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SUMMARY 

We investigated the task of predicting the outcomes of sporting events, in particular, basketball 
games. In two experiments, college students predicted the outcomes of a series of National 
Basketball Association (NBA) games. Following each prediction, the subject received feedback 
in the form of the actual outcome of the NBA game. After a period of initial learning about 
the relative strengths of the teams, the subjects were surprisingly successful in their predictions. 
We examined expert-novice differences by comparing the published predictions of professional 
oddsmakers to the predictions of the experimental subjects. The average predictions by the 
subjects were approximately as accurate as the predictions of experts. Finally, we applied 
a mathematical model, developed originally as an account of simpler learning experiments, 
to the subjects’ responses. We found that the course of the subjects’ learning about the teams 
was well-described by this model. 

People are able to learn about the structure of a domain by putting together sources 
of partial information. For example, it is possible to discover the hierarchical structure 
of an organization or large family by observing pairwise interactions between mem- 
bers of the organization or family. Likewise, people can infer a linear ordering or 
ranking of objects along a single dimension by merely observing the outcomes of 
comparisons or contests between pairs of objects or participants. One type of linear 
order arises in dominance hierarchies, where the members of a set compete against 
each other for some scarce resource, and the winner is determined probabilistically 
from his or her quality along some dimension such as speed, power, or ability. 
The clearest cases of this kind occur in sports in which individual players or teams 
compete repeatedly, with an explicit winner and margin of victory. This description 
would apply to rankings of professional tennis players, boxers, track runners, and 
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race horses, and to teams in baseball, basketball, or football. But similar pairwise 
contests and rankings arise in animal dominance hierarchies, in marketing wars 
between businesses trying to capture greater market share with competing products, 
and in political power or social status hierarchies. 

We have previously developed a mathematical model to describe how people learn 
linear orders of participants by observing the outcomes of pairwise contests (Bower 
and Heit, 1992). In the present study, this abstract model was applied to the concrete 
task of a gambler or bookmaker learning to bet on professional basketball games. 
How do gamblers learn the relative strengths of basketball teams so that they can 
confidently bet on the winners and point spreads’ for many games every season? 
To study this question empirically, we examined how college students learned to 
estimate winning point spreads as they progressed through a season’s worth of basket- 
ball games, noting the winning team and the winning margin or point spread for 
each game. The stimuli in these studies were derived from actual games played during 
a National Basketball Association (NBA) season. 

This research had several purposes. First, it was an attempt to apply a simple 
mathematical model of learning to a simulation of learning about the strengths of 
basketball teams and predicting the outcomes of games. Typically, such models are 
applied to tightly controlled experimental situations, in which the stimuli are con- 
trived by the researcher, rather than to learning about part of the real world such 
as NBA teams. Thus, this research was intended to assess the generality of the model 
as a description of a real task. Second, the use of actual NBA games allowed us 
to evaluate the model, and our subjects, in terms of accuracy in predicting the true 
outcomes of the games. Can a group of college students learn to accurately make 
predictions of the winners of NBA games? How does the accuracy of the students 
compare to the accuracy of a mathematical model? Finally, we wanted to compare 
the subjects’ judgements and the model’s predictions to the forecasts of professional 
experts in published reports. Here we investigated whether the informational advan- 
tage enjoyed by the experts led them to be more successful than our relatively unknow- 
ledgeable subjects and our simple mathematical model. 

We consider these studies to belong to the field of everyday memory research, 
because the task of predicting the winners of sporting events is a popular activity 
outside of the laboratory, and our stimuli were derived from real-world events. The 
learning in our studies was enacted by subjects in the laboratory, but that is the 
case in much everyday memory research (Gathercole and Collins, 1992). However, 
for comparison we also examined learning outside of the laboratory, by evaluating 
expert predictions reported in a syndicated newspaper column. These expert predic- 
tions are taken quite seriously by sports fans, and it would be quite surprising if 
our subjects in the laboratory were as accurate as the experts. 

Considerations in developing the model 

The model we propose comes out of the linear operator tradition of mathematical 
learning theory (Bush and Mosteller, 1955; Estes, 1972), which would typically predict 
only participants’ win probabilities. In addition, our model is intended to predict 

’ The point spread of a game is defined as the difference between the number of points scored by 
the winner and the number of points scored by the loser. 
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people’s estimates of the number of points by which any team in a league would 
win or lose to any other team in the league. 

What properties of dynamic judgements should the mathematical model try to 
capture? We propose that when people learn orderings from specific outcomes, they 
bring to bear simplifying assumptions in order to reduce the complexity of the task. 
First, we suggest that people assume that they are indeed learning about objects 
or participants that are well-described by an ordering along a single dimension, 
such as strength or power. Some evidence for this proposal is provided by research 
on the learning of social structures from sets of propositions such as ‘person A 
influences person B’, ‘person C influences person A’, and so on (for a review, see 
Smith and Mynatt, 1982). These studies have sh’own that it is easier for people 
to remember a set of propositions if they permit it linear ordering of the elements 
than if they do not. 

Furthermore, it is assumed that there is a monotone relationship between the 
strength of a participant and its ability to compete in contests. In particular, the 
likelihood of participant A winning a contest over participant B would be some 
monotone increasing function of the difference (oir ratio) of their strengths. These 
assumptions imply that triplets of comparisons milst follow stochastic transitivity, 
that is, if P(A wins over B) > 0.5, and P(B wins over C )  2 0.5, then P(A wins 
over C )  > 0.5. This transitive property of orderings implies that strength values 
are context-independent; that is, the strength of a participant is the same regardless 
of the other participants in the contest. Thus we can learn about the relative orderings 
of participants A versus C by noting how each faues against common opponents. 
So if A usually wins over B, and B usually wins over C ,  then the prediction that 
A will win over C is warranted. By assuming transitivity, the learners’ task is greatly 
simplified: They need only to remember n strength values to rank n participants, 
rather than n(n -1)/2 context-dependent strength values that would be needed to 
predict outcomes if each participant had different strengths depending on who else 
was in the contest. 

In addition, we wanted the model to have a recency basis. That is, in updating 
the strength of a participant, recent outcomes should have a greater influence than 
remote outcomes. This recency bias is consistent with numerous results in memory 
research showing forgetting over time. Recency bias is also consistent with moving 
average models of serial judgments, such as repeated predictions of the current price 
of a stock on the basis of its past values (Andreaasen, 1991). Remembering recent 
events better than remote events could be an adaptive strategy for predicting out- 
comes, because more recent events may be more relevant to present needs (Anderson, 
1990). 

Finally, and most importantly, the model’s estimate of a team’s strength tends 
to rise when it wins and fall when it loses. However, not all wins or all losses convey 
the same information. Specifically, beating a strong team implies having more strength 
than it has, and losing to a weak team implies less strength than it has. The need 
to take into account such comparative information was demonstrated by Neely 
(1982). Neely’s study used electoral races between political candidates rather than 
athletic teams. During a training phase, subjects learned that candidate A beat candi- 
date B in 80 per cent of their races; when candidate X ran against candidate A, 
they each won 50 per cent of those races; and when candidate Y ran against B, 
each won 50 per cent of those races. The crucial question posed to subjects in a 
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later test phase was how well candidate X would fare against Y. If subjects evaluate 
candidates’ strengths only by their percentage of past wins and losses, then X and 
Y should be equivalent. However, if they also attend to the strength of the opponents 
that a candidate beats, then a different outcome is expected: X should be judged 
as stronger than Y. In fact, Neely’s subjects showed such a preference, choosing 
X over Y by a two to one margin in a contest between X and Y. Interestingly, 
analogous results to those of Neely (1982) have been obtained with animal subjects. 
Zentall and Sherburne (1994) trained pigeons on two simultaneous discriminations 
between coloured keys. When presented with stimuli A and B, the pigeons were 
always reinforced for pecking A, but never reinforced for pecking B. When presented 
with stimuli C and D, the pigeons were reinforced half the time for pecking C, 
but never reinforced for pecking D. When the pigeons were subsequently presented 
with stimuli B and D, neither of which had ever been reinforced, they showed a 
strong preference for B, the stimulus that had been paired with the stronger opponent 
(see also Belke, 1992; von Fersen, Wynne, Delius, and Staddon, 1991). 

The adaptive comparison model 

We now present a mathematical model that incorporates these considerations (Bower 
and Heit, 1992). We have previously applied this model to simpler tasks such as 
classic two-armed bandit studies from learning research (e.g. Atkinson, 1962). 
Although this model is applicable in a variety of real-world competitive situations, 
in this paper we apply it only to basketball games. This domain is especially appropri- 
ate because basketball teams play repeated contests against each other, and because 
each outcome is easily summarized in terms of the winner, loser, and point spread 
of the game. 

The model assumes that each team, i, on trial n, is described by a value, s@), 
on a strength scale, with better teams having higher strengths. Trial n refers to the 
nth game played in a season. We assume that, in a game between team i and team 
j on trial n, the point spread may be predicted from the difference, si(n) -s,jn). 
If this difference is positive, then the difference corresponds to the number of points 
by which team i is predicted to defeat teamj. If this difference is negative, then 
the difference corresponds to the number of points by which team j is predicted 
to defeat team i. 

It is assumed that all teams start the season with strengths of zero. In the simplest 
version of the model, when team i plays teamj in game n, team strengths are adjusted 
according to equations 1 and 2: 

sl(n + 1) = s,(n) + 8 [outcome(n) - {s,(n) - $,in)} 

s,{n + 1) = s,(n) + B [ - outcome(n) - {s,(n) - sl(n)}] 
(1) 

(2) 
Note that these equations are identical except for the sign of the outcome, which 
has the absolute value of the actual point spread. This outcome will be given a 
positive sign if team i wins and a negative sign if teamj wins. (Assignment of particular 
teams to the letters i a n d j  is arbitrary, and does not affect the use of the equations.) 
Finally, other teams, k, that do not play in game n do not change their strengths, 
that is, sk(n + 1) =sk(n). 

This model has one free parameter, 8, which represents the learning rate. If 8 
= 0, then no learning will take place and subjects’ estimates of team strengths will 
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never change. If 0 < 8 < 1, then the strengths will be learned, so that a team’s 
strength will increase if the outcome is higher than expected, and will decrease if 
the outcome is lower than expected. In the case that two teams play each other 
repeatedly, the asymptomatic expected value of (si - s,) will equal the average out- 
come of all games played between the two teams (Bower and Heit, 1992). 

This model also embodies the assumption that recent outcomes have a greater 
influence on a team’s current strength than do rernote outcomes. One can see why 
by rearranging equation 1 to produce: 

s,(n + 1) = 8 (outcome(n)) + 8 (1 - 8) (outcome(n -- 1)) 

(This equation would apply to the simple case iin which team i repeatedly plays 
teams of zero strength.) Thus, so long as 0 c 8 c 1, outcomes from the remote 
past are gradually forgotten over time (cf. Busemeyer, 1991). 

This model also embodies the assumption that the adjustment of team i’s strength 
depends on the strength of its opponent. A teami gains strength when it wins by 
a larger margin than expected, and loses strength when it is defeated by a larger 
margin than expected. Because the expected margin of victory or defeat is a function 
of the absolute strengths of both teams involved, both determine the change. This 
independence implies that a team can gain strength, even in defeat, when playing 
against strong teams, and can lose strength, even in victory, when playing against 
weak teams. This implication is consistent with Neely’s (1982) findings reviewed 
earlier. 

The actual equations used to describe the present experiments were more general 
versions of equations 1 and 2, shown as equations 3 and 4. This version of the 
model will be referred to as the adaptive comparisoii model: 

+ 6 (1 - e)’ (outcome(n - 2)) + . . . 

s,(n + 1) =s,(n) + e-K’’ 8 [outcome(n) - (s&) -s,(n)}] 

s,(n +1) =sj(n) + e-Kn O[-outcome(,r) - (s,(n) -s,(n)}] 
(3) 

(4) 

The only change is the addition of the free parameter K and the CKn term, which 
allows the net learning rate to decrease as the trial number increases, if K > 0. 
Note that if K = 0, then these equations are the same as the previous ones. The 
motive behind this addition is that learning might become slower, or changes in 
strength might become more conservative, as the learner has observed more outcomes. 
A similar assumption about decreasing learning rates is common for connectionist 
network models (Hinton and Sejnowski, 1986). 

EXPERIMENT 1 

In this experiment, we evaluated the adaptive comparison model as an account of 
people’s learning about strengths of basketball teams, by simulating the course of 
a season’s games between six professional teams. To ensure that the subjects re- 
sponded on the basis of the outcomes of these games, rather than from prior beliefs 
about specific teams, we disguised the names of the teams. Otherwise, the game 
schedule, including the outcomes, was derived from the 78 games played between 
the six teams in the Atlantic Division of the NBA. during the 1989-90 season. For 
each game, a subject predicted the winning team as well as the point-spread difference 
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between the winner and the loser. After the prediction was recorded, the actual 
outcome was presented in terms of the names of the winning and losing teams and 
the point spread. Thus, we simulated the real-word situation of predicting game 
outcomes and then learning of the actual outcomes from media sources, rather than 
simulating the entire experience of watching 78 basketball games. The final score 
(that is, the total number of points accumulated by each team), was not presented, 
but that information is usually less important to gamblers and fans than the winner 
and the point spread. In addition, other information, such as which team in a contest 
was playing on its home court, was not provided in this experiment. 

Method 

Subjects 
The subjects were 25 University of Michigan undergraduates (12 female and 13 
male) who participated in partial fulfillment of an introductory psychology course 
requirement. The subjects completed a pretest questionnaire to assess their knowledge 
and experience with basketball, such as how many games they had attended or 
played during the past year and whether they considered themselves basketball fans. 

Stimuli 
The background stimuli were fictional descriptions of six basketball teams. Each 
team was described by its name, the name of its coach, its colours, and the name 
of its home arena. Each description was formed by randomly combining one team 
name, coach name, set of colours, and arena name into a description of the form: 
‘the (team name) are coached by (coach name). Their colours are (team colours), 
and they play in (arena name)’. For example, the description of one team may have 
been ‘the Piranhas are coached by Norm Jackson. Their colours are red and green, 
and they play in Morris Coliseum’. These materials are summarized in Table 1. 
The background test, administered after subjects had read the background stimuli, 
consisted of six multiple-choice questions, asking for one piece of information (i.e. 
coach, colours, or arena) about each team. The background stimuli and test were 
intended to make the task more realistic and interesting, and to improve subjects’ 
memories for game outcomes by making the teams distinctive from each other. 

Table 1. 

Team names Coaches’ names Team colours Arena names 

Descriptive information for teams 

Buffaloes Norm Jackson Blue and cream Alexander County 

Crocodiles John ‘Bubba’ Levy Brown and white The Great Pavilion 
Foxes Mike Milhouse Green and black Lee Fieldhouse 
Piranhas 0. P. Rodriguez Red and green Morris Coliseum 
Ravens Fred ‘Happy’ Wilson Scarlet and yellow The Queendome 
Vipers J. B. Winkles Silver and purple Webster-Stein Arena 

Stadium 

During the training phase of the experiment, subjects predicted the outcomes of 
78 basketball games. The outcomes of these games were those of games played 
between the six teams of the Atlantic Division of the NBA during the 1989-90 
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season, presented in the order in which they origiinally occurred. To avoid effects 
of subjects’ prior knowledge about the real team.s, the names of the NBA teams 
were replaced with the names of the six fictional teams presented as background 
stimuli. The only outcome information presented during the training phase was the 
winner of the game, the loser, and the number of points by which the winner was 
ahead (the point spread). 

During the transfer phase, subjects predicted the outcomes of the 15 basketball 
games obtained from each possible pairing of teams; no outcome information was 
given. (The transfer phase might be described as a simulated set of end-of-season 
playoffs.) The transfer pairs were presented in a different random order for each 
subject. 

Procedure 
Subjects were run in groups of one to four. Stirnulus presentation and response 
collection were controlled by IBM PC-compatible computers running a program 
written with Micro Experimental Laboratory software (Schneider, 1988). First, sub- 
jects were presented with the background stimuli, which they were instructed to 
study for a few minutes in preparation for a memory test. Immediately after reading 
the final team description, they completed the background test. 

Before beginning the training phase of the experiment, subjects read instructions 
(reproduced in the Appendix). On each trial, the names of the competing teams 
were presented on the computer monitor. The naimes were centred on the display, 
one above the other, with the abbreviation ‘vs’ between them. The top or bottom 
position of the team names was determined randornly on each trial for each subject. 
The subject predicted the winner of the game by pressing either the up- or down-arrow 
key to highlight the predicted winner. The question, ‘By how many points do you 
think the (predicted winner) will win?’, then appeared on the display, and the subject 
typed a number from 1 to 99. Upon pressing the enter key, the display was cleared 
and the subject’s prediction was again presented along with the actual outcome 
of the game, that is, the winning and losing teams and the point spread. The subject 
then pressed the space bar to initiate the next trial. 

Immediately after the training phase ended, the transfer phase began. Subjects 
read further instructions (as reproduced in the Appendix), and then predicted the 
outcomes of the 15 transfer games. 

Results 

Evaluation of model 
The model was evaluated in terms of its fit to the average responses of the subjects. 
The average response on a training trial was the mean point-spread estimate from 
all 25 subjects. A positive sign was assigned to a subject’s estimate when the subject 
had correctly predicted the winner and a negative sign was assigned to the estimate 
when the subject’s prediction of the winner was inclorrect. 

The predictions of the adaptive comparison model were obtained by treating the 
model as a simulated learner in the experiment. For each training trial, the model’s 
prediction was determined from the current strength estimates for the two teams 
that played. After a prediction was made for the trial, these strength estimates were 
updated according to equations 3 and 4, taking into account the actual outcome 
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of that game. The model has two free parameters, 8 and K ,  representing the initial 
learning rate and the decrement in the learning rate per trial. A simulated series 
of games was run for a given pair of parameter values, and the model was evaluated 
in terms of the mean squared error of prediction. That is, the squared difference 
between the model’s prediction and the subjects’ average response was computed 
for each of the 78 trials, then these 78 squared differences were averaged. Successive 
combinations of values for these two parameters were evaluated iteratively, according 
to the minimization procedure of Chandler (1965). The final parameter estimates 
that were chosen minimized the mean squared error of prediction of the model. 
For 8 = 0.084 and IC = 0.024, the correlation between the model’s predicted point 
spreads and the subjects’ average responses was quite good, r = 0.83. The average 
absolute value of the error of prediction by the model, on each trial, was only 2.2 
points. Figure 1 shows the average responses and the model’s predictions over the 
course of the season. The model’s predictions appear to track the subjects’ responses 
quite well. 
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Figure 1 .  Adaptive comparison model predictions and average subject point spreads on 
each trial, experiment 1. 

It was expected that the model would fit better to the latter part of the season, 
because earlier responses would be largely composed of guessing. Indeed, the fit 
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of the model was even more impressive for just the last 39 games. Using the same 
predictions obtained by fitting the model to the whole season, the correlation between 
the model’s point spreads and the responses for the second half of the season was 
0.89, and the average absolute error was only 1.8 points. 

The learned strengths of the six teams, as obtained from the best-fitting version 
of the model after the simulated training trials, were used to predict additional point 
spreads for the 15 transfer games. (Because no feedback was provided during the 
transfer phase, it was assumed that no further learning took place.) Again, the adap- 
tive comparison model fared well; the correlation between the model’s predicted 
point spreads and the average responses was 0.82., and the average absolute error 
of the model was only 1.6 points. Just considering the winner rather than the point 
spreads, the model predicted the same winner as did the subjects’ averages in all 
15 transfer games. 

Accuracy of predictions 
Clearly, the subjects in this experiment responded systematically, and in a manner 
that was well-captured by the adaptive comparison model. But how successful were 
the subjects at predicting the actual outcomes? Note that these two issues are distinct; 
it would be possible for subjects to be systematic in their responses, but still not 
be very accurate. For a standard of comparison, we examined the accuracy of experts, 
in particular the published predictions of Tribune Media Services, which appear 
in the Chicago Tribune and are syndicated in many other newspapers. The predicted 
winners and point spreads for the games of the day appear in the morning newspaper; 
such predictions are often referred to as the ‘morning line’ or the ‘Vegas line’. We 
presume that the professionals who made these predictions had access to much more 
information than we provided to our subjects, such as information about particular 
players and team histories. In addition, professional handicappers would have access 
to external memory, such as written records of game outcomes. In contrast, our 
subjects had to rely on their own memories. Furthermore, our subjects only observed 
the outcomes of the 78 intradivisional games. Each team also played approximately 
55 games outside of the Atlantic Division. These outcomes might have also helped 
the experts to infer the strengths of the teams. Thus, the accuracy of the experts 
should be considered an upper limit or ideal to which our subjects and our model 
might aspire. 

Here, we describe the accuracy of predictions for the second half of the season.2 
The subjects were, of course, less accurate during the first half, because they were 
initially learning about these teams and were guessing to a large extent. First, accuracy 
was evaluated in terms of the correlation between t‘he actual point-spread outcomes 
of the games and the predicted point spreads (of the experts, the average subject, 
and the model). Surprisingly, the experts, our subjects, and the adaptive comparison 
model were about equally successful; the r values over the 38 games were 0.41, 
0.47, and 0.42, respectively. Next, accuracy was assessed in terms of the average 
absolute error, in points. Again, the experts, the subjects, and the model were compar- 
able, with average absolute errors of 9.4, 9.9, and 9.1 points per game, respectively. 
Third, we assessed accuracy just in terms of predicting the winning team, rather 

We evaluated accuracy for 38 of 39 last games of the season. One game was dropped because it 
was presented out of sequence during the experiment due to typographical error by the researchers. 
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than predicting the point spread. The adaptive comparison model was incorrect 
on eight games, and the experts and the subjects were incorrect ten times each. 

Note that we assessed the accuracy of the subjects’ predictions in terms of the 
group average; the predictions of individual subjects were generally less accurate 
than the group as a whole. Comparing individual subjects’ predicted point spreads 
to the actual point spreads, we found that the r values for the second half of the 
season had a mean of 0.18 and ranged from -0.31 to 0.39. We assumed that an 
individual’s judgements would be affected by random error that was eliminated by 
averaging across subjects. 

Finally, whether or not the subjects considered themselves basketball fans had 
no discernible effect on the subjects’ accuracy, nor on the model’s fit to their data. 

Discussion 

We found that the adaptive comparison model gave a quite good account of how 
the subjects learned to predict the outcomes of NBA games. To our surprise, these 
experimental subjects were as successful at predicting the outcomes as were experts 
who made nationally-published predictions. Furthermore, these expert predictions 
were only modestly successful, with a correlation of about 0.4 with the actual point 
spreads, an average error of about 9 points per game, and a correct prediction of 
which team would win on about 70 per cent of the games. At least for this series 
of games, the potentially unlimited sources of additional information available to 
the experts did not benefit their predictions. Of course, a given series of contests 
may contain upsets and other unexpected outcomes. Therefore, we attempted to 
replicate these results in another experiment. 

Out of fairness to the experts, we note that there are different possible success 
criteria for professional predictions of point spreads. Certainly, one criterion with 
much face validity is that the professional predictions should resemble the actual 
outcomes. However, professional point spreads may serve other functions. For exam- 
ple, a bookmaker may try to set a point spread to generate equal amounts of money 
bet on the two competitors, that is, a ‘balanced book’ (Abt, Smith, and Christiansen, 
1985). The balanced-book criterion for setting a point spread is not exactly the 
same as the criterion of predicting the outcome that is considered most likely, but 
they are closely related. The creation of a balanced book suggests that a large number 
of knowledgeable sports bettors, taken as a group, find the line to be a reasonably 
good prediction of the game outcome. 

EXPERIMENT 2 

This study was a replication of the previous experiment with a schedule featuring 
different teams. In experiment 1, the success of the subjects, and the success of 
the adaptive comparison model, might have been due partly to particular details 
about the games selected. In addition, the adaptive comparison model was extended 
for experiment 2 to take account of an additional piece of valid information in 
making its predictions and updating team strengths. In the domain of basketball, 
gamblers are likely to use their knowledge of relative strengths of teams as well 
as the fact that teams generally play better when they are on their home courts. 
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We assumed that our subjects would integrate home-court information with their 
knowledge of the teams’ strengths by adding a constant value to the perceived strength 
of the home team. Thus, the expected outcome of a game between home team i 
and visiting team j is sj(n) - s,{n) + h, where h is a positive constant reflecting 
the home-court advantage. In addition, the learning equations for the adaptive com- 
parison model were modified to incorporate the home-court advantage parameter, 
as shown in equations 5 and 6: 

sl{n + 1) =sl(n) + e-K” e [outcome(n) -- {sl(n) -s,{n) +h}I 

s,(n + 1) = s,(n) + e-K” e [-outcome(n) - {s,(n) -sl{n) -h}]  
(5) 

(6)  

Method 

Subjects 
The subjects were 25 undergraduates at the University of Michigan (14 female and 
11 male) who participated in partial fulfillment of an introductory psychology course 
requirement. 

Stimuli 
The stimuli were the same as in experiment 1, except for the following changes. 
The outcomes to be predicted during the training phase of the experiment were 
those of the 70 games played among six of the seven teams in the Midwest Division 
of the NBA during the 1989-90 season. Also, to allow the use of biasing information, 
the home team was designated by an ‘H’, and the visiting team by a ‘V’, displayed 
next to each team’s name. 

After training, 45 transfer trials were given. During the first 30 transfer trials, 
each one of the 15 possible pairings appeared twice, once with each team designated 
as the home team. These 30 pairings appeared in a different random order for each 
subject. For the final 15 transfer trials, each possible pairing of teams appeared 
once, but no home-team information was provided. These questions were intended 
to assess how much knowledge the subjects had of team strengths independent of 
home-court bias. These 15 trials appeared in a different order for each subject. 

Procedure 
The instructions preceding the training phase of the experiment included the following 
paragraph: 

The home team will always be designated by an ‘H’ after its name, while the 
visitor will have a ‘V’ after its name. You may want to take into account which 
team is the home team when you make our predictions. 

The procedure, in other respects, was the same as in the first experiment. 

Results 

Evaluation of model 
The home-court version of the adaptive comparis,on model, in equations 5 and 6,  
was evaluated in terms of its fit to the average pomt spreads predicted by subjects. 
The values of the three free parameters were estimated so as to minimize mean-squared 
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error over the 70 training trials, using a procedure analogous to that of experiment 
1. The parameters 0 and K were 0.14 and 0.21, respectively, and the home-team 
advantage parameter, h, was 3.97 points. The correlation between the model’s pre- 
dicted point spreads and the average responses of subjects was very good, with 
r = 0.88, and the average absolute error of prediction on each trial was just 1.7 
points. For just the second half of the season (the last 35 games), the fit of the 
model was even more impressive. Using the same predictions obtained by fitting 
the model to the whole season, the correlation between the model and the data 
for the second half was 0.93, and the average absolute error was only 1.3 points. 
Figure 2 shows the close correspondence between average responses and the model’s 
predictions over the course of the season. 
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Adaptive comparison model predictions and average subject point spreads on 
each trial, experiment 2. 

The learned strengths of the six teams, obtained by fitting the model to the training 
trials, and the estimated home-team bias parameter, were used to make further predic- 
tions for the transfer games. Over the first set of 30 transfer trials, for which home- 
court information was provided, the fit of the model was excellent for point spreads, 
r = 0.97 and the average error was 1 .O points. The model predicted the same winner 
as did the subjects’ average point spreads in 26 of the 30 trials. For the final set 
of 15 transfer trials, during which the home team was not indicated, the correlation 
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between the model and the data was 0.85 and the average error was 1.5 points. 
The model predicted the same winner as did the subjects’ average point spreads 
in 12 of the 15 trials. The results on the final sel: of transfer trials indicate that 
subjects were responding systematically to perceived team strengths, and that subjects 
had not merely learned to make predictions on the b,asis of home-court advantage. 

In an additional analysis, the model was fitted separately to average responses 
of subjects who considered themselves basketball .fans and subjects who were not 
fans. The model fit about equally well to judgments made during the training phase 
by the two groups of subjects. Interestingly, the home-team bias parameter was 
found to be 4.52 points for the fans and 3.40 points for the non-fans. This result 
suggests that fans have a stronger belief in the impiict of being the home team than 
non-fans. 

Accuracy of predictions. 
We assessed accuracy of predictions for 34 of the last 35 games of the season. (One 
game was dropped because the expert predictions were not published that day.) 
First, accuracy was evaluated in terms of the correlation between the predicted point 
spreads and the actual outcomes. As in experiment 1, the experts, our subjects, 
and the adaptive comparison model were about equally successful; the r values were 
0.52,0.49, and 0.49, respectively. Next, accuracy wa.s assessed in terms of the average 
absolute error in points. Again, the experts, the subjects, and the model was compar- 
able, with average absolute errors of 6.4, 7.1, and 6.7 points, respectively. Third, 
we assessed accuracy in terms of predicting the winning team. The experts were 
incorrect 7 times, the subjects were incorrect 12 times, and the model was incorrect 
10 times. This particular result was the only measure over the two studies in which 
the subjects did appreciably worse than the experts. 

Considering the responses of individual subjects irather than the average response 
of the group, we found that the r values for the second half of the season had 
a mean of 0.25 and ranged from -0.15 to 0.53. As in experiment 1, the average 
of the subjects’ responses had a higher correlatioii with the actual point spreads 
(0.49) than did the responses of most of the individual subjects. 

Discussion 

As in experiment 1, the adaptive comparison model, now with an added bias para- 
meter, provided a very good account of the subjects’ predictions. Also as in experi- 
ment 1, compared to experts, both the subjects and the model were quite successful 
at the predicting the actual outcomes of these games. In general, predictions were 
somewhat more accurate in experiment 2. For example, the average error of prediction 
decreased from about 9 points to about 7 points. Part of this change may be attribut- 
able to differences between the two series of games; perhaps the truly weaker teams 
won more often in the series from experiment 1. However, it is clear that subjects 
in experiment 2 were taking advantage of home-court information, because the origi- 
nal adaptive comparison model, without the bias parameter, provided only a poor 
fit of their responses. For experiment 2, the model without home-court information 
had a correlation with subjects’ average responses of only 0.24 on the training trials 
and 0.42 on the first set of transfer trials. (The average point errors for the model 
were 4.1 on training trials and 4.0 on transfer trials.) 
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GENERAL DISCUSSION 

Additional studies 
In two additional experiments, we carried out a direct evaluation of the theoretical 
assumptions underlying the adaptive comparison model. We constructed the stimuli 
for these additional experiments, rather than using NBA schedules. In one experi- 
ment, we pitted the adaptive comparison model against a simple averaging model, 
which also represented perceived strengths along a single dimension. However, the 
averaging model differs from the adaptive comparison model in that it uses all past 
outcomes equally for making predictions. In contrast, the adaptive comparison model 
is influenced more by recent outcomes. The critical manipulation in this study was 
that midway through the season, a very successful team began to lose most of its 
games, and a poor team began to win. On the transfer trials in this experiment, 
both the human subjects and the adaptive comparison model were especially 
influenced by the more recent performances of the two critical teams that had changed 
in success rate midway through the basketball season. In contrast, the averaging 
model gave a poor account of peoples’ judgements on the transfer trials. Thus, 
the assumption of a recency bias is critical to the account of people’s predictions. 

In another experiment, we replicated Neely’s (1 982) result that people’s inferences 
about strength are influenced not only by the success rate of a participant but also 
by the perceived strengths of its past opponents. To find direct evidence for this 
influence, we compared the adaptive comparison model to the absolute model (Bower 
and Heit, 1992). Learning in the absolute model is not influenced by the strength 
of opponents; otherwise the adaptive comparison and absolute models are identical. 
In the experiment, we set up the outcomes so that different pairs of teams had 
the same win-loss records and the same average margins of victory. But one team 
in each pair played against successful teams and the other team played against weak 
opponents. On the transfer trials in this experiment, both the human subjects and 
the adaptive comparison model predicted more success for teams that had played 
against strong opponents than for teams that had played against weak opponents. 
In contrast, the absolute model incorrectly predicted no such influence of strength 
of opposition. 

Limitations of the adaptive comparison model 

Although the adaptive comparison model has provided successful accounts of these 
experiments (as well as other experiments described by Bower and Heit, 1992), we 
suspect that it may have shortcomings. First, its assumption that options are repre- 
sented along a unidimensional strength scale could be an underestimate of what 
people remember. Besides this unidimensional scale, people might also represent 
idiosyncratic information about particular pairings of teams. For example, team 
A might generally win its games and team B lose its games, but team B might consis- 
tently beat team A. (This phenomenon is often reported by sports fans, who claim 
that a poor team ‘has the number’ of a better team.) This example violates transitivity, 
because A is better than most teams, and most teams are better than B, but B 
is better than A. We have run pilot experiments using a design like this example, 
and we have found that people have considerable difficulty in learning to violate 
the unidimensional strength assumption; they generally continue to predict that A 
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will beat B. However, our preliminary results do not rule out the possibility that 
with extensive training, people would be able to learn that A is generally good, 
and B is generally bad, but B beats A. 

A second potential limitation of the model pertains to the assumption that the 
strength of a particular team changes only after competitions involving that team. 
This assumption may be too strict. To see why, imagine that early in the season 
team A consistently defeats team B by small margins. Later in the season, team 
C consistently defeats team B by extremely large margins. The results of these later 
games involving B and C could conceivably lead subjects to adjust the strength 
of team A downward. That is, people might conclude that team A was not as good 
as it first appeared to be because the team it consistently defeated early in the season, 
team B, was even worse than it first appeared to be. That people do engage in 
such retrospective evaluation has been demonstrated by researchers applying simple 
associative learning models, much like the adaptive comparison model, to human 
contingency learning and judgment (Chapman, 1991; Shanks and Dickinson, 1987). 
Also, there exists some evidence that animals engage in retrospective processing 
(Matzel, Schachtman, and Miller, 1985). 

A third anticipated limitation of the model is that in some situations, it might 
show much worse forgetting than people. Imagine that in the first phase of an experi- 
ment, team X wins consistently over team Y. Then in a second phase, only games 
between X and team Z are presented, in which Z consistently beats X. We expect 
that subjects would conclude that Z is stronger than X, and X is stronger than 
Y. However, with enough observations of Z beating X, the adaptive comparison 
model could predict that Y would beat X. The model would forget the remote out- 
comes in which X had consistently beaten Y, and use the more recent outcomes 
of X losing to assign a negative strength to X. Note that this problem would not 
occur if X continued to beat Y in the second phase of the experiment. This forgetting 
problem in our model resembles the catastrophic interference problem in connec- 
tionist network models (Ratcliff, 1990), in which the learning of new associations 
leads to an extreme amount of forgetting of old ,associations, unless the model is 
also presented with the old associations during the course of learning the new ones. 

Extensions to the adaptive comparison model 

So far, the adaptive comparison model has been evaluated in experiments using 
the domain of basketball games. For this domain, it seems appropriate to describe 
the difference in quality between two teams in terms of a difference in points, and 
to assume that there is a simple linear relation between strength differences and 
point spreads. However, further scaling assumptions would be required to apply 
the adaptive comparison model to other domains. For example, to learn about relative 
strengths of (American) football teams, the model might include the assumption 
that large point spreads are not much more informative than small point spreads. 
For example, say the football team B beats team A by 10 points, and that team 
C beats team A by 30 points. What is crucial about these outcomes is that both 
team B and team C won by substantial margins; it would not necessarily be appropri- 
ate to increase team C’s perceived strength by three times as much as the increase 
in team B’s perceived strength. Such knowledge about the point-spread scale might 
be incorporated into the adaptive comparison model by transforming the point 
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spreads logarithmically before the model is applied. Another domain for which 
additional scaling assumptions would be required is applying the model to outcomes 
of races, such as car races, horse races, or track events, in which the outcome would 
be described as the difference in finishing times between participants. 

Applying the adaptive comparison model to races would require an additional 
extension. The model can predict the outcome of a race between multiple competitors, 
such as several horses or racing cars, using each of their estimated strengths, but 
the model is limited to learning only about outcomes between pairs of participants. 
People are surely not so limited; they can learn about relative strengths from outcomes 
of contests involving more than two competitors. One way to extend the model 
would be to treat a race between multiple competitors as a set of pairwise contests. 
For example, a finishing order of B D C A in a four-horse race would be treated 
equivalently to the pairwise outcomes (BD), (BC), (BA), (DC), (DA), and (CA). 
On a given trial, the learning equations of the model would be applied to each 
of these pairwise races to calculate the new strengths of the four horses. A problem 
with this method is that the model is non-commutative, so that the final strengths 
would depend on the order in which the hypothetical pairwise races were considered 
to occur. Therefore it is possible that a more elegant solution to this problem could 
be developed. 

Using the adaptive comparison model to predict real-word outcomes 

Our data allow us to test for the presence of bootstrapping, the phenomenon whereby 
a mathematical model (typically a linear model) of judges more accurately predicts 
outcomes than do the judges themselves (Camerer, 1981; Dawes, Faust, and Meehl, 
1989). Our results suggest that the predictions of the adaptive comparison model 
were approximately as accurate as the subjects’ means. However, we found that 
individual subjects were not as accurate as the group means or as the model. We 
would account for this finding by appealing to the traditional explanation of the 
bootstrapping phenomenon-namely, that individual judges are not consistent 
(Dawes, 1971). Subjects are influenced by a number of extraneous factors (e.g. vari- 
able effort, fatigue, and boredom) that introduce random noise into their predictions, 
thus lowering their overall judgmental accuracy. 

It would not be necessary, however, to assemble a group of 25 subjects in order 
to use the model to make fairly accurate predictions about basketball games. Note 
that the adaptive comparison model (that is, equations 3 to 6) learns from the actual 
game outcomes, rather than from the subjects’ responses. In fitting the adaptive 
comparison model to the subjects’ responses, the subjects’ responses were only con- 
sidered in determining the free parameters of the model such as the learning rate. 
Alternatively, it is possible to choose these parameters arbitrarily, or better still, 
set them according to some evaluation of what has happened in past seasons. Thus, 
the adaptive comparison model can make predictions without any data from subjects. 

This discussion leads naturally to the question of whether the adaptive comparison 
model might be used to improve on real-world predictions. For instance, could a 
savvy gambler use the adaptive comparison model to make more money when betting 
on the outcomes of basketball games? We found that the judgements of sports experts 
were no more accurate than our model, despite the many sources of information 
available to the professional oddsmakers. Indeed, such an informational edge pro- 
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vided to human judges does not always translate into superior performance (Dawes, 
1971). Under some circumstances, the more knowledgeable the judges, and the more 
information they take into account in making their predictions, the poorer those 
predictions become. Yates, McDaniel, and Brown (1‘391), for example, studied predic- 
tions in a different kind of gambling context, that of predicting stock price changes 
(see also Stael von Holstein, 1972). They found that Masters- and PhD-level business 
students generally made poorer predictions than did business school undergraduates. 
Yates et al. (1991) attributed this result to the experts using various cues they incor- 
rectly believed to be related to stock price changes, while the undergraduates relied 
on relatively simple judgement strategies. Although the adaptive comparison model 
was not found to be superior to experts, its performance is in some ways more 
impressive because it relies on such a limited range of information. 

We developed our model strictly from psychological considerations for describing 
people’s abilities to learn relative strengths and to make predictions. We were sur- 
prised to find that similar systems for making predictions have been introduced 
as normative models for sports fans. For example, the Stat-Key method for predicting 
the outcomes of sporting events (Sports Associates, Inc., 1991) recommends that 
fans predict the outcome, that is, the winner and point spread, of a game between 
two teams from the difference in their ‘power ratings’, which correspond to the 
s values in the adaptive comparison model. This estimate is then adjusted by adding 
or subtracting a number of points for the home-courl. advantage, as we did in applying 
the model in experiment 2. After the game is played, the Stat-Key method recommends 
that the power ratings be adjusted according to the difference ‘between the estimated 
and actual differences in scores’. The power rating of the team that performed better 
than expected is increased, and the power rating (of the team that did worse than 
expected is decreased. The adaptive comparison rnodel updates team strengths in 
the same manner. Finally, according to the Stat-Key method, fans should decrease 
the degree of updating as the season progresses, just as the learning rate decreases 
over time in the adaptive comparison model. 

To conclude, in our investigation of the task of predicting the outcomes of real 
professional basketball games, we found that our subjects’ responses are well-des- 
cribed by a mathematical model that was originally proposed to explain learning 
in simple laboratory tasks. Interestingly, this descriptive psychological model is very 
similar to a normative model that has been prescribed for sports fans who wish 
to make accurate predictions (Sports Associates, Inc., 1991). Finally, in our evalu- 
ation of experts’ published predictions for these same NBA games, we were surprised 
to find that the predictions of professionals were not appreciably more accurate 
than the predictions of the psychological model or of the average predictions of 
our subjects. This finding suggests that the relatively small amount of information 
provided to our subjects did not impair their ability to make real-world predictions, 
and correspondingly, the potentially unlimited sources of information available to 
experts did not make them any more successful than our subjects in the laboratory. 
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APPENDIX 

Instructions preceding the training phase 

In a recent basketball season, the six teams you just read about played a total of 
78 games among themselves. Your task will be to predict the outcome of each of 
these 78 games. The games will be presented to you one at a time, in the actual 
order in which they were played, although you won’t be told which team was the 
home team. 

For each game, you will be asked to pick the winner and to guess the point 
spread. (The point spread is the number of points the winner will win by. For example, 
if team X beat team Y by a score of 110 to 100, the point spread was 10 points). 
It is important that you try to predict both the winners and the point spreads as 
accurately as possible. 

Immediately after predicting the outcome of a game, you will be presented with 
the actual results of that game. This information should help you learn about the 
relative strengths of the six teams. Consequently, y our predictions should improve 
as the season progresses. 

Although you have as much time as you need to finish this experiment, don’t 
get bogged down trying to predict the outcome of any one game. Just make your 
best guess, and move on. Also, please don’t use paper and pencil to keep track 
of the games. Good luck! 

Instructions preceding the transfer phase 

For the final part of this experiment, you will be asked to predict the outcomes 
of 15 more games. Because these final 15 games a.re hypothetical-they have not 
actually been played-you will not be given any outcome information for them. 
Just predict the winners and the point spreads as best you can based on what you 
now know. 


