micromanipulation to visualize the interaction of pathogens with epithelial cells in culture and in animal and human tissues. Many of out studies focus on the gastric pathogen Helicobacter pylori, but we have also expanded our investigations to include the intestinal pathogens Listeria monocytogenes and Salmonella enterica, and the skin pathogen and colonizer Staphylococcus aureus. I believe that elucidating how microbes communicate with and alter our epithelial cells at a molecular level will be important for finding novel therapeutic targets to control mucosal colonization and prevent invasive disease.
Using this perspective, we have uncovered several novel concepts of how bacteria colonize and breach our epithelial surfaces. For example, we discovered that Helicobacter pylori target the intercellular junctions, and in particular that the virulence factor CagA affects junction assembly and cell polarity. This confers H. pylori the ability to extract nutrients and grow directly on the epithelial surface. We also found that these properties of CagA have consequences for cellular transformation of the epithelium. For instance, we showed that H. pylori affect the activity and state of epithelial stem cells in the stomach by colonizing the epithelial surface deep in the gastric glands. This gland-associated population is essential for pathological inflammation and hyperplasia in animal models, and confers significant colonization advantages to the bacteria. Our Listeria research uncovered a new mechanism and site where bacteria can breach the gastrointestinal epithelial barrier to invade. We found that Listeria find their receptor for invasion at sites of epithelial senescence, where the epithelial junctions undergo dynamic turnover. To study Salmonella and H. pylori we have developed a human organoid model to study their interactions with human gut epithelium in vitro. To study Staphylococcus aureus pathogenesis, we have developed methods to visualize infection at the scale of a single bacterial microcolony using an organoid culture system of human keratinocytes and fibroblasts that grow into a 3D skin-equivalent. We recently identified several proteins at the eptithelial junctions as host factors involved in the pathogenesis of one of Staphylococcus aureus major toxins. -
Ann M. Arvin
Lucile Salter Packard Professor of Pediatrics and Professor of Microbiology and Immunology
Current Research and Scholarly Interests Our laboratory investigates the pathogenesis of varicella zoster virus (VZV) infection, focusing on the functional roles of particular viral gene products in pathogenesis and virus-cell interactions in differentiated human cells in humans and in Scid-hu mouse models of VZV cell tropisms in vivo, and the immunobiology of VZV infections.
-
Sharon F. Chen
Clinical Associate Professor, Pediatrics - Infectious Diseases
Current Research and Scholarly Interests My research interest is in viral infections affecting immunocompromised patients. As Co-director of the Pediatric Infectious Diseases Program for Immunocompromised Hosts, I develop and conduct clinical and translational studies to establish best practices for these patients.
My education scholarship interests are in refining active learning, framed by improving student learning, in characterizing and assessing adaptive expertise of physicians, and in diagnostic accuracy/cognitive biases. -
Despina Contopoulos-Ioannidis, MD
Clinical Associate Professor, Pediatrics - Infectious Diseases
Current Research and Scholarly Interests Evidence based medicine: Systematic reviews, Meta-analyses
Congenital Infections-Prenatal Screening with Point-Of-Care Tests
Congenital Toxoplasmosis
Comparative effectiveness-Comparative safety research
Outcomes research (Patient safety)
Antimicrobial Stewardship
Early Life Antibiotic Use and Weight Gain -
Cornelia L. Dekker, M.D.
Professor (Research) of Pediatrics (Infectious Diseases), Emerita
Current Research and Scholarly Interests The Stanford-LPCH Vaccine Program provides an infrastructure for conducting clinical studies of vaccines in children and adults. We conduct immunology studies of seasonal influenza vaccines in twins, in a longitudinal cohort of young and elderly adults and studies of various vaccine candidates for NIH and industry. Additionally, we were a CDC Clinical Immunization Safety Assessment site for 10 years working on safety issues concerning licensed vaccines.
-
Elizabeth Egan
Assistant Professor of Pediatrics (Infectious Diseases) and of Microbiology and Immunology
Current Research and Scholarly Interests Malaria is a parasitic disease transmitted by mosquitos that is a leading cause of childhood mortality globally. Public health efforts to control malaria have historically been hampered by the rapid development of drug resistance. The goal of our research is to understand the molecular determinants of critical host-pathogen interactions in malaria, with a focus on the erythrocyte host cell. Our long-term goal is to develop novel approaches to prevent or treat malaria and improve child health.