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The four-category concept identification task is analyzed as involving two single-cue 

subproblems. It is supposed that the two concurrent subproblems are worked on 
independently by the subject, and further, that subproblem learning is a probabilistic, 
all-or-nothing event. Various lines of evidence are drawn from the data to document 

these assertions. In particular, the theory successfully predicts the behavior of subjects 
in the four-category task by using parameters estimated from other subjects learning 

only single-cue subproblems. 

One rationale for the development of theories based upon simple behavioral situa- 
tions is the promise that the model so obtained can be extended to elucidate behavior 
in more complex situations. This paper exploits this approach and attempts to extend 
a theory of elementary concept learning (Bower and Trabasso, 1963a) to handle a 
slightly more complex ca?e. 

In concept identification (CI), the subject is shown a series of complex stimulus 
patterns, usually geometric figures, which vary in n binary dimensions (color, size, 
shape, etc.). The 2” patterns are divided into several mutually exclusive and exhaustive 
classes. To each pattern, the subject attempts to anticipate the correct classification; 
following his response, he is informed of the correct answer. 

In two-category CI a single dimension is relevant. For example, if color (orange or 
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blue) is relevant, orange patterns are assigned to one category, and blue patterns 
to the other. The theory developed earlier for the two-category problem (Bower 
and Trabasso, 1963a) assumes that the subject is sampling dimensions to test for 
their relevance to the solution. The problem is solved “suddenly” on that trial when 
the subject begins to attend consistently to the relevant dimension which determines 
the classification. The evidence for insightful or all-or-none learning of this task 
has been consistently positive throughout a number of studies (Trabasso, 1963; 
Bower and Trabasso, 1963a, b; Trabasso and Bower, 1963). Graphs of backward and 
Vincentized learning curves (cf. Suppes and Ginsberg, 1963) were uniformly flat 
at the chance level of 50% correct classifications over trials prior to complete solution. 
Although the one-step model describes two-category CI data fairly well, it must be 
extended and modified to account for more complex forms of CI. This paper considers 
one natural extension, namely, to situations in which the subject must perform two 
binary discriminations concurrently to solve the task. This is known as the four- 
category problem and has been studied in detail by several experimenters (Archer, 
Bourne, and Brown, 1955; Bourne, 1957; Bourne and Haygood, 1959; Bourne and 
Pendleton, 1959). 

In a four-category problem, there are two independent relevant dimensions. For 
example, if color and form are relevant, then Category 1 may contain all orange circles, 
Category 2 all orange triangles, Category 3 all blue circles, and Category 4 all blue 
triangles. If all four categories contain both large and small figures, then size is irrele- 
vant. The question is how one may usefully conceptualize what the subject does in 
the four-category task in order to develop tractable models of the process ? Bourne 
and Restle (1959) supposed that subjects solve the four-category task by learning two 
binary subproblems. For the previous example, the two subproblems are defined in 
terms of the color and form dimensions. The color subproblem is that orange patterns 
are in classes 1 or 2 and blue patterns are in classes 3 or 4. Likewise, the form sub- 
problem is that circular patterns are in classes 1 or 3 and triangular patterns are in 
classes 2 or 4. 

This notion of subproblem learning supposes that the values of the relevant dimen- 
sions become conditioned to the category names reinforced in their presence. This 
conditioning is shown below. 

Color, Subproblem Form, Subproblem 

1 
orange < 

2 

blue < 
3 
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triangle < 
2 
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Let?,,, andp,,, represent the probability of a correct response for each subproblem 
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on trial n. Using the symmetry of the binary dimensions, the definitions of ~r,~ and 

P 2.n are 

pi,, = Pr (1 or 2/orange on n} = Pr (3 or 4/blue on n} 

p,,n = PY (1 or 3/circle on n} = Pr (2 or Lt/triangle on n}. 

We now wish to know the probability with which the subject will give any one of 
the four responses to a particular pattern shown on trial 12 (e.g., an orange circle). 
The performance rule is this: the subject generates a pair of covert responses for 
each relevant attribute and the overtly responds with the common element (inter- 
section) from these two sets. This is illustrated below for the example of an orange 
circle. 
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The generation of the two covert response-sets are assumed to be independent.The 
probability of any response is given by the product of the tree probabilities that lead 
to it. Because of the independence assumption, it is immaterial in which order the 
two attributes are considered. The probability of the correct response, 1, in this case 

is Pl.7I *Pm * In fact, the model implies that the correct response probability is 
P,,~ * P,,~ regardless of the specific stimulus pattern shown on trial 71. 

This, then, is the Bourne-Restle assertion. Its major advantage is an analytic one: 
it represents the four-category task as the learning of two single dimension subpro- 
blems, and it permits direct application of models written for two-category CI learning. 
For later reference, the Bourne-Restle assumption is written in the form of two 
equations. Letting p,,, represent the probability of a correct response on the four- 
category problem on trial n: 

P c.n = (Pm) (P2.J (1) 

P c,n = (Pl2 (2) 

IO 
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Equation 1 is used when one distinguishes between the two subproblem learning 
curves. Equation 2 is used when the additional assumption is made that the two 
subproblems are learned at the same rate, so that pISn = p,,, . Either equation will 
be referred to generally as the multiplication rule. 

Bourne and Restle (1959) made no direct test of Eq. 1, although it was used in 
generating predictions from Restle’s discrimination learning theory (1955) which 
fit their data fairly well. The purpose of the present experiment was to achieve a direct 
test of Eq. 1 in the four-category task. 

METHOD 

Subjects. The subjects were 120 paid students from Foothill Junior College who were 

randomly assigned to three groups (17 males and 23 females, each) and were run in individual 
sessions. 

Procedure. The following instructions were read to all subjects: 

In this problem, we are interested in finding out how college students learn to 

classify patterns. You will be required to learn a rule or a system which will enable you 
to classify correctly each card in a set of cards. 

This is how we shall proceed. I will show you one card at a time. You will classify 
the card into one of four categories by calling the card either 1, 2, 3, or 4. At first you 

must guess the correct classification. After you classify the card, this box will indicate 

to you the correct classification of the card (illustrated by flashing, in a random order, 
all four numbers). After a time, you should be able to figure out a rule which will enable 
you to classify correctly all the cards. The cards are shuffled so that there is no syste- 

matic sequence in the presentation. 

On each card there will be a pattern consisting of a figure and a line (two cards 
which differed in all five dimensions were shown). From card to card, the pattern can 

change in any of five ways so that there are five dimensions to consider. These five 
dimensions are as follows (pointed out in a random order for each subject: (1) Color: 

either orange or blue; (2) Shape: either a triangle or a circle; (3) Position of the figure: 
either on top or bottom of the card; (4) Size of the figure: either large or small; (5) Posi- 

tion of the line: either in the top left or lower right corner. 
The solution to the problem will depend upon only two of these five dimensions. By 

this, I mean that only two dimensions are crucial and only they will determine the 
category of a card. 

Let me illustrate to you what I mean by using two dimensions to classify a card. 

This example will not contain the dimensions used in your problem but the principle is 
the same, namely, two dimensions can be combined to yield four unique categories. 

Here are four cards labelled 1, 2, 3, and 4, respectively. Note that there are only two 
dimensions shown on these cards. The figures may be either horizontal or vertical in 

arrangement and either two or three in number. Thus the dimensions are arrangement 
and number. If we combine these two aspects by forming all possible combinations, 
we have four unique classes. Thus, in the example, category one contains two horizontal 
objects; category two contains two vertical objects; category three contains three 
horizontal objects; and category four contains four vertical objects. Is that clear I 

Remember, the example is to illustrate how one can combine two dimensions; the 
dimensions in the example are not contained in your problem. 
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Here is a card with the categories and some information concerning your problem. 

Please read the information. You may keep the card for your reference throughout the 

problem. O.K. Now let us begin. Here is the first card. 

Patterns were presented one at a time on a card holder. The subject paced his verbal responses 

and the experimenter then showed the correct classification on a lighted panel to the right of the 
stimulus display. The subject was allowed approximately 4 seconds to view the pattern after 

reinforcement. A different order was presented to each subject. The order was irregular with the 
restriction that no two consecutive patterns were of the same category. Cards were rearranged 

at the end of every 32 trials if the subject had not yet reached the learning criterion of 16 suc- 
cessive correct responses. 

Stimulus materials. The stimuli were geometric figures drawn in crayon pencil from templates 
on white 3 x 5 inch file cards. There were 5 binary dimensions: color (orangeorblue); form(circle 

or triangle) ; size (large or small) ; position of the figure (top or bottom of card) ; and position of a 

line (upper left or lower right corner). Color and form were relevant but independent; all other 
dimensions were varied independently of each other and were irrelevant. The correct classifica- 
tions of the patterns were orange: circle-l ; orange triangle-2; blue circle-3, and blue triangle-4. 

Experimental groups. One group learned the four-category problem from scratch; two other 

groups learned the subproblems. Each subject was given an information card for his reference 
throughout the experiment. Each card contained the category numbers and the statement: 

“Remember, the category of a card is determined by two dimensions of the pattern.” The remain- 
ing information on the card differentiated the subjects into three groups: 

Group C (Color) was told that the form dimension was relevant. They were given a card which 

stated that a circle belonged to Categories 1 or 3 and a triangle belonged to Categories 2 or 4. 
Group C subjects had to learn the color half of the problem. 

Group F (Form) was told that color was a relevant dimension. They were given a card which 
stated orange patterns were in Categories 1 or 2 and blue patterns were in Categories 3 or 4. 

Group F subjects had to learn the form half of the problem. 
Group CF (Color-Form) learned the entire four-category problem. They were given no 

advance information concerning the solution other than that two dimensions were relevant. 

It should be noted that Group CF had an initial probability of one-fourth of being correct 

whereas Groups C and F began with an initial probability of one-half of being correct. 

RESULTS 

The initial data analyses concern empirical tests of the multiplication rule. The 
validity of the test follows from three assumptions: (a) that subproblem learning is a 
fair representation of what the subjects are doing in the four-category task, (b) that 
rate of learning a subproblem is the same for Group CF as for a “single-cue” Group 

(C or F) given advance information about the other subproblem, and (c) that perform- 
ance on the compound problem is determined via the multiplication rule from sub- 
problem probabilities. Later, alternative interpretations of the multiplication rule 
will be considered. The test does not depend on a particular learning theory, since 
no assumptions are involved concerning the process by which the subproblems are 
learned (e.g., incremental or all-or-none). Therefore, if verified, the multiplication 
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rule permits extension of any learning model (for two-category problems) to the more 
complicated four-category problems. 

The mean probabilities of correct responses were obtained in five-trial blocks for 
each of the three Groups, C, F, and CF. One test of Eq. 1 is how well the points on the 
CF learning curve are predicted by multiplying the corresponding C and F percen- 
tages on each successive trial-block. These results are shown in the middle column 
of Table 1. To test Eq. 2, C and F subproblems are assumed to be equally difficult 
and are pooled to obtain an average subproblem learning curve. By squaring the result- 
ing proportion correct in each trial-block, predictions of the CF learning curve are 
obtained and are shown in the last column of Table 1. 

TABLE 1 

EMPIRICAL MEAN LEARNING CURVE PREDICTIONS FOR GROUP CF 

BY SUBPROBLEM GROUPS C AND F 

5 Trial blocks 
Observed 

Proportion correct reponses 

Eq. 1 Eq. 2 

1 0.300 0.316 0.316 
2 0.430 0.458 0.462 
3 0.455 0.448 0.442 
4 0.545 0.530 0.490 
5 0.665 0.638 0.640 
6 0.700 0.684 0.684 
7 0.760 0.804 0.789 

8 0.840 0.810 0.810 
9 0.900 0.878 0.874 

10 0.945 0.920 0.922 
11 0.940 0.920 0.922 
12 0.945 0.950 0.951 
13 0.965 0.985 0.986 
14 0.955 0.990 0.990 
15 0.975 0.995 0.996 
16 0.990 1.000 1.000 
17 1.000 1.000 1.000 

Mean errors 18.65 18.37 18.64 

The predictions of the CF learning curve in Table 1 appear quite accurate. For 
instance, during the first ten blocks of trials, the average absolute discrepancy between 
predicted and observed is 0.023 for Eq. 1 and 0.026 for Eq. 2. The corresponding 
arithmetic average differences are 0.005 for Eq. 1 and 0.012 for Eq. 2. A good single 
index of the correspondence is the expected total errors (per subject) which may be 
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obtained by summing the error probabilities over individual trials. The observed 
average total errors were 18.65, whereas 18.37 and 18.64 are predicted by Eqs. 1 and 2, 
respectively. Thus, the multiplication rule gives a very accurate prediction of the 
CF performance. 

Similar confirmatory results for the multiplication rule were obtained in a small 
pilot study carried out prior to the one reported here. In the pilot study, the stimuli 
were four-letter consonant clusters; the “dimensions” were four pairs of consonants 

(F, G), (V, W), (X Y), and (R, S) an d one letter from each pair was displayed in the 
patterns (cf. Bower and Trabasso, 1963a, for a description of the materials). The 
correct answers in the four-category problem depended upon which members of the 
two relevant pairs were present in the pattern (e.g., FX - 1, FY - 2, GX - 3, 
GY - 4). The same experimental design was used: two subproblem groups (N = 
10 each) learned one-half of the problem (given advance information about the other 
half) while a compound group (N = 20) learned the four-category problem without 
prior information. The predictions from Eqs. (1) and (2) of performance of the 
compound group are shown for IO-trial blocks in Table 2. The average total errors 
for the compound group was 36.35, whereas 36.93 and 36.79 were predicted by Eqs. (1) 
and (2), respectively. 

TABLE 2 

EMPIRICAL MEAN LEARNING CURVE PREDICTIONS OF COMPOUND PROBLEM 

BY SUBPROBLEM GROUPS (PILOT STUDY) 

10 Trials blocks 
Proportion correct responses 

Observed Eq. 1 Eq. 2 

1 0.280 0.235 0.235 

2 0.390 0.403 0.403 
3 0.480 0.442 0.442 
4 0.545 0.516 0.518 
5 0.625 0.583 0.585 
6 0.690 0.701 0.706 
7 0.770 0.798 0.801 
8 0.775 0.864 0.865 
9 0.890 0.874 0.874 

10 0.955 0.921 0.922 
11 0.965 0.970 0.970 
12 1.000 1.000 1 .oOO 

&lean errors 36.35 36.93 36.79 

These data confirm the assumption of independent subproblem performance, 
viz., for each subject the generation of the covert response sets corresponding 
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to, say, the cues “orange” and “circle,” were independent of one another. Addition- 
ally, one may inquire about the independence for individual subjects of the learning 
rates on the two subproblems. This idea can be expressed in terms of a population of 
subjects learning the four-category problems. Subject i on trial 12 has subproblem 
performance probabilities pii,, and pil,n . Consider conditionals of the form 

YPiz,n = x I Pi1.n = Y); then the assumption of independent learning rates sup- 
poses that, for fixed 12, this conditional probability is equal to P~(p~a,~ = X) and does 
not depend upon i, the subject being considered. 

To test this assumption of independent subproblem learning rates across subjects, 
each CF subject’s responses were restored in terms of his performance on the hypo- 
thetical subproblems, and then these derived subproblem performance scores were 
correlated. The procedure requires elaboration to be understandable. Each response 
of a CF subject is restored in two ways: whether it is correct on the hypothetical color 
subproblem (orange-l or 2, blue-3 or 4 counted as correct) and whether it is correct 
on the hypothetical form subproblem (circle-l or 3, triangle-2 or 4). This restoring 
procedure yielded for each subject two separate response sequences over trials. 

Imagine that the learning of subproblem i by subjectj can be described by the equa- 
tion 

pii,n = 1 - Q (1 - Q”-’ 

We wish to correlate Brj and Oaj which summarize subject j,s learning rates on the 
two subproblems. An estimate of eii is obtained from the total number of errors on 
subproblem i: 

Tij = 2 (1 - pii,,) = g 
IE=l 13 

The estimate of 19~~ is then proportional to the reciprocal of the errors made on sub- 
problem i. In case there are no errors, set eii = 1. 

Using this method, Brj and eti (corresponding to color and form subproblems) 
were estimated for each of the 40 subjects in the CF Group. If the subproblem learning 
rates are independent, then these pairs of 0 values should be uncorrelated. The pro- 
duct-moment correlation was only + 0.047, indicating no significant correlation 
(z = 0.072, p > 0.05). The corresponding correlation between error scores, Tlj 
and T, , was + 0.14 and not significant (z = 0.094, p > 0.05). Performance on one 
subproblem accounts for practically none of the variance in performance on the other 
subproblem. 

To return to the multiplication rule of Eq. 1, it has been tested by predicting the 
compound learning curve (for CF) from knowledge of the performance curves for the 
single-cue groups (C and F). If the subproblem analysis is correct, the multiplication 
rule should work in the reverse direction, predicting the performance curves of the 
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single-cue groups by the decomposition (into subproblem sequences) of the perform- 
ance curve for Group CF. Using the subproblem sequences derived from Group CF, 
the curves predicted in this fashion are shown in Table 3. These are compared with 
the learning curves obtained from the two single-cue groups (C and F). The last two 
columns show the results when the subproblems are averaged together, as are the 
learning curves for the C and F Groups. 

TABLE 3 

EMPIRICAL MEAN LEARNING CURVE PREDICTIONS OF GROUPS C AND F 

BY RESCORED GROUP CF 

Proportion of Correct Responses 
5 Trial ~- 
blocks Group F Group C Groups C and F 

-____ __-- 
Obs. Pred. Obs. Pred. Obs. Pred. 

1 0.575 0.565 0.550 0.545 0.562 0.555 
2 0.740 0.752 0.620 0.605 0.680 0.662 
3 0.730 0.660 0.600 0.655 0.665 0.658 
4 0.780 0.716 0.680 0.690 0.730 0.700 
5 0.850 0.805 0.750 0.785 0.800 0.790 
6 0.855 0.845 0.800 0.800 0.827 0.822 
7 0.935 0.855 0.860 0.860 0.888 0.858 
8 0.915 0.920 0.885 0.880 0.900 0.900 
9 0.950 0.960 0.925 0.930 0.938 0.945 

10 0.980 0.980 0.940 0.950 0.960 0.965 
11 0.985 0.995 0.935 0.945 0.960 0.970 
12 0.985 0.990 0.965 0.960 0.975 0.975 
13 0.995 0.990 0.990 0.970 0.992 0.980 
14 1 .ooo 0.985 0.990 0.955 0.995 0.910 
15 1 .ooo 0.995 0.995 0.975 0.998 0.988 
16 1.000 1.000 1.000 0.990 1.000 0.995 
17 1 .ooo 1 .ooo 1.000 1.000 1 .ooo 1 .ooo 

Mean errors 8.625 10.123: 12.575 12.525 10.600 11.325 

The subproblem learning curves derived from the CF Group approximate quite 
well the learning curves obtained from Groups C and F. The average absolute dis- 
crepancy between bredicted and observed points over the first ten blocks is 0.030 and 
0.014 for Groups F and C, respectively; using the pooled data(last columns), the average 
discrepancy is 0.010. The predictions for Group F are consistently too low for blocks 
3-7; as a consequence, the predictions for the pooled data are also slightly too low 
for these trial blocks. When summated to yield expected total errors, these discre- 
pancies stand out a bit clearer. 
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CONFUSION MATRICES 

A set of results bearing upon the issue of subproblem learning are the stimulus- 
response confusion matrices for Group CF. The matrix in Table 4 displays the relative 

frequencies of the various confusion errors summed over all trials and all subjects in 
Group CF. If  subproblem learning is a correct representation of the behavior, then 
there should occur some point during training when the subject has learned one 
subproblem but not the other; at this point, then, the errors that occur will represent 
confusions only with respect to the unlearned subproblem. It follows that during 
these trials there should be no occurrences of responses which are erroneous with 

respect to both subproblems. Thus, the antidiagonal cells are expected to contain the 
smallest entries in each row of the confusion matrix. This deduction is uniformly 
supported by the data in Table 4. 

TABLE 4 

TOTAL ERROR CONFUSIONS FOR GROUP CF 

Prop. responses 
Stimuli 

1 2 3 4 Total 

Orange circle 0.372 0.515 0.112 196 
Orange triangle 0.297 - 0.255 0.448 192 
Blue circle 0.441 0.226 0.333 186 
Blue triangle 0.251 0.429 0.320 - 175 

Another confusion matrix relevant to the subproblem analysis is that derived prior 

to learning of the first-learned subproblem. The entries in the matrix of Table 5 
represent relative frequencies of confusion errors (summed over trials and subjects) 
prior to the last error on the first-learned subproblem for the subjects in Group CF. 
Since, in theory, the matrix is derived from data obtained while performance on both 
subproblems was at the chance level, the confusion errors should be evenly distributed 
over the cells in each row of Table 5 (i.e., entries of 0.333). The data in Table 5 follow 
this rule with the one exception of response 4 to stimulus 1 (but not 1 to stimulus 4, 
however). A chi-square test could not reject equality of row entries in Table 5 
(x2 = 10.21, df = 8, p > 0.10). Th ese data indicate little, if any, gradual learning 
up to this point in the experiment; conversely, they provide some evidence for all- 
or-none learning of the first-learned subproblem. 

To complete the coverage of results, the confusion matrices for the single-cue 
groups, C and F, are shown in Table 6. These are summed over subjects and all 
trials during learning. These data tend to show that the values of the unlearned 
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TABLE 5 

ERROR CONFUSIONS FOR GROUP CF PRIOR TO LEARNING THE FIRST SUBPROBLEM 

Stimuli 

1 

Responses 
- 

2 3 4 Total 

Orange circle 0.415 0.435 0.150 147 
Orange triangle 0.306 0.366 0.328 134 

Blue circle 0.319 0.344 - 0.336 122 

Blue triangle 0.333 0.318 0.348 - 132 

dimensions (e.g., orange and blue for Group C) are responded to symmetrically, as 

had been assumed for simplicity in the theory. Thus, for Group C, the numbers 117, 
118, 124, and 123 occur in cells whose entries were expected to be equal; likewise, 
for Group F, the numbers 82, 83, 78, and 95 occur in cells which were expected to be 
equal. The small entries between 1 and 5 represent failures of subjects to use the 
prior information which was given to them on a card for continuous reference. For 

example, although subjects in Group C were informed that circles go into class 1 or 3, 
there were 3 and 2 occasions, respectively, when an orange circle was put into classes 2 

and 4. 

TABLE 6 

ERROR CONFUSION FREQUENCW FOR GROUPS C AND F 

Stimuli Group C Group F 

1 2 3 4 1 2 3 4 

Orange circle - 3 117 2 - 82 2 2 
Orange triangle 3 - 2 118 83 - 0 1 

Blue circle 124 0 - 5 2 0 78 

Blue triangle 1 123 3 - 0 1 95 

APPLYING AN ALL-OR-NONE LEARNING MODEL: THE SINGLE-CUE GROUPS 

The data will now be analyzed from the vantage point of a particular model regarding 
the learning process. We begin this analysis with the single-cue groups (C and F), 
deferring until later the analysis of the CF condition. The model to be used for the 
single-cue data is a two-state Markov chain developed and employed in a previous 
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paper (Bower and Trabasso, 1963a). In brief, it is supposed that at the beginning of 
each trial, the subject is either in a presolution state or in a solution state. The pre- 
solution state is identified with the state of the subject when he is testing out irrelevant 

hypotheses which have only a chance correlation with the relevant hypothesis. In 
general, let p represent the average probability that the subject correctly classifies 
any randomly chosen pattern while he is in this presolution state. The solution state 
is entered once the subject begins to attend consistently to the relevant cue; the pro- 

bability of a correct response when the subject is in this state is unity. The solution 
state is absorbing; once it is entered, the subject remains there (provided, of course, 
the problem is not changed). All subjects begin on Trial 1 in the presolution state. 
On each trial, there is some unconditional probability, 8, that the subject leaves the 
presolution state and solves the problem. 

PRESOLUTION ANALYSES 

The data prior to the last error of each subject in Groups C and F were analyzed 
according to the expectations of the All-or-None model. The theory supposes that 
these presolution responses can be represented by a stationary and independent 
binomial process. Groups C and F were pooled since their respective presolution 

trials should have the same general characteristics. To test for stationarity, both 
forward (Suppes and Ginsberg, 1963) and backward learning curves were constructed 
for trials prior to the last error. These were pooled in five-trial blocks. 

Both the forward and backward curves approximated horizontal lines. For the 
forward curve, the weighted average probability of a correct response was 0.55 and the 

stationarity test yielded x2 = 15.78 (df = 12, p > 0.20). For the backward curve, 
the weighted average probability of a success was 0.56 and the x2 for stationarity was 
4.45 (df = 10, p > 0.90). Another test for stationarity divided each subject’s pre- 
solution trials into a first and second half. The average number of errors in the first 
half was 4.31; in the second half, 4.23 (t = 0.33, df = 33, p > 0.05). These results are 

consistent with the stationarity implied by the model. The fact that the over-all 
success rate (0.55) is higher than the a priori one-half is unexplained. 

Another prediction of the model is that the sequence of correct and incorrect 
responses prior to the last error should form an independent series of observations. 
To test this, the probabilities of a success conditional upon a success or a failure on the 
preceding trial were compared. There were 1600 transition frequencies for this 
analysis. The conditional probability of a success was 0.554 following a success and 
0.544 following an error on the previous trial. These do not differ significantly 

(x’ = 0.17, df = 1, p > 0.60). 
Consider one final test for the binomial characteristics of the sequence of presolution 

responses. In a binomial series, the length of a run of successes between adjacent errors 
should conform to a geometric law, Table 7 displays the frequency distribution of this 
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random variable in the data from Groups C and F. The predictions were derived from 
the geometric law, and they correspond closely with the empirical distributions. 

TABLE 7 

DISTRIBC’TION OF H, THE NUMBER OF SUCCESES BETWEEN ADJACENT ERRORS 

FOR GROUPS C AND F 

Pr(H = k) 

k Observed Predicted 

0 0.473 0.473 
1 0.236 0.249 
2 0.141 0.131 
3 0.076 0.069 
4 0.036 0.036 
5 0.02 1 0.019 
6 0.006 0.010 
7 0.004 0.005 
8 0.006 0.003 
9 0.001 0.002 

10 0.000 0.001 
11 0.000 0.001 
12 0.000 0.000 

The results given above do not depend upon estimates of the learning-rate para- 
meter; we next consider a few predictions which do. For this application, Groups C 
and F were pooled since a likelihood ratio test (Restle, 1961) failed to reject the null 
hypothesis of equal e-values (x2 = 3.84, df = 1, p > 0.05). The estimate of 0 was 
obtained from the average total errors (before learning) via the method of moments. 
The prediction equations for the All-or-None model are presented elsewhere (Bower, 
1961a) and are not duplicated here. Table 8 lists the predictions for the probability 
distribution of total errors (i.e., proportion of subjects solving after K or fewer errors). 
The fit is only fair for 40 subjects, but it cannot be rejected by the Kolmogorov- 
Smirnov one-sample test. The maximum discrepancy (0.094) of predicted from 
observed proportions occurred at T = 16, where no subject scored. The average 
discrepancy before this point was 0.029. 

A list of point predictions derived from the All-or-None model are compared with 
the pooled C and F data in Table 9. Sequential statistics (runs of errors) are predicted 
fairly well; standard deviations of errors or trial of last error are over-predicted. The 
fit generally is not as good as found with simpler cases of single-cue two-category 
learning (cf. Bower and Trabasso, 1963a). 
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TABLE 8 

DISTRIBUTION OF TOTAL ERRORS, T, FOR GROUPS C AND F 

Pr(T < k) 

k Observed Predicted 

o-2 0.180 0.162 

3-5 0.387 0.354 
6-8 0.462 0.499 
9-11 0.600 0.625 

12-14 0.675 0.722 

15-17 0.800 0.794 
18-20 0.862 0.848 

21-23 0.925 0.887 
24-26 0.975 0.917 
27-29 0.975 0.938 
30-32 0.988 0.952 
33-35 1.000 0.962 

Maximum discrepancy = 0.094 at T= 16 

TABLE 9 

SUMMARY STATISTICS OF GROUPS C AND F 

Statistic Observed Predicted 

Mean errors 10.60 a 

s.d. 7.92 10.59 

Mean trial of last error 22.48 
s.d. 17.84 
Average runs 6.15 
Runs of length 1 3.40 

2 1.78 
3 0.62 

4 

23.29 

6.06 
3.47 
1.48 
0.63 

Average successes between 
errors 

s.d. 
1.11 
1.33 

1.13 

1.55 

u Used to estimate p (0.553) and fl(O.042). 
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APPLICATION OF THE ALL-OR-NONE MODEL TO THE FO~JR-CATEGORY DATA 

The subproblem analysis appears to be a tenable approach to a theory of four- 
category data. Additionally the subproblem learning of the single-cue groups, 
C and F, was described fairly well by the All-or-None theory. In our model of 
four-category learning, we suppose that there are two All-or-None learning pro- 
cesses going on concurrently, one per subproblem, and that their characteristics are 
the same as revealed in Groups C and F who learned only subproblems. If we do not 
distinguish between the subproblems, then at the beginning of any trial the subject 
may be characterized as having already solved either 0, 1, or 2 of the subproblems. 
Corresponding to each of these levels of knowledge, we indentify 3 states of a Markov 
chain, all subjects being in state 0 on Trial 1 and eventually becoming absorbed in state 
2 when the complete problem is solved. Associated with each state is a probability of a 
correct response; these are l/4, l/2, and 1 for states 0, 1, and 2, respectively. These 
arise directly from the subproblem analysis, in which the success probability on each 
subproblem is l/2 or 1. 

Let 0 represent the probability that an unlearned subproblem is learned (solved) 
in a single trial. It will be assumed that the two subproblems are equally difficult, 
so that their learning parameters are equal to a common value of 8. It will be further 
assumed that 0 remains constant over trials in the experiment. In particular, this 
means that the probability of solving subproblem A per trial is independent of whether 
subproblem B has already been solved. The trial to trial matrix of transition probabili- 
ties for Group CF is given in Eq. 3. 

State on trial n + 1 

I 2 
1 0 

State on trial rr 
2 
1 
0 

1 0 0 
e l-0 (3) 
82 2e(i - e) (1” ey 

The descriptive accuracy of this model will be discussed. First, evidence for the 
3-state characterization of performance will be considered. Second, we will consider 
the fit of the model in Eq. 3 to quantitative details of the four-category CF data, in 
which 0 is estimated from the data of Groups C and F. 

EVIDENCEFOR THREE PERFORMANCE LEVELS 

The relevant evidence for the intermediate performance level comes from examina- 
tion of the forward and backward curves prior to the last error in Group CF. The 
learning curve for an individual is either a single step function from l/4 to 1 or a two 
step from l/4 to l/2 to 1. The backward learning curve in the former case would be 
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flat at l/4; in the latter case, it should be at l/2, then step down to l/4. The usefulness 
of the backward curve in identifying the second step (l/2) depends on the proportion 
of subjects expected to go through that state. This expected proportion is 

28(1 - 0) 2(1 - l9) 
= 82 + 28(1 * - 0) 2 - 0 

In our case, 0 is small (0.047), so that about 98 o/o of the subjects are expected to go 
through the intermediate state. 

ii 5 TRIAL BLOCKS 

2 
n *E, Backward Group CF 

X12+)-11 -10-9 -6 -7 -6 -5 -4 -3 -2 -1 6 

5 TRIAL BLOCKS BEFORE CRITERION 

FIG. 1. Forward and backward stationarity curves for Group CF: Proportion of successes 
prior to the last error. 

The forward and backward curves prior to the last error, averaged across subjects 
in five-trial blocks, are shown in Fig, 1. The top curve in Fig. 1 is calculated by going 
forward from Trial 1 and dropping each subject as he makes his last error; the bottom 
curve is calculated by moving backward from the trial of each subject’s last error. Both 
plots reveal the same pattern of results: the average probability of a correct response 
begins near l/4 and increases to l/2 over successive trials prior to the last error. 
Vincentizing the trials yields the same result. In theory, the transition from l/4 to 
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l/2 is a discrete jump for each individual; the gradually increasing curves in Fig. 1 
presumably arise because of average across individuals who make the jump at different 
trials. 

PREDICTIONS OF DETAILS OF CF DATAFROM THE MODEL 

We now apply the model in Eq. 3 to the CF data, generating predictions which 
are a function of 8. The mathematical derivations are contained in the Appendix. 
We could estimate B from the total errors for Group CF and then predict other features 
of CF performance. A more exacting test is to estimate 0 from the data of Groups C 
and F who learned only one subproblem. This method tests the invariance of the basic 
parameter as well as the descriptive fit of the model to the CF data. 

The parameter estimate 4 = 0.047 was obtained from the average total errors 
(10.60) of Groups C and F pooled by using the formula 0 = OS/T. For the 3-state 
model, the average probability of a correct response on trial n is 

p, = 1 - (1 - e)+1 + 0.25 (1 - 0)‘2(n--l’ (4) 

This fits the mean learning curve in Table 1 fairly well with t9 = 0.047. The mean 
learning curve $or the single-cue subjects is expected to be 

p:, = 1 - 0.5 (1 - e)n-l 

It will be noted that (ph)” is equal to the p, in Eq. 4; hence, this 3-state model implies 
the multiplication iule which the data have confirmed. 

The expected total number of errors for Group CF is 

E(T) = 2 (1 - pJ = $ - e(;*ye) 
n=1 

Setting,6 = 0.047, the prediction is 18.56 mean errors, whereas the observed value 
was 18.65. For the pilot study using four-letter consonant stimuli, the 8 estimated 
from the single-cue groups was 0.023. The error for the compound group was 36.35, 
whereas Eq. 5 predicts 36.28. Thus, the model predicts E(T) accurately using the 0 
estimated from results of different subjects learning single-cue subproblems. 

In the model, the error distribution is the convolution of two geometric distributions 
representing the errors committed in states 0 and 1 (see Appendix). The observed and 
predicted cumulative error distributions fat the CF group are presented in Table 10. 
The fit of predicted to observed values is fairly good. The goodness of fit was evaluated 
by the Kolmogorov-Smirnov one-sample test. The largest discrepancy (0.135)occurred 
at the value T = 21, but is not large enough to cause rejection of the null hypothesis 
(N = 40 cases, p > 0.20). 

Finally a list of point predictions of statistics of the CF data are presented in 
Table 1 I. There are no constraints imposed upon the comparisons since 0 was esti- 
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TABLE 10 
DISTRIBUTION OF TOTAL ERRORS, T, FOR GROUP CF 

k Observed Predicted 

o-2 0.025 0.029 
3-5 0.100 0.115 
6-8 0.225 0.228 
9-11 0.325 0.344 

12-14 0.475 0.454 
15-17 0.500 0.551 
18-20 0.525 0.635 
21-23 0.675 0.705 
24-26 0.775 0.763 
27-29 0.900 0.810 
30-32 0.900 0.847 
33-35 0.925 0.877 
36-38 0.925 0.900 
39-41 0.950 0.919 
42-44 0.975 0.933 
45-47 0.975 0.944 
48-50 0.975 0.953 
51-52 1.000 0.959 

Maximum Discrepancy = 0.135 at T = 21 

TABLE 11 
SUMMARY STATISTICS FOR GROUP CF 

Statistic Observed Predicted 

Mean errors 
s.d. 

Trial of last error 
s.d. 

18.65 18.56 
11.44 12.91 

31.22 30.82 
17.76 23.27 

Error runs 7.65 7.67 
Length 1 3.40 3.36 

2 1.80 1.81 
3 1.03 1.00 
4 0.40 0.59 

Autocorrelations 
lag 1 
lag 2 
lag 3 
lag 4 

11.00 10.88 
10.62 10.46 
9.65 10.04 
9.70 9.64 
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mated independently from the two single-cue groups. The accuracy of the predictions 
supports the model and confirms a basic assumption, namely, that the learning 
parameters for the four-category task can be reconstructed in a direct way from the 
learning parameter for single-cue problems. 

AN ALTERNATIVE MODEL FOR FOUR-CATEGORY LEARNING 

So far, the evidence seems to support a model whose major features consist of the 
subproblem analysis, all-or-none learning, and the 3-state Markov representation. 
Call this the subproblem or SP model for later abbreviation. We have considered 
various alternative models for the four-category task to assess how strongly the 
evidence favored the SP model as opposed to plausible alternatives. A major desidera- 
tum of any alternative model is that it be able to reconstruct the learning parameters 
for the four-category problem from knowledge of the results of the single-cue learners. 
It was upon this criterion of parameter-invariance that our alternative models floun- 
dered. We were unable to find a successful competitor to the SP model. 

It will be informative to outline a particular alternative model in order to illustrate 
the kind of difficulties encountered. This model is a version of one proposed by Suppes 
and Ginsberg (1962) for two-category experiments. Each of the four subconcepts 
(orange or blue circles or triangles) is to be represented by a single stimulus element 
which is assumed to become conditioned to its correct response in paired-associate 
fashion. Instances of the same subconcept which differ in irrelevant attributes are 
considered to be presentations of the same stimulus element. Thus, four-category CI 
is viewed as similar to the learning of 4 paired-associate items, where the items 
correspond to the four subconcepts. This will be referred to as the PAL model. 

In this model, the learning of the 4 items is assumed to proceed independently in an 
all-or-none fashion. At the beginning of any trial the subject may have already learned 
either 0, 1,2, 3, or 4 of the items. The number of items learned will be identified with 
the 5 states of a Markov chain. Subjects begin in state 0 and eventually are absorbed 
in state 4. 

If an unlearned item is presented and its correct response reinforced, then with 
probability c the item is learned on that trial, whereas with probability 1 - c it remains 
unlearned. The transition probabilities derived from these assumptions are the same 
as those for the 4-element pattern model of Estes (1959). Assume the 4 items are pre- 
sented with equal frequencies and let i and j index states of the system; then the trial 
to trial transition probabilities from state i to statej are 

for j=i+l 

l-(1-+), for j=i 

0 otherwise 

(6) 
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The response rules for the system are as follows: to conditioned items, the correct 
response is given; to unconditioned items, the subject guesses responses from a 
uniform distribution, being correct with probability l/4. With these rules, the average 

probability of a correct response when in state i is (4 + 3i)/16. We will now consider 
some implications of this model and how the evidence bears upon it. 

The PAL model implies that an individual’s average response probabilities will take 
on the successive values of 0.25,0.44,0.63,0.81, and then 1.00. The expected numbers 
of trials that the subject will be in each of the transient error states are c, 1.33c, 2c, and 

4c, respectively. Since the last error is most likely to occur when the subject is in states 
2 or 3, the model implies that approximately the last 6c/8.33c = 72% of the trials 
prior to the last error should display response probabilities of 0.63-0.81. Turning to 
the evidence provided by the backward learning curves in Fig. 1, the obtained curves 

do not have the expected shape. Specifically, both curves in Fig. 1 should rise to 
between 0.63 and 0.81; instead, they rise to near 0.50 as the SP model predicts. 

As a second line of evidence, consider the confusion matrices in Tables 4 and 5. 

The PAL model, with its assumption of random guessing on unlearned items, pre- 
dicts that in both Tables 4 and 5 the relative confusion frequencies in each row will be 
equal to l/3. Although the equality prediction is well approximated in Table 5, it 
is not in Table 4. Thus, this evidence goes against the PAL model. On the other hand, 

the SP model successfully anticipated the difference between the results in Tables 
4 and 5. 

As a third point, it may be shown that the PAL model does not imply the multi- 
plication rule, for which confirming evidence has been reported. To prove this, 

expressions for the mean learning curves for the four-category and for the single-cue 
problems are needed. The PAL model implies that the average probability of a correct 
response on trial n of the four-category experiment is 

p, = 1 - 0.75 (1 - 0.25c)+’ (7) 

Similarly, the mean probability for subjects learning the single-cue problem (as in 
Groups C or F) is expected to be 

p:, = 1 - 0.5 (1 - 0.25c)+l (8) 

The multiplication rule would hold for the PAL model in case its predicted p, is 
equal to its predicted (&Jz. Calculations from Eqs. 7 and 8, however, show that (ph)” 
should always be less than p, if this model is correct. The difference between the two 
quantities increases then decreases over trials, with a magnitude depending on c. 
For the c value estimated from the single-cue learners (0.188), the maximal discrepancy 
between p, and (pi)” according to the PAL model should be about 0.063 and should 
occur around trial 15. 
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Although the discrepancy is small in magnitude, it is consistent in sign. Thus, 

the difference pn - (pA)z should be consistently positive in, say, 5-trial blocks during 
learning. Inspection of Table 1 shows that this difference is positive in only half of the 
first 16 blocks of trials. Thus, this evidence goes against the PAL model but agrees 
with the SP model. 

A final point is that the PAL model does not possess the necessary invariance of the 
learning parameter, c. The mean errors for the single-cue groups is expected to be 2/c. 
The pooled mean errors for Groups C and F was 10.60, so the estimate of c is 0.188. 
For the four-category task, the expected errors is 3/c. Assuming parameter invariance, 

the prediction for the four-category subjects is 15.90 errors as opposed to 18.65 
observed. In comparison, the SP model predicts 18.56 errors in the four-category 
condition. 

In sum, the PAL model is inadequate and there is little need to further flog the dead 

horse. However, the exercise in flagellation is illustrative of the kinds of explanatory 
problems encountered by alternative models we have considered. 

ANALYSIS OF DERIVED SUBPROBLEM LEARNING SEQUENCES 

At this juncture, the 3-state model appears to give a more accurate account of the 
CF data. However, discrepancies between data and model do arise when the derived 
subproblem sequences (from CF subjects) are analyzed according to the expectations 
of the All-or-None theory. Recall that these derived sequences are obtained by 

restoring whether each response was correct with respect to the hypothetical color 
and form subproblems. The result is two subproblem learning sequences (1 ‘s and O’s) 
for each subject in the CF Group. 

In applying the All-or-None model to these derived sequences, it is explicitly 
assumed that interference or forgetting is minimal. That is, if one subproblem is 
already learned, then the learning of the second subproblem should never produce a 
momentary relapse (interference) with the first subproblem performance. This is a 
stringent assumption in this context since it implies that there is no improvement in 

performance prior to the trial of the last error on a subproblem. We examine to what 
extent this identification of the point of subproblem learning is supported by the data. 

We first consider the distribution of successes between adjacent errors. The observed 
distribution is compared in Table 12 with that predicted by the All-or-None model. 
The fit here is excellent. 

Next consider the distribution of the total number of errors. The cumulative 
distribution for the restored sequences is shown in Table 13 along with the predictions 
from the model. The predicted and observed distributions do not significantly by a 
Kolmogorov-Smirnov one sample test (p > 0.20). 

In Table 14 are presented some summary statistics for the derives subproblem 
sequences along with their predicted values. It is to be noted that the fit is quite poor 
on standard deviations of errors and trial of last error. 
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TABLE 12 

DISTRIBUTION OF H, THE NUMBER OFSUCCESSES BET\NEEN ADJACENT ERRORS 

FOR &WORED GROUP CF 

Pr(H = k) 

k 
- 

Observed 

~- 

Predicted 

0 0.471 0.470 
1 0.241 0.249 

2 0.131 0.132 
3 0.070 0.070 

4 0.039 0.037 

5 0.014 0.020 

6 0.011 0.010 
7 0.009 0.005 

8 0.003 0.003 
9 0.003 0.002 

10 0.004 0.001 

11 0.001 0.001 

12 0.002 0.000 

TABLE 13 

DISTRIBUTION OF TOTAL ERRORS, T,M)R F&CORED GROUP CF 

PC? < k) 

k Observed Predicted 

o-2 0.212 

3-5 0.325 
6-8 0.388 

9-11 0.585 
12-14 0.712 

15-17 0.800 
18-20 0.850 
21-23 0.925 
24-26 0.938 

27-29 0.950 
30-32 0.950 
33-35 0.962 

36-38 0.975 
39-41 1.000 

Maximum Discrepancy = 0.132 at T = 8 

-..-.-. ___~ 
0.195 
0.379 
0.520 

0.628 
0.710 

0.773 
0.821 
0.860 
0.890 

0.924 
0.932 
0.938 

0.944 
0.950 
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TABLE 14 

SUMMARY STATISTICS FOR F&SCORED GROUP CF 

Statistic Observed Predicted 

Mean errors 
s.d. 

11.24 a 

9.11 11.33 

Trial of last error 
s.d. 

24.91 @ 

11.72 25.60 

Error runs 6.42 6.59 

Length 1 3.72 3.86 
2 1.59 1.60 
3 0.74 0.66 

Average successes between 
errors 

s.d. 

1.21 

1.77 

1.13 

1.55 

a Used to estimate p (0.57) and 0 (0.038). 

The former sets of analyses gave mildly positive results on fitting the All-or-None 

model to the derived sequences. We now consider some evidence that is distinctly 
negative. The model assumes that responses prior to the last error are stationary and 
independent observations from a binomial series. The data indicate that the derived 
subproblem sequences are neither stationary nor independent. For the stationarity 

test, the success probability was compared for the first vs. second half of trials prior 
to the last error. The percentage successes were 0.542 and 0.607 in the first and 
second halves, respectively. This is a significant increase in success rate (matched 
t = 2.92, df = 79, p < 0.01). Along with this increase, successive responses proved 

to be nonindependent. The conditional probability of a success was 0.592 following 
a success and 0.544 following an error. The 2, based on 1838 observations, is 4.05 
(df = 1, p < 0.05). 

Nonstationarity of the derived sequences could arise from several sources, but our 
data has insufficient power to differentiate among these. One possibility is that reten- 
tion of the first-learned subproblem may be disturbed or interferred with when the 

second subproblem is learned. A second possibility is that nonstationarity is produced 
by some terminal paired-association learning that is necessary to attach the responses 
to the four pairs of relevent cues. The latter is occasioned by the lack of symmetry 
in the conventional four-category stimulus-response assignments. For example, if one 
knows that orange is 1 or 2 and that orange circle is 1, he still requires a further arbitrary 
association to correctly classify blue circles and triangles (which is 3 and which is 4 ?) 
If  subjects arrive at this state of knowledge near the end of learning, their average 
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response probability on the form subproblem will be about 0.75 instead of 0.50, as it 
was prior to learning that orange circle is 1. The possibility of this brief paired- 
associate end effect has been ignored in this paper in the interests of parsimony (cf. the 
related discussion in Bower and Trabasso, 1963a); however, it is a good candidate to 
account for nonstationarity in the derived sequences. Special experiments can be 
contrived to minimize this paired-associate end effect. These would utilize two- 
component responses (e.g., Al, A2, Bl, B2) that mirror the logical structure of the 
two relevant stimulus cues to which the responses are assigned. 

To summarize our general results, the evidence supports the Bourne-Restle conten- 
tion that four-category CI learning can be viewed as two concurrent but independent 
subproblem processes. The evidence in favor of this assertion is (a) the accuracy of 
the multiplication rule in reconstructing Group CF’s performance from the perform- 
ance curves of the subproblem groups, (b) the symmetry of the stimulus-response 
confusions in the subproblems and in the compound problem, and (c) the lack of 
correlation between the learning rates of an individual on the two subproblems. Most 
of the data from Groups C and F could be accounted for by an All-or-None Markov 
model. Similarly, most of the details of four-category learning by Group CF were 
predicted by a 3-state Markov model representing the convolution of two simpler 
all-or-none learning processes. An important feature of the theoretical analysis was 
the outcome of parameter-invariance; the learning parameter for the compound 
problem was reconstructed via the theory from a knowledge of the learning parameters 
for the single-cue subproblems. Despite the good over-all fit of the model, some 
deviations from the data were encountered. Future work will aim to understand and 
resolve these discrepancies. 

APPENDIX 

This appendix presents the formulas used to calculate theoretical expressions for 
the various statistics of the generalized one-element model. The techniques of deriva- 
tion are not included here and the interested reader is referred to Bower (1961b), 
Bower and Theois (1963), and Suppes and Atkinson (1960) for these methods. 

As in preceding sections, the learning parameter, 0, represents the probability that a 
subject selects and learns the relevant dimension of a subproblem on a particular trial. 
Using the matrix given in Eq. 3, where we identify three learning states (S, , S, , or S,) 
with associated probabilities of correct responses of l/4, l/2, and 1, respectively, we 
have the following: 

Average probability of being in state & on trial n, wisn: 

W O,n = (1 - Q-1) 

W l,n = 2 [(l - e)+i - (1 - e)s(+i)] 

(1.1) 

(1.2) 
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Average probability of an error on trial n, q,,: 

qn = &%.n + Qw1.n 
= (1 - @n-l - $(I _ yl-1) (1.3) 

Distribution of total errors, T: 

(A) Distribution of ti , the number of errors made in transient state i: 

(1) For S,, , let b, be the probability of no more errors in SO , then 

48(2 - 0) 
b. = 3 + e(2 - e) 

and 

dbo for k=O 
I=& = k) = 

(1 - $ b,) b,( 1 - b,)“-l for k>l (14 

(2) For S, , let b, be the probability of no more errors in S, , then 

and 

+b, for k=O 
Pr(tl = k) = (1.5) 

(1 - 8 b,) b,(l - b,)k-l for k>,l 

(B) Distribution of T, a convolution of t, and t,: 

for k=O 

U-6) 
A(1 - b,Jk-’ + B(l - b,)“-l for k>l 

where 

A = bo(4 - 4,) b,(l - ‘4 (4, - 2) 
4(2 - 0) [ (bo - bd + el 

and 

Average total errors: 

R = &Ml - 4 (2 - b,) (4 - h) 

4(2 - 0) (b, - bd 

7 - 48 
E(T) = 4q2 - 0) (1.7) 
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Distribution of trial of last error, 12’: 

i 

e 2 
f-1 It-0 

PY(d = k) = 

for k=O 

(l-8) 

(%*n3(&~+zU1,n(&J for k= 1 

Average trial of last error: 

&,) = 3e + 20 + e2 K2 - ej2 - 11 
6(1 + ey (2 - ey 

Variance of trial of last error: 

Var (n’) = E(n’2) - [E(n’)]” 

where 

qn’)2 = (38 - 2) 12 - e(2 - @I + 20 - eJ4 
ey1 + e> (2 - e)s 

Mean j-tuples of errors: 

Let u = i (1 - 0) and b = $ (1 - 0)2, then 

(1 - 4 &l + 3 
ui = 6(2 - e) 4e(2 - 0) 

bj-l + 3 (1 - e> aj-1 - bj-1 
* (2 - e> [ u-b I 

Runs 
R = u1 - u2 

Runs of lenght i: 

Yi = ui - Ili+l + ui+2 (cf. Bush, 1959). 

Autocorrelation of errors, lag k: 

1 
‘lc = 168(2 - 0) 

[4(5 - 28) (1 - ey - 3(1 - ey] 
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