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The experiment tests an all-or-none theory for concept learning. The assumption 

tested is that the subject tries out cues (hypotheses) randomly without utilizing informa- 
tion from the past sequence to limit his search. The test condition run involved 

multiple shifts in relevancy of two cues during the course of learning. Contrary to 
prediction, this procedure retarded learning. A proposed revision assumes that the 

subject eliminates inconsistent cues but after awhile forgets that they had been 
eliminated. Quantitative assumptions to this effect accurately fit the present results. 

Related research is discussed which also is consistent with the revised sampling rule. 

The basic postulate of all-or-none learning models (e.g. Bower, 1961; Restle, 1961, 
1962; Bowerand Trabasso, 1964a) is that the subject’s performance changes in discrete, 
discontinuous steps. In those situations where only a single unit is to be learned, the 
learning sequence of an individual subject may be characterized by a Markov chain 
with two states, one of which is absorbing. Each subject begins in the non-absorbing 

(unlearned) state wherein he responds correctly with probability p. On some one trial, 
an effective learning event occurs whereby the subject enters the absorbing (learned) 
state and responds correctly with probability 1. The important Markov chain assump- 
tions are that the probability of making the transition from the initial to the learned 
state is independent of the previous history of the subject and is constant over trials. 

i This research was supported by research grants MH-08741-01 from the National Institutes 
of Health, USPHS, and NSF grant 81 by the Committee on Research, University of California, 

Los Angeles to the first author. The second author received support by research grant HD-00954 
from the National Institute of Child Health and Human Development. The authors thank 
Sharon Deans for her assistance in collecting the data for the study. 
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The present paper is concerned with a test of these latter assumptions. Specifically, 
we shall consider the learning of a two-category concept identification problem. In 
concept identification problems of this type, the subject learns by the conventional 
anticipation method a binary rule to classify a series of complex stimuli which vary in rz 
binary dimensions. A dimension is either relevant and always leads to correct responses 

or it is irrelevant and leads to correct and incorrect responses on half of the trials. 
The models of Restle (1962) and Bower and Trabasso (1964a) commonly suppose that 
on an error trial the subject samples either hypotheses or cues based upon the dimen- 
sions and proceeds to test the relevance of the sampled hypotheses. If  the subject is 
correct, he retains the hypotheses for another trial; if he makes an error, the subject 

resamples with replacement from the population of available hypotheses, H. The proba- 
bility of learning on an error trial, c, is assumed to equal the probability that the subject 
samples a relevant hypothesis (i.e., the proportion of relevant hypotheses in H.) 

In this model the constancy of the learning parameter follows from the assumption 
of resampling with replacement. In effect, the theory assumes that the subject has no 

memory for what previous hypotheses have been tried and rejected. If  hypotheses have 
been rejected from H as they were sampled, tested and found to be inconsistent with 
the stimulus-response assignments, and if no new hypotheses were added to the 
initial pool, then the proportion of relevant hypotheses, c, would increase with each 
error. The question of what kind of resampling occurs is unanswered. If  memory is 

operative, as other data indicate (e.g. Trabasso and Bower, 1964a), then the model 
would have to be modified to take account of this variable in the sampling process 
and learning rate. 

The present test involves what has been called “additivity of cues” (Restle, 1962). 
Suppose a weight, wj , is assigned to cuej and represents its salience. The probability 

of sampling cue j after an error is called cj and is 

The summation in the denominator is over all cues in the available pool. I f  cue j is the 
only relevant cue, then cj is the probability that after an error, the subject solves the 
problem by selecting cue j, which ensures that he will make no further errors. If  the 
pool of cues and their weights remain fixed, then cj remains fixed over trials. This 
entails a geometric distribution of errors before solution with mean of I/cj . 

The standard additivity design (Restle, 1962) involves three conditions with a 
constant pool of cues but varying the set of relevant cues. Letting wi summarize the 
combined weight of a constant pool of irrelevant cues, the three conditions and their 
respective learning rates are as follows: 

Condition 1: Cue 1 relevant: cr = w1 
w1 + w2 + wi ’ 
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Condition 2: Cue 2 relevant: c, = w2 
WI + w2 + wi * 

Condition 1.2: Cues 1 and 2 relevant and redundant: cr.a = Wl + w2 

Wl + w-2 + wi * 

Thus, ci,a = c1 + c2. The learning rate for Condition 1.2 may be predicted from the 

error scores (which estimate c) in Conditions 1 and 2. 
The present test involves a procedure which theoretically should produce the same 

additivity result, although the prediction is arrived at in a different way. The procedure, 
called a Dimensional Shift (DS) condition, has the subject begin with Cue 1 relevant 

and Cues 2 and i irrelevant. On the second error of a series (if the subject made a 
second error), the subject was told “correct” and the classifications were shifted by 
the experimenter so that Cue 2 was now relevant while Cues 1 and i were irrelevant. 
The new classification was that which would be correct according to the subject’s 
response on the shift trial. To illustrate, suppose Cue 1 is the location of a dot (above 
or below the central figure), Cue 2 is the shape of the central figure (circle or triangle) 

and the categories are called “A” and “B.” Starting with the dot relevant, suppose 

the second error occurred when a circle was presented and the subject said “A.” 
Then he was told “correct” and the classification rule was shifted (without the 
subject’s knowledge) to the shape as relevant with the rule: circle-A and triangle-B. 

After the shift, the subject’s responses were reinforced according to the new assign- 
ments. If  the subject made a second error on this new series, he was told “correct” 
on that trial and the rule was shifted back to the dot as relevant and shape irrelevant, 
again with the specific response assignments determined by the subject’s response 
on the shift trial. By this procedure, the classification rule could be shifted back and 
forth repeatedly over the course of learning. A subject was considered to have solved 

the problem if he responded correctly on ten consecutive trials following a shift or 
following an informed error. The statistic of interest is the mean number of informed 
errors since the theory supposes that opportunities for resampling and solving the 
problem occur only when the subject is told that he is wrong. 

Despite the complexity of the DS procedure, in theory it should be an easy problem 
for the subject. He is expected to solve on that informed error trial when he samples 
either Cue 1 or Cue 2 to test. Thus, the observed mean informed errors in the DS 
condition should be equal to that in Condition 1.2 and be less than those in Condi- 
tions 1 and 2. To illustrate the reasoning here, suppose an informed error occurs while 
Cue 1 is relevant. If, on that trial, the subject samples Cue 1, he will solve without 
any more errors. If, at the informed error trial, the subject samples Cue 2, which is 
currently irrelevant, he will eventually make another “incorrect” response (without 
being told so) but on that trial, the experimenter will shift the correct answers into 
correspondence with the hypothesis that the subject is using. In this case, the subject 
will be told “correct” and he will make no further errors. In either event. the total 
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probability that any informed error is the last one is the probability that the subject 
samples Cue 1 or Cue 2 on that trial. 

In an earlier experiment (Trabasso and Bower, 1964b), a DS condition was compared 
with the mean of Conditions 1 and 2. Although learning in the DS condition was 
slightly faster, the difference was not statistically significant. Our subsequent analysis 
given above, instigated a replication of the experiment with the addition of Condition 
1.2 as a proper control group. 

METHOD 

Procedure. The same instructions were read to all subjects. The subject’s task was to learn 

to classify cards into two classes, called Alpha and Beta. The subject was told that the cards 
could be classified correctly according to a rule and he was given a detailed description of the 
stimulus dimensions and their values. 

Cards were presented one at a time on a holder. The subject self-paced his verbal responses 

and the experimenter showed the correct classification after the subject responded to each card. 
The subject had 4 sec. to view the pattern after reinforcement. A different order of presentation 

was given each subject by shuffling cards at the end of every 32 trials if the subject had not 
reached the criterion of 10 successive correct responses. Since the probability of an infomed 
error was lower (l/4 vs. l/2) for the DS condition compared with the other conditions, an equal 
opportunity for informed errors was achieved by terminating the experiment at 152 trials for 

the subjects in the DS condition and at 76 trials for all other subjects when the subject failed 
to learn. 

Stimulus materials. The stimuli were geometric figures drawn in crayon pencil from 
templates on white 3 x 5-inch file cards. There were five binary dimensions: shape (circle or 

triangle); position of a l/4-inch dot (above or below the figure); color of the figure and dot 
(red or blue); number of lines within a figure (one or two) and position of an open side on the 

figure (right or left). There were 25 = 32 patterns for conditions 1, 2 and iDS; condition 1.2 
had 16 patterns since the shape and dot were relevant and redundant. 

Experimental conditions. Four groups were run in the experiment. 
Group DS had a problem where one of two dimensions (shape or dot) was initially relevant. 

As outlined above, on every second error, the subject’s response was called correct in accord 
with an instantaneous shift of the response assignments to the other relevant dimension. 

Group 1.2 has a problem both the shape and dot dimensions were relevant and redundant 
throughout. 

Group 1 had a problem with the shape relevant and the dot position irrelevant. 

Group 2 had a problem with the dot position relevant and the shape irrelevant. 
In all problems, the color, line, and open-side dimensions varied independently and were 

always irrelevant. Within each condition, the four stimulus-response assignments were counter- 

balanced across subjects. 

Subjects. The subjects were 220 volunteers recruited from introductory psychology classes 
at the University of California, Los Angeles. Participation in experiments was a course require- 

ment. The first forty subjects in each group were randomly assigned to their condition. Addi- 
tional subjects were run in Groups 1.2, 1, and 2 for different experimental purposes and their 
data are also included. The subjects were thus distributed: 40 in Group DS; 90 in Group 1.2; 

45 each in Groups 1 and 2. 
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RESULTS AND DISCUSSION 

Additivity of cues. Statistical comparisons between learning rates were made by 
using maximum-likelihood estimates. Taking into account those subjects who failed 

to learn, the equation for these estimates (from Bower and Trabasso, 1964a) is 

P 

E = E[T] - (1 -P) * 

In Eq. 2, c  ̂is the estimate of the learning parameter, P is the proportion of subjects 

who solved the problem, and E(T) is the mean number of informed errors for all 
subjects. Comparisons of the estimate for Group 1.2 with the others was made by 
likelihood-ratio tests (c.f. Restle, 1961) and the results are summarized in Table 1. 

TABLE 1 

SUMMARY OF EXPERIMENTAL REZWLTS 

Group 

Proportion of Mean informed 

solvers errors 

Learning 
rate Chi-square 

1.2 .99 4.14 .239 - 

DS .90 6.75 .135 11.02” 

1 .96 5.87 .164 5.46” 

2 .96 10.13 .095 31.29” 

a df = 1, p c.05. 

In Table 1, it can be seen that the shape and dot cues were additive but that Group 
DS learned more slowly that Group 1.2. The relevant cues were additive in that 

Group 1.2 learned faster than either Group 1 or 2, respectively. The predicted rate 
for Group 1.2 is the sum of the rates of groups 1 and 2, or .095 + .164 = .259, which 
was not significantly different from the observed value of .239 (x2(1) = 0.62, p > SO). 
Converting to mean errors, the predicted value is 3.86, compared with 4.15 observed. 
The mean number of informed errors for group DS was nearly equal to the average 
of Groups 1 and 2, a result which replicates the prior finding (Trabasso and Bower, 
1964b). However, the significant difference between the learning rates of Groups DS 
and 1.2 disconfirms the main prediction under test. Accordingly, we are led to consider 
some modification in the theory’s assumption. The critical assumption would appear 

to be that regarding the subject’s memory. 

A revision Involving Resampling without Replacement for a Fixed Number of Trials 

As pointed out above, resampling with replacement amounts to the assumption 
that the subject can not remember what events have occurred in the past information 



168 TRABASSO AND BOWER 

sequence. If  we wish to alter this postulate by imputing some memory to our model 
subject, there appears to be at least two ways to proceed. One approach is to suppose 
that the subject remembers specific stimulus-response information from the trials 
of the recent past. An alternative approach is to suppose that he remembers some 

hypotheses that he has tried and rejected. For various reasons, the former approach 
seems more facile in handling the present data of the DS condition. Adopting the 
former approach-memory for specific past stimulus-response information-there still 
are several alternative ways to introduce this factor in the theory. We have tried several 
notions, and we report here the one which appears most promising. 

As before, it is assumed that information processing (sampling) goes on only on a 
trial when the subject is told that his response is wrong. Let us call this trial n for a 
reference. We make three assumptions. First, assume that the subject remembers the 
specific stimulus pattern and correct response from trial n - 1. Second, assume that 
after the error on trial n, he compares the stimulus-response information on trial n to 

that which he remembers from trial n - 1. This comparison is a consistency check on 
each attribute of the stimulus. He temporarily sets aside (eliminates from consideration 
on this trial) any attribute which has inconsistent response assignments on trials n 
and n - 1. For example, if both patterns are red but are given different responses 
or if the colors differ but are given the same response, then the color attribute has 

inconsistent assignments on those two trials and hence would be set aside. Third, 
assume that once an attribute is found to be inconsistent and is set aside, it remains 
set aside (eliminated) for the next k informed error trials. The number k could be 
considered to be a random variable; for our purposes here, it makes no material 
difference if we assume that K is some constant. Translating the sense of the assump- 
tions into other words: we suppose that the subject discovers that certain attributes 

are not relevant, but that he eventually forgets this information as other events inter- 
vene; when he forgets it, that attribute again becomes an available candidate for 
sampling. We have thus postulated two means by which a cue could be set aside for the 
sampling that takes place on error trial n: (a) the cue fails to pass the consistency 
check in the trial n ZX. n - 1 comparison, or (b) it failed on an earlier consistency 
check and has not yet been revived. At the end of this process, the subject may be 
conceived to have two lists: those attributes that are still effective candidates for being 
the relevant cue and those that have been temporarily set aside. It is assumed that he 

then selects a cue from the pool of effective cues (the first list), with the sampling 
probability of a cue determined by its weight or salience.2 

z This mode of exposition makes it appear that the subject is engaging in an exhausting series 

of cognitive operations. A simpler description is to say that after the error the subject samples 
cues randomly one at a time, and stops with the first cue that passes its consistency checks 
(is not eliminated by information in memory). This process achieves the same end result as 
the exhaustive one elaborated in the text. 
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A few implications of this revised sampling rule may be noted in passing. First, 
the rule will never eliminate a relevant cue that has had fixed response assignments 
throughout training. Second, an irrelevant cue has a probability of l/2 of being set 
aside at each error trial. The net effect of the rule in the standard problem is simply to 
reduce the average weight of the irrelevant cues (which is unknown in any event). 

Third, of importance to us, this rule is the only one we have been able to devise which 
is consistent with the results of our prior experiments on presolution reversals (Bower 
and Trabasso, 1964b). In Experiments I and II of that earlier report, the S-R assign- 
ments were reversed if a subject errored after 10 (or 5) trials on the initial assignments; 
yet such reversed subjects solved their problem with about the same number of 
errors as did controls whose answers were not reversed. In Experiment III of that 

report the subject was told “correct,” and the S-R assignments were reversed on 

every second error that he made; yet the average number of informed errors before 
solution was the same as for controls trained with fixed S-R assignments. 

The reversal results fit easily into the altered sampling rule. The important point 
to be noted is that the relevant cue would never be eliminated by our rule in those 

experiments. The assignments for the relevant cue on an informed error pattern and 
the one preceding were always consistent. The only occasions for an inconsistency 
was on a reversal shift trial, but on that trial the subject’s response was called “correct,” 
hence he would not carry out a consistency check. Thus, the altered sampling rule 
would expect no interference in learning the reversal problem, as was found. 

Sampling Rule Applied to Cue-Additivity and DS Conditions 

We now interpret the results of the present experiment in terms of this revised 
sampling rule. We consider first the results on cue additivity. It may be seen that the 
general effect of the altered sampling rule is to reduce the weight of the irrelevant 

cues by some average amount; let b be this average fractional reduction. In these terms, 
the three groups in the additivity paradigm would have the following average learning 
rates: 

Group 1: Cue 1 relevant, Cues 2 and i irrelevant 

Cl = Wl 
Wl + @J, + Wi) . 

Group 2: Cue 2 relevant, Cues 2 and i irrelevant 

c2 = WZ 
w2 + @Jl + Wi) ' 

Group 3: Cues 1 and 2 relevant, Cue i irrelevant 

(3a) 

(3b) 

(3c) Cl.2 = - 
Wl +w2 

wl + wz + bwi . 
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It is clear enough that cIVz is larger than either cr or ca so, in this qualitative sense, 
cue additivity still follows from the new sampling rule. However, Eqs. 3a and 3b 
involve more unknowns (3) than we have relations, so cr.s is determined only up to a 

function of the known estimates, cr and ca , and the unknown, b. Hence, no parameter- 
free prediction of cl,2 is possible in this case. 

Nonetheless, a slight variant of Conditions 1 and 2 does permit a parameter-free 
prediction of cr,a . The variant is to run a condition (call it 1’) similar to Group 1 
except that Cue 2 is absent; similarly, Condition 2’ is similar to Group 2 except that 
Cue 1 is absent. Let cr’ and c2’ be the estimated learning rates under these new condi- 
tions. cr ’ is given by Eq. 3a with ws = 0, and cs’ is given by Eq. 3b with wr = 0. 
For this case, the following relation may be derived: 

Cl.2 = 
c,‘(l - c,‘) + c2’( 1 - Cl’) 

1 - Cr’Ca’ * 

Fortunately for this analysis, conditions 1’ and 2’ had been run in the experiment 
(with 45 subjects each) for different purposes. The estimates obtained by Eq. 2 from 

their data were cr’ = .114 and c2’ = .173. We note that these estimates are larger 
than c1 and cp (see Table l), as the model expects (Eqs. 3a, 3b). When these values of 
cr’ and cs’ are substituted into Eq. 4, the value of ct,a predicted is .252. This accords 
tolerably well with the observed estimate of .239 in Table 1. 

The analysis above demonstrates that the revised sampling rule is consistent with 
cue-additivity results. However, this is not a very exacting validity check; almost any 

sampling axiom will do fairly well in this regard. 
Application of the revised sampling rule to the Dimensional Shift (DS) conditions 

encounters analytic difficulties. The problem is that sometimes the sampling proba- 
bility for Cue 1 is cr (when both cues are effective), sometimes it is cr’ (when Cue 2 has 

been temporarily set aside), and sometimes it is 0 (when it has been set aside). The 
same holds for Cue 2. To deal with this complexity, we have simulated the DS experi- 
ment with 40 Monte Carlo runs of the model. The main features of the Monte Carlo 
runs were as follows: 

(a) 20 stat-subjects began with Cue 1 relevant and 20 with Cue 2 relevant. 

(b) Prior to learning, the probability of a correct response was l/2 (ignoring shift 
trials when told “correct” instead of “error”). 

(c) When both cues were effective, the sampling probabilities were cr = .095 
and c1 = .164. 

(d) if Cue 2 were set aside, the sampling probability on cue 1 was cr’ = .l 14; if 
Cue 1 were set aside, the sampling probability of cue 2 was cs’ = .173. 

(e) if the currently relevant cue were sampled on an error trial, the subject solved 
the problem with no more errors. 
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(f) if the currently irrelevant cue were sampled on an error trial, then with pro- 
bability l/2 it was presumed inconsistent with the prior trial information and was set 
aside for K subsequent informed error trials. With probability l/2 it was presumed 
consistent with the prior trial information; in this case, the subject retained that cue 
as his hypothesis, made a second (uninformed) error, and solved when the answers 
were shifted into line with his hypothesis. 

Four different set of 40 Monte Carlos each were run with K taking on the constant 
values 1, 2, 3, 4. Recall that K is the number of subsequent error trials for which an 
inconsistent cue is set aside. Table 2 compares some summary statistics of Group DS 
with those of the four Monte Carlo runs. 

TABLE 2 

SUMMARY STATISTICS COMPARING GROUPS DS AND MONTE CARLO DATA 

Error trials before replacement (k) 

Statistic Group DS 1 2 3 4 

Mean informed errors 
Standard deviation 

Mean shifts 

Mean trial of last error 
Standard deviation 
Average success 

probability 
Number of subjects 

solving on 
Shape 

Dot 
Number of 

inconsistencies 
Number of subjects 

switched into 
criterion 

6.75 5.18 6.10 6.42 7.28 

8.78 4.15 5.82 7.23 7.78 

6.25 4.52 5.55 5.15 6.62 

25.85 19.22 21.15 22.62 26.80 

36.60 11.14 21.20 25.06 31.18 

15 14 18 13 14 

.516 .550 ,410 .418 .500 

13 18 17 14 16 

23 22 23 26 24 

13 16 15 14 

In Table 2, as K is increased, the data of Group DS are more closely approximated. 
The approximation improves particularly for average informed errors, average trial 

of last error, and average shifts as well as their variances. For these data, the best 
value of K would be between 3 and 4. The larger observed variance in informed errors 
and trial of last error resulted from four subjects who did not solve in Group DS, 
whereas all Monte Carlo subjects solved. The close approximation of the success 
probabilities before learning supports the assumption that percentage correct responses 
in this task is near l/2. 
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The number of DS subjects solving on the shape or the dot dimensions should be 
proportional to the sampling probabilities of these two dimensions; that is, the expected 

proportion of subjects solving on the shape cue is approximately ci/(cr + ca), or 
.195/.259 = .366. For Group DS, omitting the nonsolvers, the prediction is that 
36 x .366 = 13.2 subjects will solve on the shape cue; 13 did so. For the Monte 
Carlo groups, 40 x .366 = 14.6 subjects were expected to solve on shape; averaging 
the four runs, 16.25 subjects did so. The average number of subjects who were shifted 

into solution for the Monte Carlo groups is 14.75, whereas 15 did so in Group DS. 
Additionally, the error distribution of Group DS was compared with that generated 
by the Monte Carlos for each value of K. The generated distribution tended to be 
geometric in form and none differed significantly from that of Group DS by 
Kolmogorov-Smirnov two-sample tests. Putting together these various comparisons 
of data with model predictions, we seem to have definite support for the revised sam- 

pling rule. 

Stationarity of Presolution Responses 

Since subjects learned the DS problem under conditions where the stimulus- 
response assignments were continually shifting and since the average probability 

of a correct response was near the chance level of one-half, the learning of this problem 
would appear discrete. Similarly, the learning of Problems 1,2, and 1.2 were examined 
for their correspondence to assumptions of the all-or-none models. In theory, the 
presolution responses may be represented as a stationary and independent Bernoulli 
process. The data prior to the last error for subjects in Groups 1.2, 1 and 2 were 
combined since presolution responding should be the same for these groups. Backward 
learning curves over ten trials prior to solution for these groups showed a slightly posi- 

tive but nonsignificant trend (tau = .378,p > .05), with the average probability of a 
success at .524, significantly higher than the a priori one-half (X2( 1) = 5.77, p < .05). 
Successive correct and incorrect responses prior to the last error were statistically 
independent. (X2(l) = 2.65, p > .05). Thus, the basic assumption of discrete learning 
in these problems would appear to be supported by the presolution data of all four 
groups. 

Random Reinforcement 

We have shown that the revised sampling rule explains the present DS result and 
also the presolution reversal results reported previously. We mention one other set of 
results which were not explainable by the former “no memory” assumption but which 
seem consistent with the revised sampling rule. In experiments by Levine (1962) and 
Holstein and Premack (1965), the subject was first exposed to a trial block of random 
reinforcement (no cue relevant) followed by consistent reinforcement of a particular 
cue. Both experiments found that rate of learning the consistent problem was retarded 
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relative to control subjects who had no prior series of random reinforcement. More- 

over, the learning rate deficit was constant and independent of the number of trials in 
the random series (Levine used from 4 to 60 trials). The interference produced by 
random reinforcement is expected by the revised rule because an inconsistent rein- 
forcement on the to-be-relevant cue during the random series would set it aside for 
some trials carrying over into the consistent problem. Moreover, the number of 

carry-over trials that it is set aside depends only upon the last inconsistent trial on the 
to-be-relevant cue before the problem shift, and the number of prior inconsistent 
trials is irrelevant. Hence, the interfering effect of the random series should be relatively 
independent of its length, as was found. 
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