Stanford Advisors
-
Jason Gotlib, Postdoctoral Research Mentor
-
Jason Gotlib, Postdoctoral Faculty Sponsor
View details for DOI 10.1002/ajh.23977
View details for Web of Science ID 000354806500027
View details for PubMedID 25683739
Hydroxycarbamide therapy has been associated with significant oscillations in peripheral blood counts from myeloid, lymphoid and erythroid lineages in patients with polycythaemia vera and chronic myeloid leukaemia. We retrospectively evaluated serial blood counts over an 8-year period from 44 adult patients with sickle cell disease receiving hydroxycarbamide. Platelet counts, leucocyte counts, haemoglobin values and reticulocyte counts, apportioned by hydroxycarbamide status, were analysed using a Lomb-Scargle periodogram algorithm. Significant periodicities were present in one or more counts in 38 patients receiving hydroxycarbamide for a mean duration of 4·81 years. Platelet and leucocyte counts oscillated in 56·8% and 52·3% of patients, respectively. These oscillations generally became detectable within days of initiating therapy. During hydroxycarbamide therapy, the predominant periods of oscillation were 27 ± 1 d for platelet counts and 15 ± 1 d for leucocyte counts. Despite an absolute decrease in leucocyte and platelet counts during hydroxycarbamide treatment, the amplitudes between nadirs and zeniths remained similar regardless of exposure. Our observations appear consistent with previously proposed models of cyclic haematopoiesis, and document that hydroxycarbamide-induced oscillations in blood counts are innocuous phenomena not limited to myeloproliferative disorders as described previously. We speculate the known cell cycle inhibitory properties of hydroxycarbamide may accentuate otherwise latent constitutive oscillatory haematopoiesis.
View details for DOI 10.1111/bjh.13203
View details for Web of Science ID 000349611300015
View details for PubMedID 25377027
De novo lipogenesis in adipocytes, especially with high fat feeding, is poorly understood. We demonstrate that an adipocyte lipogenic pathway encompassing fatty acid synthase (FAS) and PexRAP (peroxisomal reductase activating PPARγ) modulates endogenous PPARγ activation and adiposity. Mice lacking FAS in adult adipose tissue manifested increased energy expenditure, increased brown fat-like adipocytes in subcutaneous adipose tissue, and resistance to diet-induced obesity. FAS knockdown in embryonic fibroblasts decreased PPARγ transcriptional activity and adipogenesis. FAS-dependent alkyl ether phosphatidylcholine species were associated with PPARγ and treatment of 3T3-L1 cells with one such ether lipid increased PPARγ transcriptional activity. PexRAP, a protein required for alkyl ether lipid synthesis, was associated with peroxisomes and induced during adipogenesis. PexRAP knockdown in cells decreased PPARγ transcriptional activity and adipogenesis. PexRAP knockdown in mice decreased expression of PPARγ-dependent genes and reduced diet-induced adiposity. These findings suggest that inhibiting PexRAP or related lipogenic enzymes could treat obesity and diabetes.
View details for PubMedID 22863804