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I. Introduction

The use of academic scale scores for program evaluation or population description requires

that equal-interval assumptions are met. In fact, any aggregation of test scores requires that

distances between units are equivalent throughout the range of the scale score. Item Response

Theory (IRT) offers a set of models that can, under certain conditions, estimate a scale with

equal-interval properties (see Ballou, 2009 for review). Nevertheless, the assumptions that

allow us to assume equal-interval properties are not often tested. Current research suggests

that equal-interval assumptions are problematic. Domingue and, in a working paper, Nielsen

have developed methods for testing whether the equal-interval assumptions are plausibly met

for some common academic assessments and find that these assumptions are not (Domingue,

2014; Neilsen, 2015).

Given the skepticism about the interval properties of most test scores, other researchers

simply assume that any given scale is but one among many monotone transformations of

a latent scale. Given this agnosticism, Cunha and Heckman (2008) and Cunha, Heckman

and Schennach (2010) propose a scale transformation that anchors the original scale to adult

earnings, a distribution that is assumed to have equal-interval properties. The transformed

scale score is then used to estimate production functions for cognitive development. Rely-

ing on similar assumptions about the flexibility of scale transformations, Bond and Lang

(2013a; 2013b) subject a scale score to a variety of monotone transformations according to

an algorithmic objective function that maximizes and minimizes changes in the white-black

achievement gap. The authors find that inferences about gap changes are, not surprisingly,

sensitive to these scale transformations.

Indexing achievement scores to future earnings is not without its own problems. First,

income can be scaled to reflect either real dollars or the natural logarithm. Whether the

outcome is measured in real dollars or log-transformed dollars has been shown to affect

inferences (Lee and Solon, 2011; Solon, Haider and Woolridge, 2015). Furthermore, income,

however scaled, is not an inclusive indicator of benefit. Plenty of non-pecuniary benefits can

be attributed to achievement, such as the simple pleasures one gets from being numerate

and literate.
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The approach that I take here is to assume an equal-interval scale in the metric of achieve-

ment and estimate a new scale that will be equal-interval in the metric of welfare. The

method I propose estimates utility for a set of 10 “achievement states”, where an achieve-

ment state corresponds to a performance level descriptor for reading and math taken from

the National Assessment of Educational Progress Long-Term Trend (NAEP LTT), and util-

ity corresponds to how much better, all things considered, a sample of Americans believe a

person’s life will be for a given achievement state.1 Because the NAEP uses a scale anchoring

process to link scale scores to performance level descriptors, it is possible to build a data

set with three variables and 10 observations: a vector of performance level descriptors, the

corresponding scale scores, and the estimated utilities.

In order to link the discrete utility estimates to the full range of continuous scale scores,

I use piece-wise monotone cubic interpolation (MCI) to link individual NAEP scores to a

utility value.2 We now have a scale score that is equal-interval with respect to welfare, as

long as the equal-interval assumptions (with respect to ability) of the original scale score hold

and that the performance level descriptors are appropriately mapped to scale score values.

As a demonstration of the usefulness of a welfare scale, I take a repeated cross-sectional

panel of student test scores from the NAEP-LTT and re-scale them according to the method

outlined above. I show that inferences about changes in achievement and achievement gaps

over time and age are sensitive to the choice of scale.

This method is similar in concept to methods commonly used in health care research. In

health economics, effect sizes are, in many cases, given in the metric of a Quality Adjusted

Life Year (QALY) (see Drummond, 2005 and Whitehead and Shehzad, 2010 for review),

where the QALY metric is used to make comparisons between different ‘health states’ (where

health states are the analogue to achievement states taken from performance level descrip-

tors) in health care production functions for purposes of cost-effectiveness analysis. As an

example, consider a medical intervention that improves mobility by 2-units and another that

1Performance level descriptors for reading can be found online here:
https://nces.ed.gov/nationsreportcard/ltt/reading-descriptions.aspx; math here:
https://nces.ed.gov/nationsreportcard/ltt/math-descriptions.aspx. 5 performance level descriptors are
available for both reading and math, for a total of 10 descriptors. See Data section for details.

2MCI is implemented according to Fritsch and Carlson, 1980.
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reduces pain by 3-units. Holding costs constant, researchers, insurance companies and policy

makers are interested in determining which of the two interventions should be pursued. The

QALY-metric puts discrete health outcomes on a common utility scale, making comparisons

possible. In addition to being used for making between health state comparisons (e.g., mo-

bility against pain), QALY-scales can be used for making within health state comparisons

(e.g., completely immobile against able to walk without assistance).3

A scale that could be used in educational settings for making analogous between- and

within-state comparisons would be useful insofar as we wish to understand whether and

in what cases changes in achievement are more or less important. For instance, current

program evaluations leave fundamental questions unanswerable. Holding costs constant, if

one intervention raises math scores 10-units and another raises reading scores 10-units, we

lack an outcome variable that adjudicates between the two interventions. Likewise, if one

intervention raises math scores 10-units at the low end of the scale and another intervention

raises math scores 10-units at the high end of the scale, current practice fails to distinguish

between these two results. The method I describe and implement is one solution for resolving

this uncertainty.

In order to head-off criticism, I emphasize that the scaling procedure described here is

intended as proof of concept. It provides one way for constructing an equal-interval scale

that can be used for descriptive and evaluative purposes. Moreover, the procedure brings

some fundamental questions of measurement into sharp relief. Consider:

1 To what outcome should scale scores be indexed? In this paper, I present respondents

with questions, asking them to determine which description of math and reading is more

important for an “all things considered” better life. Other indices are available, such

as income, civics engagement, or health outcomes. Cunha and colleagues (2008; 2010)

index a child’s test score to the child’s future earnings, using a factor loading technique

to weight the achievement distribution as a function of how well it predicts earnings.

Such a technique is not a panacea however. First, the factor loading method is an ad

hoc scaling technique. Second, earnings connote their own scaling assumptions, e.g.,

3The Eq-5d, for example, is one of the more commonly used metrics and provides three descriptions of
mobility states, three descriptions of pain states, as well as three other health states. Utility scores are
estimated for each health state, allowing for between and within health state comparisons (Oppe, Devlin
and Szende, 2007).
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should the scale be log transformed? Finally, linking achievement to earnings ignores

the academic capabilities captured by the scale score.

2 Whose preferences for achievement should be included in the index? The sample of

respondents included in this essay are mostly college educated. In the survey experi-

ment, respondents are asked which state of achievement is more important for a good

life. If respondents have no understanding of what a high level of numeracy or literacy

feels like or entails, they will struggle to respond to the question. This suggests college

educated respondents are appropriate. Nevertheless, it is likely important that an in-

dex of benefit captures the preferences of everyone. How to include all respondents in

an exercise for which some may lack the cognitive capacity to participate is a difficult

question. Note that the question does not apply to achievement alone: whether the

poor can predict how much they would prefer being non-poor (and vice-versa) seems

similarly opaque. Whether a healthy person can predict how much they are pain averse

has a similar problem.4

3 How should the index balance individual and social benefits? The approach used here

measures preferences for individual benefits to achievement states. Such an approach

ignores other distributive concerns, such as equity. It is known that survey respon-

dents may be indifferent between a 1-unit change at the bottom and top of a scale

when comparing between two persons, but when respondents are asked which of the

two persons should receive treatment in a group of persons, they will choose to give

treatment to the person whose health is at the bottom of the scale (Nord, 1999). This

suggests individuals value relative differences (Otsuka and Voorhoeve, 2009). How

such equity concerns, and other social values, should be included in the index is an

important question.

4 How should time be modeled in the elicitation and estimation of the utility value? The

method used here (and the one that is commonly employed in health economics) is to

present respondents with a cross-sectional preference: “Person A has characteristics

X and Person B has characteristics X ′. Who is better?” In health, these charac-

teristics are fixed by specifying that the health state will persist for t-years, whereas

achievement states are naturally assumed to change over time as students learn. More-

over, individuals may have different preferences for achievement growth than they do

for achievement states. Linking a preference for achievement change to a student’s

scale score is complicated because our current measures of achievement only provide

cross-sectional information about the student’s abilities.5

4Dolan and Kahneman call this distinction experience versus decision utility.
5See Lipscomb, et al., 2009 for a review of this and other issues related to time in the health landscape.
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These questions are a current source of debate in health economics and philosophy,and

are likely to continue to be debated.6 Questions like these are currently neglected in most

education policy evaluation, or the answers supplied to the questions are left as unstated

assumptions.

The paper proceeds as follows: I begin by providing an overview of the survey design

and the data used for analysis. I then describe the theoretical model that motivates the

analysis and the econometric model that will be used for empirical estimation. The first set

of results I show describe utility values for the different achievement states. Interpolation

techniques are described that connect NAEP scores to utility values for the full distribution

of NAEP data. As an example, I estimate white-black achievement gaps using the original

and welfare-adjusted NAEP data and show that inferences about gap trends are sensitive to

scale selection.

II. Survey design

The survey design has two components. The first is a ranking exercise, in which three out of

five reading or three out of five math descriptors are randomly selected and respondents are

asked to rank these descriptors in order of difficulty. Reading and math ability descriptions

are taken from the NAEP-LTT performance level descriptors, described below. The pur-

pose of this ranking exercise is two-fold: to prime respondents so that they recognize these

descriptors are ordinally ranked, and to screen respondents who cannot (or will not) rank

descriptors correctly. Figures II through III display the ranking and choice tasks as they

appeared in the experiment.

The ranking exercise is followed by a choice-based conjoint design (often times referred

to as a discrete choice experiment) to obtain utility values for different math and reading

descriptors. Choice-based conjoint designs are widespread in health and public economics,

marketing research, and have become increasingly common in political science (for examples

6See Daniels, 1985 for a philosophical view of justice in the provision of health care, as well as Nord, 1999
who offers a mixture of economics and philosophy in his evaluation of the QALY metric.
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in health and public economics, see De Bekker-Grob, et al., 2012 and McFadden, 2001,

respectively; in marketing, see McFadden, 1986; in political science see Hainmueller and

Hopkins, 2014). In the experiment, respondents are provided with a description of two

individuals (Person A and Person B) who are alike in all respects, except that they differ in

their math and reading abilities. Respondents are asked to determine which bundle of math

and reading abilities between Persons A and B will lead to an “all things considered” better

life. After being presented with the reading and math profiles, the respondent is forced to

make a choice between Persons A and B. The response is coded dichotomously, 1 if Person

A or B was chosen and 0 otherwise. Each respondent is given only one choice task.7

The purpose of the choice task is for respondent to make interval comparisons between

Persons A and B with respect to welfare. As an example, consider a choice task where Person

A has reading ability equal to 5 and math ability equal to 2, while Person B has reading and

math abilities equal to 3.8 Effectively, the respondent is being asked to make a trade between

2 units of reading for 1 unit of math. Whether respondents, on average, choose Person A

over B will depend on how much they value reading relative to math, and, importantly, how

much they value math gains at the bottom of the distribution relative to reading losses at the

top. To see this, consider an alternative choice task where Person A has reading ability 4 and

math ability 1 and Person B has reading and math abilities 2. Here, the reading and math

abilities of Persons A and B have been shifted down equally, but respondents may not make

the same selections, since a change in reading from 5 to 4 need not be equivalent to a change

in reading from 4 to 3. This exercise formally tests whether respondents’ preferences are,

indeed, equal interval with respect to welfare. Depending on how respondents on average

weight these different trades will determine the relative concavity of the welfare-adjusted

scale score.

[Insert Figure I Here]

7More than one choice task is of course possible, requiring that standard errors be clustered at the
respondent level. The decision to offer respondents only one choice task was motivated by a reduction in
cognitive load, as performance descriptors are text heavy, as well as the fact that the marginal survey cost
using Amazon’s MTurk suite are relatively low.

8Where ability level 5 corresponds to highest performance level descriptor on the NAEP, and so on. Re-
spondents are not asked to make trades regarding integer values of the NAEP but are instead presented with
textual descriptions of reading and math abilities commensurate with integer scores. See Scale Anchoring
section below.
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[Insert Figure II Here]

[Insert Figure III Here]

Finally, note that Figure II explicitly states the age of Persons A and B. Because the

performance level descriptors from the NAEP-LTT pertain to students at the ages of 9,

13 and 17, and because individual scale scores are available for students at those ages, I

randomly assign one of three ages (9, 13, 17) to each choice task. The purpose of this

additional randomization is to test the sensitivity of preferences for achievement bundles to

age. For example, respondents may value gains in reading and math at the low end of the

distribution for persons aged 9 more than they value equivalent gains for persons aged 17.

Randomly assigning age will allow me to test this hypothesis.

II.A. Math and reading descriptors and scale scores

The choice task described above uses performance level descriptors to connote reading and

math ability levels. In order to construct a data set with performance level descriptors,

utility values, and scale scores, it is necessary that these performance level descriptors (and

their estimated utilities) can be plausibly linked to scale scores. The plausibility of this

linking is defended below, but it is natural to wonder why performance level descriptors are

needed at all. Why not ask respondents to make trades using the scale scores themselves?

There are two problems with such an approach. To the first, I hope it is evident that in

order to estimate an interval scale with respect to welfare it is important not to conflate

the welfare scale with the original scale that describes ability. The purpose of the choice

task is to allow respondents to decide for themselves the interval distances with respect to

value between, say, reading units 1 and 2 and units 3 and 4, and so on. A Rasch or IRT

model might estimate equal-interval distances between these units, but respondents are being

asked to decide whether these distances are equal in another dimension, that of welfare. The

second problem is that a scale score decoupled from a performance level descriptor connotes

no meaningful information to the respondent. Any scale can be linearly transformed, and

determining how much 5 units is worth relative to 4 units, or 500 relative to 400 is not

possible. For these reasons, it is necessary to provide respondents with a richer descriptor of
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what performance looks like, and then link the performance-level descriptor back to a scale

score.

II.B. Linking NAEP descriptors to scale scores

I now turn to the question of whether or not performance-level descriptors can be plausibly

mapped onto scale scores. One of the goals of academic measurement, dating back to at least

1963, is to provide criterion-referenced interpretations of scale scores—in other words, to be

able to provide descriptions of what students know and can do in an academic domain (Mullis

and Jenkins, 1988). The process by which the NAEP links performance level descriptors to

scale scores is called scale anchoring. Scale anchoring attempts to provide a context for

understanding the level of performance defined by the specific test items that are likely to

be answered correctly by students (Lissitz and Bourqe, 1995).

Anchor levels are determined by a combination of statistical and judgmental processes.

For the NAEP, an IRT model is used to estimate an ability score, θ, for each student,

bounded between 0 and 500. The equidistant points 150, 200, 250, 300 and 350 are then

selected from the scale.9 Test items from the assessment are then selected and categorized

according to whether or not the item discriminates between students with different scale

scores. For example, an item will be categorized as a “150 level item” if (a) 65 percent of

students scoring at or around 150 answered the item correctly; (b) 30 percent of students

or fewer scoring below 150 answered it correctly; (c) no more than 50 percent of students

scoring below 150 answered it correctly; and (d) a sufficient number of students responded

to the item. With this procedure, a large number of items can be categorized as being

“150 level items”, “200 level items”, and so on. This completes the statistical part of the

process. The judgmental part of the process occurs when teams of curriculum and content

specialists from the respective domains (i.e., reading and math) are asked to describe the

kinds of academic competencies reflected in the categorized items. Specialists meet in teams

and form a consensus about what these items signal.

9Very few students score in the tails of the scale score distribution, and for this reason the selected points
of interest ignore those regions.
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The final result is a set of performance level descriptors that characterize what students

know and can do as defined by test performance on selected items. Scale scores are em-

pirically determined, anchor items are empirically identified, and anchor descriptions are

provided by expert judgment (see Beaton and Allen, 1992; Beaton and Johnson, 1992; Lis-

sitz and Bourqe, 1995 for full description of the scale anchoring process).10

There are problems with this procedure. Lissitz and Bourque describe the anchor item

selection process as “low inference” and the descriptive process as “high inference.” The key

issue revolves around whether the descriptors are overly uni-dimensional. Not all items can be

empirically anchored to different ability levels, leaving open the possibility that the anchored

items are too narrow. While experts construct uni-dimensional descriptions of anchor items,

other descriptions cannot be ruled out. Moreover, the performance level descriptors collapse

across different sub-scales, glossing over multi-dimemsionality that is present even in the

empirical data. Finally, even though equidistant anchor levels are selected, if the equal-

interval assumptions of the scale score are not met, then the descriptors will likewise not be

equal-interval scaled.

Despite these concerns, anchoring in this way is the most widely used technique for pro-

viding descriptions of what students know and can do at different points across the scale.

Given how widely these benchmarks are used in classrooms and policy discussions, it is at

least plausible to suggest that the performance descriptors used in this survey experiment

can be mapped to specific scale scores. The performance level descriptors for reading and

math are described in Tables 1 and 2 below. The entire performance level descriptor is used

in the choice-based conjoint experiment.

[Insert Table I Here]

[Insert Table II Here]

10Performance level descriptors differ from standards setting or achievement level descriptors. Standards
setting practices begin with a set of skills that experts believe correspond to proficiency levels. For instance,
it might be asserted that a 4th grade student is proficient in reading if that 4th grade student can read
chapter books for comprehension. Experts then work through the test items and determine subjectively what
percent of students would answer the item correctly, if the student was proficient in reading. This stands
in stark contrast to the anchoring procedure described here, as the items are not categorized according to a
statistical procedure and given subjective analysis ex post, but instead are categorized exclusively according
to a judgmental procedure.
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II.C. Data collection

Utility values are estimated from survey respondents. Respondents are drawn from the

United States during the period of June and July, 2015. Participants were enrolled using

Amazon’s Mechanical Turk software suite and the survey was administered using Qualtrics.

Respondents were offered $0.35 to participate in the survey, equivalent to about $6.00 per

hour, and the study was administered with IRB approval. In total, 2351 respondents partic-

ipated. According to self-reports, respondents were primarily college educated (78 percent),

white (73 percent) and balanced by gender (48 percent male, 52 percent female). Mechanical

Turk populations, while not representative of the national population on observables, have

been shown to have nationally representative preferences with respect to certain stimuli,

such as responsiveness to information about income distributions (Kuziemko, Norton, and

Saez, 2015) and risk aversion (Buhrmester, Kwang and Gosling, 2011).11

III. Econometric framework

In this section I describe the modeling approach I use to estimate utility values for each of

the math and reading performance level descriptors. The model uses the logistic likelihood

function to provide point estimates for reading and math performance level descriptors at

levels 150, 200, 250, 300 and 350. Point estimates for reading and math performance level

descriptors can be interpreted as the log likelihood that respondent i chose Person A (profile

1) with reading and math characteristics θsl, where s indexes subject (reading or math) and

l indexes performance level (150, 200, 250, 300, 350).

Formally, the data are structured so that there is one row of observation for each survey

respondent i. A response variable is coded 1 if respondent chose Person A (profile 1); 0

otherwise–that is, if the perceived utility of Person A exceeded the perceived utility of Per-

son B. The pairwise offerings presented to each respondent are coded as indicator variables.

For example, if respondent i compared Person A, who had Reading 150 Math 300 (Reading

11Pilot studies took place over the months of September, 2014 to June, 2015. Development of the survey
design took place in Stanford’s Laboratory for the Study of American Values.

10



1, Math 4) and Person B, who had reading 200 Math 250 (Reading 2, Math 3), the indi-

cator variables Read1a, Math4a, Read2b and Math3b would be coded 1; all other indicator

variables (Read2a through Read5a, Math1a-Math3a and Math5a, etc.) are coded 0. These

ones and zeroes mark the choice set available to the respondent.

Thus, the probability that respondent i chose Person A is:

Pr(ChooseA) = f(Uia + εia > Uib + εib),(1)

= f(Uia − Uib + εia − εib > 0),(2)

This expression says that the probability of choosing Person A is a function of an indi-

vidual’s observed utility for Persons A and B plus a random component εij. Respondents

choose A when they perceive more utility for A than B, or when the difference in utility

between Persons A and B is greater than zero.

If we assume that the errors have a logistic distribution, then we can specify the model

such that:

Pr(ChooseA) = 1 +
1

e−(Uia−Uib)
+ εij; εij = εia − εib(3)

= 1 +
1

eUib−Uia
+ εij(4)

We simplify by taking logs and get:

Ln
Pr(ChooseA)

Pr(ChooseB)
= Uib − Uia + µij(5)

So far we have only shown that the log odds of choosing Person A over B will be a function

of how much the utility attributed to Person A exceeds the utility attributed to Person B.

We also know that Persons A and B have characteristics. Substituting, we get:

Uib = Mathib +Readib;Uia = Mathia +Readia(6)

Ln
Pr(ChooseA)

Pr(ChooseB)
= (Mathib −Mathia) + (Readib −Readia) + µij(7)
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This expression says that the log odds of choosing Person A over B will be a function

of how much Person A’s math and reading abilities (Mathia and Readia, respectively) are

preferred over Person B’s math and reading abilities (Mathib and Readib, respectively).

Let θsl = Mathib −Mathia or Readib − Readia for the full vector of Math and Reading

pairwise offerings made available to all respondents. Then, the model can be estimated with

the equation:

Ln
Pr(ChooseA)

Pr(ChooseB)
= α +

2∑
s=1

5∑
l=2

θsli + µsli(8)

Where s indexes subjects (reading and math), l indexes levels (200, 250, 300, 350 and 150

for both subjects is jointly estimated by the constant α), and i indexes respondents. This

model estimates a total of 8 parameters plus a constant. Standard errors are clustered to

account for heteroskedasticity.

Previously, I noted that the ages 9, 13 and 17 were randomly assigned to respondents,

in order to test whether respondent preferences for different parts of the reading and math

distributions varied by the supplied ages of Persons A and B. These age terms can be

introduced in the model as interactions:

Ln
Pr(ChooseA)

Pr(ChooseB)
= α + δa × (

2∑
s=1

5∑
l=2

θsli) + µsli(9)

where δa is an age fixed effect, thus giving 24 total parameters estimated (8 reading and

math x 3 age terms) and a constant.

IV. Results

I now turn to results. The survey consisted of both a ranking and a choice exercise. The

ranking exercise was included to determine whether respondents could and did understand

that the performance level descriptors provided increasingly sophisticated descriptions of

reading and math abilities. I begin by showing percents of respondents ranking performance
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level descriptors correctly in terms of difficulty. A majority of respondents are able to rank

these descriptors correctly, suggesting that they understand the descriptors connote ordinal

information in terms of ability.

I then turn to point estimates from logistic linear regression models. I show point estimates

for two sets of models: age-interaction models (for ages 9, 13 and 17) are shown along

with models that estimate the weighted average across age. These allow us to see whether

age-interactions meaningfully change respondent behavior. Three interpolation schemes are

considered and monotonic cubic interpolation (MCI) according to Fritsch and Carlson (1980)

is selected.

With an interpolation scheme in place, I have a full range of data for both the original

scale score and the estimated welfare scale. As a descriptive application, I show trends in

the white-black achievement gap, defined as the difference in mean white and black scores,

for the original and adjusted scales. NAEP scores are fairly stable across time but change

substantially as students age.12 Test scores are available for a random sampling of students

at ages 9 and 17 every 8 years for six cohorts in math and reading, allowing for description

of achievement growth as students age across various cohorts. I conclude by showing gap

trends across age for various cohorts using both scales.

IV.A. Ordinal ranking exercise

Respondents first participated in a ranking exercise in which they were randomly assigned 3

of 5 reading or 3 of 5 math performance level descriptors (an example of the exercise is shown

in Figure I). Only three descriptors were randomly drawn in order to simplify the ranking

task. There are 10 possible reading and math bundles for which there are no ties randomly

assigned to respondents, when a tie is defined as respondent being randomly assigned one or

more equivalent reading or math performance level descriptors.13 Among non-ties, the prob-

ability of being assigned any one reading or math performance level descriptor is uniformly

12The NAEP-LTT is vertically scaled, meaning students at different ages are exposed to an overlapping
subset of test items. See Beaton and Swick (1992) and Haertel (1991) for discussion.

13Ties are excluded because the exercise is made radically simpler when ranking only two unique sets of
descriptors.
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distributed. There are 10 possible non-tying combinations of performance level descriptors:

123, 124, 125, 134, 135, 145, 234, 235, 245, 345 (where 1=150, 2=200, 3=250, etc.). Likewise,

the distribution of descriptor combinations is uniformly distributed.

Uniformity allows for independent point estimates of each subject-level descriptor. How-

ever, independent estimates of the effect of being assigned a performance level descriptor on

the probability of ranking that descriptor correctly are available only if descriptor combina-

tions are equally difficult. For example, some descriptor combinations will, by chance, assign

respondents combinations of descriptors that are further spaced than other combinations

(e.g., 135 is futher spaced than 234 or 125). If correctly ranking is easier when descriptors

are further apart (e.g., 135 is easier than 234 or 125), and if some performance level descrip-

tors are more commonly found in these more easily ranked combinations, then independent

estimates of each performance level will be biased. To test for this, I construct three indicator

variables (Distance 100, Distance 150, and Distance 200) indicating the cumulative distance

between the three performance descriptors. For example, the indicator Distance 100 will be

coded 1 if the three descriptors were 150, 200, 250 (distance is 50 between 150 and 200 and

50 between 200 and 250 for a total of 100); 0 otherwise. Distance 150 and 200 are coded

similarly.

The data are structured such that there are three observations per respondent. Each

row corresponds to the subject s and level l randomly shown to the respondent i. If the

respondent ranked the item correctly, it is coded 1; 0 otherwise. In total, a respondent may

rank 0,1 or 3 descriptors correctly (mis-ranking one descriptor necessarily results two or more

descriptors mis-ranked). I estimate two regression models:

Ranksli = θsli + µsli(10)

= δd × (θsli) + µsli(11)

Here, s indexes subject, l indexes level and i indexes respondent. Each model is run sepa-

rately for math and reading, for a total of four estimations. The dependent variable Ranksli

is coded as 0 or 1 depending on whether the respondent ranked correctly; indicator variables

θsli indicate the linear probability that respondents ranked performance levels 1 through 5
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correctly, and the interaction term δd indicates the proportion of respondents ranking θsli

correctly when they were offered three-descriptor combinations with distances equal to 100,

150 or 200. Point estimates for δd interactions are relative to d = 100. Standard errors are

clustered at the respondent level to account for intra-respondent correlation. Results are

reported in Table III.

[Insert Table III Here]

The main effects coefficients (Levels 150 through 350, indicated by column header “Mean”)

indicate the proportion of respondents ranking that performance level descriptor correctly.

Here we see that, for the most part, respondents were successful at ranking the descriptors.

Percents correct range between 63 percent to 79 percent depending on subject and level.

There is not an obvious pattern between subjects and levels with respect to how effectively

respondents ranked.

The interaction terms confirm the hypothesis that additional space between performance

level descriptors improves ranking competence. Relative to when cumulative distance is 100

(the smallest possible distance among non-ties), distances at 150 and 200 are nearly always

higher (math, level 300, distance 200) and generally significant.14 Overall, respondents

ranked reading and math descriptors correctly 63 to 79 percent and 64 to 72 percent of the

time, respectively. Whether respondents rank incorrectly on account of negligence or genuine

confusion is unknown.

Correct rank ordering of performance level descriptors is relevant to the utility model

because the model assumes monotonicity of consumer choice preferences. The monotonicity

assumption is simply that respondents should choose higher levels of reading or math, all

else constant. That is, for example, if respondent i faces a choice task k in which Person A

has Reading and Math 250 and Person B has Reading 250 and Math 300, respondent i must

choose Person B. In health economics, where choice-based conjoint designs are common and

assumptions of monotonicity are likewise required, there is no consensus on best practices

for when respondents “choose badly.” I follow current practices and delete observations for

14The interaction terms do not average to the main mean effect because the Distance 150 terms are
approximately 1.3 times more prevalent than either the 100 or 200 terms.
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which respondent choices violate monotonicity assumptions.15,16

In total 350 respondents out of 2351 were removed from the sample for either (a) mak-

ing non-monotonic choices (i.e., choosing a Profile with performance level descriptors lower

than the alternative); (b) not responding to the choice task; or (c) ranking all three items

incorrectly. The final estimation sample includes 2001 respondents.

IV.B. Beta estimates

Estimation of the utility model (Equations (8) and (9)) is done on a sub-sample of respon-

dents who (a) complied with monotonicity assumptions, (b) responded to the choice task,

and (c) ranked at least one of the items correctly in the ranking exercise. The sample

includes 2001 of 2351 respondents given a choice task. I begin by showing results for Equa-

tion (9), where randomly assigned age descriptors δa for ages 9, 13, and 17 are interacted

with reading and math performance level descriptors θsl, providing 24 (3 ages x 4 betas x 2

subjects) point estimates plus a constant. The interaction terms allow us to see whether re-

spondent preferences for performance levels are sensitive to profile age. Results are displayed

in Figure IV.

[Insert Figure IV Here]

15See Lancsar and Louviere, 2006; Lancsar and Louviere, 2008; Inza and Amaya-Amaya, 2008 for discus-
sion. These papers discuss both monotonicity violations as well as other violations of rational choice theory.
The focus is primarily on repeated observation of respondent choice behavior, when preferences should be
transitive and consistent. In cases where transitivity and consistency are violated, deletion of respondent
choice data is discouraged. Guidelines for best practices in cases of monotonicity violations are not well
specified. Higher quality (and more expensive) data can be obtained in order to determine whether respon-
dents failed to comprehend, did not take the choice task seriously, or had other reasons for preferring less
over more achievement.

16In pilot surveys that took place between September 2014 and June 2015, I attempted to make the
performance level descriptors more concise in order to improve respondent comprehension and to present
respondents with additional choice sets. This procedure has the drawback of undoing the scale anchoring
process described previously. In particular, complete descriptors have already been criticized for excessive
unidimensionality, and any additional concision would bolster those criticisms. In an effort to allow for the
descriptors to maintain their multidimensionality and increase concision, respondents were randomly assigned
sub-elements within each performance level descriptor. I generated 3 to 5 sub-descriptors for each complete
performance level descriptor and randomly assigned those. An average estimate of the sub-descriptors would,
in theory, describe the multidimensional aspects of full descriptor. Nevertheless, I found that respondents
were not additionally successful at ranking sub-descriptors relative to the full performance level descriptor;
indeed, for many of the sub-descriptors I constructed, respondents were much worse at ranking them. For
these reasons, I chose to use the full descriptor.
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The common intercept α anchors point estimates for Math and Reading ages 9, 13 and

17 at Level 150.17 Because each of the subjects are estimated simultaneously, it is possible

to compare across subject domains, as well as within domain, across performance level. The

solid and dashed lines correspond to fitted quadratic and cubic regression lines, precision

weighted by the inverse of the standard error squared. Analytic weights are likewise applied

to each of the point estimates to indicate precision (i.e,. larger circles have smaller standard

errors).

With only five estimated points, there are many data missing throughout the entire range

of potential scale scores. The problem of missing data is unique to educational settings,

where two measures of ability are commonplace: discrete performance level descriptors and

continuous measures. In order to capture the full continuous range of ability using only

discrete descriptors, we will need to fill in the missing data. The two interpolation and

extrapolation schemes presented here (quadratic and cubic interpolation) are seen to be

inadequate. Cubic interpolation does not impose monotonicity on the interpolated line, thus

violating axioms. Quadratic interpolation does not represent the curvature of the line well.

The primary purpose of Figure IV is to illustrate two problems with the schemes. Finally,

in figures not shown, using either extrapolation method for points beyond 150 and 350 leads

to outlandish prediction.

To correct these limitations, I use monotone piecewise cubic interpolation (MCI) as sug-

gested by Fritsch and Carlson (1980). MCI produces results depicted in Figure V for the

range 100 to 500. The top panel shows results for Equation (8), where the age-interaction

terms are removed. By construction, the curvature is monotonic throughout the entire range

and fits the estimated data perfectly. MCI extrapolates for points beyond 150 and 350 by

linearly fitting a line from the last two known points (i.e., 150 to 149 and 349 to 350). Linear

extrapolation may not be appropriate for points outside the estimated range. Later, I test

how sensitivity results are to alternative extrapolation techniques.

[Insert Figure V Here]

We can now observe results. First note the concavity of the each of the point estimates.

17It is not possible to disaggregate α into Reading and Math Levels 150, as respondents are forced to make
a math and reading choice simultaneously.
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As hypothesized, welfare returns to achievement are non-linear and decrease at the higher

end of the scale. This is true for all ages and subjects. There is variation in the curvature

between subjects and ages. For all ages in reading (bottom right panel of Figure V), there is

a steep gain in utility at the bottom of the scale, and then utility gains flatten out. Age 17

shows a steep increase at the high end of the scale, but much of this is due to extrapolation

beyond the estimated value of 350. For math (bottom left panel), the largest gains are in the

middle of the distribution, as scores increase from 200 to 350, and this is true for all ages.

Overall, we see confirmation of the initial hypothesis that utility gains for achievement are

non-linear and concave.

In order to estimate changes in achievement across age, by cohort, it will be necessary to

combine age terms and estimate Equation (8). Recall the monotonicity assumption implicit

in the model: increases in the original scale score must be associated with increases in benefit.

As seen in Figures IV and V, each of the age curves are monotonically increasing, but the

model does not impose monotonicity across age. To understand why, consider Figure VI,

which shows a stylized depiction of Figure V overlaying Ages 9 and 17. Here, the curvatures

for Ages 9 and 17 are respectively monotonic, but as achievement along the x-axis increases

and “jumps” from Age 9 to 17, there is a concomitant decrease in Y , i.e. utility. This

violates modeling assumptions and implies that as children gain in achievement as they age

from 9 to 17 they are made worse, all things considered. This implication is made despite

the fact that we observe positive utility returns to achievement within age.

[Insert Figure VI Here]

We observe this “jump” problem because respondents are not asked to make marginal

welfare preferences for achievement gains but are instead asked to state preferences for

achievement states. The theoretical and practical differences between estimating gains and

states is a recurring theme in health research and was introduced earlier. The problem is even

more pronounced in educational applications, as any vertical scale assumes change in ability

across age. Nevertheless, it is not obvious whether welfare evaluations should be sensitive

to those changes. Moreover, most test scores are presented as cross-sectional measures of

ability. Given that the purpose of this exercise is to convert a commonly used measure
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of ability into one that connotes utility, using the cross-sectional achievement score seems

appropriate. Modeling growth may be possible but is left aside for future research. 18

Point estimates will therefore be taken from Equation (8). By eliminating the age inter-

action terms, the model describes average welfare returns to achievement and is monotonic.

Point estimates correspond to the weighted average of the three age terms (9, 13, 17) for

each performance level. This can be seen in the upper left and right panels of Figure V.

Comparing between lower and upper panels of Figure V shows that age-specific point es-

timates do not substantively alter interpretation. Moreover, ignoring the age-interactions

helps to mitigate some of the exaggerated extrapolation for ranges beyond 350.

IV.B.1. Estimating and converting NAEP scales

Here I describe how estimated utility values for Reading and Math performance level de-

scriptors 150, 200, 250, 300 and 350 are applied to individual level NAEP data. To do this, I

take individual level data from the NAEP restricted-use files and generate a vector of reading

and math scores for each individual student’s 5 plausible values.19 Each individual student’s

score is estimated according to the MCI projection. This is done for all student scores in

reading and math, ages 9, 13 and 17, for years 1990-2008. As a summary statistic, I take

the mean NAEP and mean welfare-adjusted score for each subject, age, year and subgroup,

taking account of the NAEP’s complex survey design as well as the five plausible values.20

Finally, in order to compare the original scale, which ranges between 100 and 500, to the

welfare-adjusted scale, which ranges from -2.7 to 0.2, I standardize them both to have mean

µ = 100 and standard deviation σ = 10.

18See Weinstein, et al., 2009 and especially Nord, et al., 2009 for important discussion about gains versus
levels in health, with emphasis on both policy and normative implications.

19In the NAEP, individuals do not receive the complete battery of tests. For this reason, each individual
student is given 5 plausible values which are randomly drawn from a distribution of possible θ values. The 5
plausible values can be combined to provide summary statistics for sub-populations following Rubin’s rules
for multiple imputation. See Mislevy, et al., 1992 for a description of this procedure.

20Specifically, to estimate means for each plausible value of the NAEP, I use Stata’s –svy– commands,
specifying probability and replicate weights, as well as the sampling clusters. I follow Rubin’s rules to
aggregate across each of the 5 plausible values. The mean score is a simple average of each of the subject-
age-year score, but error variance requires that we take account of between plausible value variation and the

error variance of each estimate. The formula for this is: within =
1

5

∑5
p=1 σ

2; between =
1

4

∑4
p=1(X̄ −Xp);

total =
√
within+ 1.2 ∗ between.
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IV.C. Comparing original to welfare-adjusted scale

I now show how inferences between the original NAEP scale and the estimated and inter-

polated welfare-adjusted scale contrast. I first present a stylized figure to show the kinds of

cases for which inferences between the two scales will diverge. I then compare white-black

achievement gaps (defined as the mean difference between the two groups) across cohort

(that is, as students age).

IV.C.1. Achievement gap example

An example of a change in math achievement for a single cohort is shown in Figure VII. The

x-axis shows the original standardized NAEP scale and the y-axis shows the estimated and

interpolated scale for a cohort of students in years 1982 to 1990. The solid intersecting lines

indicate mean black scores and the dashed intersecting lines indicate mean white scores; the

scores at the lower end of the distribution are for students at age 9 and at the higher end

of the distribution are for students at age 17. The difference between dashed and solid lines

for the respective axes provides the achievement gap.

[Insert Figure VII Here]

It is clear from Figure VII that white black differences at age 17 are slightly smaller than

they were at age 9 for both scales, indicating that the gap shrank as children aged. The size

of the change in the gap is much smaller using the welfare-adjusted scale than it is using the

original scale, as the difference in scores at age 9 are smaller in the welfare scale than they

are in the original NAEP. What is also revealing about this figure is that if all student scores

increased by the same amount (i.e., an equivalent mean increase in achievement), the effect

on the achievement gap in the adjusted scale would be profound. By shifting all scores to

the right, the size of the gap at age 9 in the adjusted scale would be larger, as a result of the

steeply increasing value in achievement, and the size of the gap at age 17 would be smaller,

as a result of the fact that gains at the high end of the scale are diminished. Taken together,

the adjusted scale would show a dramatic decrease in achievement gaps between the ages of

9 and 17, simply by increasing all scores an equal amount. This contrast between scales is
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exactly the consequence we would expect when equal interval assumptions with respect to

welfare are violated.

One other point is worth emphasizing from Figure VII. The first is that differences in

inferences between the two scales requires change. Cross-sectional comparisons between the

two scales result only in intercept differences (e.g., a score of 80 in the original scale is

equivalent to a score of 83). While achievement gaps have narrowed somewhat over time,

most of the change in NAEP scores takes place as children age. For that reason, I show gap

changes as children age, across cohort.

IV.C.2. Achievement gaps: Across cohort

The effects of rescaling can be seen when we look at achievement gap changes as children

age. The NAEP is vertically equated, meaning examinees at ages 9, 13 and 17 are given

a overlapping sample of test items at each age level. While there are some concerns about

the nature of the inference one can draw from vertical equating, such cross-age comparisons

are technically allowable with NAEP data (Haertel, 1991). In order to make cross-age

comparisons, I use a sub-sample of cohorts for whom a random sample of students are tested

at age 9 in year t and tested again at age 17 in year t + 8. The achievement growth for

students from age 9 to 17 in year t to t + 8 is provided for six cohorts c in both math and

reading. Within each of these cohorts, because samples of students are randomly drawn in

each interval, it is possible to say that the achievement of any subgroup g in cohort c grew

or shrank by some amount, using both the original NAEP and welfare-adjusted scales. The

achievement gap for any cohort c is defined as the mean white minus mean black score in

years t and t+ 8.

[Insert Figure VIII Here]

[Insert Figure IX Here]

Figures VIII and IX present results for the possible six cohorts in math and reading,

respectively. Solid lines depict the original NAEP scale and dashed lines depict the welfare

adjusted scale. As hypothesized, in many instances, the inferences we would draw from the

adjusted scale depart in magnitude and sign when compared to the original scale. In math,
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the 1982 to 1990 cohort (depicted in green) is as described in Figure VII, and we observe

here what was described there: a rate of gap closure that is steeper in the original NAEP

metric than in the welfare scale. In 1978-1986, 1992-2000, and 1996-2004 cohorts gap signs

are reversed. Whether or not trends are reversed between the two scales will be a function

of the size, location and rate of change of the subgroup’s respective mean achievement.

In reading, the departure between the original and adjusted scales is much more pro-

nounced. Using the adjusted scale, the reading achievement gap is shown to be decreasing

by about 6 to 10 points for every cohort. Conversely, using the original scale, the gap is

decreasing by about 1 to 3 points in four cohorts and increasing by 1 to 2 points in two

cohorts. This can be traced back to Figure V, where we observed a steep change in slope

beginning at NAEP score 250. Gains below 250 are very steep, while gains above are much

more shallow. If black scores, between ages 9 and 17, move along the back half of the curve,

while white scores moves along the front half of the curve, gap decreases will be much larger.

V. Conclusion

Overall, I have demonstrated that welfare benefits of different achievement states described

by the NAEP are not equal interval. In contrast to existing methods, the technique I propose

provides a direct and explicit description of the welfare gains from different achievement

states. Moreover, instead of linking achievement to earnings, I have suggested that the

benefits of achievement can be described inclusively, meaning that achievement need not

serve merely pecuniary purposes. With the proposed method, the inferences we draw about

changes in achievement and changes in achievement gaps (especially as children age) will

differ depending on which scale we use. Which scale ought to be used is, I have argued,

application sensitive. When descriptions of academic ability are desired, or when we wish

to know how much more or less some subgroups know about math and reading relative to

other subgroups, the original NAEP scale can allow for such inferences. When, however, we

wish to derive some additional inference about the scale—for instance, when an achievement

score is used as an outcome variable, when a score is used for cost-effectiveness evaluation,
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or when we wish to evaluate whether a narrowing of the achievement gap is “good” or

“bad”—the original NAEP scale is inadequate. It fails to accurately describe benefit in any

meaningful way. In this paper, I have described and implemented a method that allows for

such values-based inferences.

In light of the previous discussion, we can revisit the four questions that were raised at

the start of this essay.

1 To what outcome should scale scores be indexed?

2 Whose preferences for achievement should be included in the index?

3 How should the index balance individual and social benefits?

4 How should time be modeled in the elicitation and estimation of the utility value?

I have supplied answers to each of these questions. Outcomes are indexed to survey respon-

dents’ understanding of how much welfare is attributable to certain levels of achievement;

college educated respondents are included in the index; equity is given zero weight in the

model; time is modeled cross-sectionally. Whether or not these choices are the correct ways

to link achievement to outcomes is not known, but the choices inherent to the inference are

here made explicit.

Contrast the approach detailed here to when achievement scores are used as outcome vari-

ables. With the use of achievement scores, even if the equal-interval assumptions hold, the

implicit assumptions of the model are that benefits are best characterized by ability differ-

ences, that all ability differences are equally beneficial, and that all benefits are individual

(and not societal) and best characterized by a cross-section in time. These assumptions lack

theoretical and, as demonstrated here, empirical warrant; nevertheless, these assumptions

form the basis of a great majority of education policy evaluations. Education policy evalua-

tion will be greatly improved when the implicit assumptions underlying the use of traditional

achievement scores are made explicit.

As stated previously, the approach taken here should be interpreted as proof of concept.

Many questions remain, and the assumptions used to construct this scale may not be suitable.

It is hoped that the procedure be used as a jumping-off point for future inquiry and research.
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VI. Figures
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Figure I: Survey Example: Ranking Exercise

This is a screen shot (1 of 3) from the online survey experiment administered to 2351 respondents through
Amazon’s Mechanical Turk software. This task asked respondents to rank 3 reading performance level
descriptors in terms of difficulty. Respondents were randomly assigned either reading or math subject and
3 of 5 performance level descriptors (with replacement).
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Figure II: Survey Example: Introduction to Choice Exercise

This is a screen shot (2 of 3) from the online survey experiment administered to 2351 respondents through
Amazon’s Mechanical Turk software. In this screen shot, the choice task is introduced to respondents.
Respondents are informed that the two profiles, Persons A and B, are equal in all respects except that
they differ in their reading and math abilities. They are instructed to select which person will be better off
between the two. In paragraph 3, Persons A and B are also randomly assigned an age, which can be either
9, 13 or 17.
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Figure III: Survey Example: Choice Exercise

This is a screen shot (3 of 3) from the online survey experiment administered to 2351 respondents through
Amazon’s Mechanical Turk software. In this screen shot, the choice task is presented to respondents. Re-
spondents are randomly assigned a reading and math performance level descriptor for Persons A and B, with
replacement. Performance level descriptors are taken from the NAEP-LTT and can be seen in Tables I and
II. At the bottom of the choice task, respondents select which person (A or B) they think would be better
off, “all things considered.”
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Figure IV: Estimated Beta Coefficients for Math and Reading, Age Interactions
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This figure depicts point estimates from logistic regression Equation (9) shown. Point esti-
mates indicate probability of respondent selecting profile with math (top panel) or reading
(bottom panel) performance level descriptor equal to 200, 250, 300 or 350 (relative to omitted
category 150). Solid line drawn using precision-weighted cubic regression through the esti-
mates; dashed line drawn using precision-weighted quadratic regression. Range gaps depict
95 percent confidence intervals.
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Figure V: Monotonic Cubic Interpolation of Math and Reading Beta Coefficients
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This figure takes point estimates from Equations 8 and 9 and performs piecewise monotone cubic interpolation
(MCI) according to Fritsch and Carlson (1980) for scale range 100 to 500. Extrapolation for points less than
150 and greater than 350, respectively, is done via linear extrapolation of the two most proximal points,
e.g. linear extrapolation based on points 151 and 150 and 349 and 350, respectively. Top panel drops age
interactions (Equation 8) and bottom panel estimates equation 9.
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Figure VI: Changes in Scale and Welfare Scores across Age: ”Jump” Problem
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Stylized depiction showing how monotonicity within age need not lead to monotonicity across age, i.e. the
“jump” problem. In this representation, benefits are monotonically increasing for ages 9 and 17, but as
achievement increases from age 9 to 17, there is a downward “jump” in welfare. This is due to the fact that
the choice task is cross-sectional, asking respondents about their preferences for achievement states and not
achievement growth.
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Figure VII: White and Black Changes in Math Achievement across Age: Example Cohort
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This figure depicts standardized original and welfare-adjusted NAEP scores for one cohort of students ages
9 and 17 for years 1982 and 1990 (for 1 of 5 plausible values). Solid intersecting lines correspond to mean
black scores of 9 and 17 year olds in 1982 and 1990, respectively. Dashed intersecting lines correspond to
mean white scores for same ages and years. Achievement gaps are represented as the difference between
dashed and solid lines at ages 9 and 17 along both the x- and y-dimensions of the graph.
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Figure VIII: Mean White Minus Mean Black Math Scores across Age, by Cohort
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This figure depicts mean white minus mean black math achievement for six cohorts of students aged 9 and
17 in years t and t+ 8. Solid lines correspond to original NAEP scale; dashed lines to welfare-adjusted scale.
Each line reflects change in white-black achievement gap as one cohort of students changes in achievement
between the ages of 9 and 17.
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Figure IX: Mean White Minus Mean Black Reading Scores across Age, by Cohort
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This figure depicts mean white minus mean black reading achievement for six cohorts of students aged 9 and
17 in years t and t+ 8. Solid lines correspond to original NAEP scale; dashed lines to welfare-adjusted scale.
Each line reflects change in white-black achievement gap as one cohort of students changes in achievement
between the ages of 9 and 17.
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VII. Tables
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Table I: Reading Performance Level Descriptors

Level 150: Carry Out Simple, Discrete Reading Tasks

Readers at this level can follow brief written directions. They can also select words,
phrases, or sentences to describe a simple picture and can interpret simple written clues
to identify a common object. Performance at this level suggests the ability to carry out
simple, discrete reading tasks.

Level 200: Demonstrate Partially Developed Skills and Understanding

Readers at this level can locate and identify facts from simple informational paragraphs,
stories, and news articles. In addition, they can combine ideas and make inferences
based on short, uncomplicated passages. Performance at this level suggests the ability to
understand specific or sequentially related information.

Level 250: Interrelate Ideas and Make Generalizations

Readers at this level use intermediate skills and strategies to search for, locate, and
organize the information they find in relatively lengthy passages and can recognize
paraphrases of what they have read. They can also make inferences and reach
generalizations about main ideas and the author’s purpose from passages dealing with
literature, science, and social studies. Performance at this level suggests the ability to
search for specific information, interrelate ideas, and make generalizations.

Level 300: Understand Complicated Information

Readers at this level can understand complicated literary and informational passages,
including material about topics they study at school. They can also analyze and
integrate less familiar material about topics they study at school as well as provide
reactions to and explanations of the text as a whole. Performance at this level suggests
the ability to find, understand, summarize, and explain relatively complicated
information.

Level 350: Learn from Specialized Reading Materials

Readers at this level can extend and restructure the ideas presented in specialized and
complex texts. Examples include scientific materials, literary essays, and historical
documents. Readers are also able to understand the links between ideas, even when those
links are not explicitly stated, and to make appropriate generalizations. Performance at
this level suggests the ability to synthesize and learn from specialized reading materials.

Reading Performance Level Descriptors for National Assessment of Educational Progress,
Long Term Trend. Available here: https://nces.ed.gov/nationsreportcard/ltt/reading-
descriptions.aspx
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Table II: Math Performance Level Descriptors

Level 150: Simple Arithmetic Facts

Students at this level know some basic addition and subtraction facts, and most can add
two-digit numbers without regrouping. They recognize simple situations in which
addition and subtraction apply. They also are developing rudimentary classification
skills.

Level 200: Beginning Skills and Understandings

Students at this level have considerable understanding of two-digit numbers. They can
add two-digit numbers but are still developing an ability to regroup in subtraction. They
know some basic multiplication and division facts, recognize relations among coins, can
read information from charts and graphs, and use simple measurement instruments.
They are developing some reasoning skills.

Level 250: Numerical Operations and Beginning Problem Solving

Students at this level have an initial understanding of the four basic operations. They
are able to apply whole number addition and subtraction skills to one-step word
problems and money situations. In multiplication, they can find the product of a
two-digit and a one-digit number. They can also compare information from graphs and
charts, and are developing an ability to analyze simple logical relations.

Level 300: Moderately Complex Procedures and Reasoning

Students at this level are developing an understanding of number systems. They can
compute with decimals, simple fractions, and commonly encountered percents. They can
identify geometric figures, measure lengths and angles, and calculate areas of rectangles.
These students are also able to interpret simple inequalities, evaluate formulas, and solve
simple linear equations. They can find averages, make decisions based on information
drawn from graphs, and use logical reasoning to solve problems. They are developing the
skills to operate with signed numbers, exponents, and square roots.

Level 350: Multistep Problem Solving and Algebra

Students at this level can apply a range of reasoning skills to solve multistep problems.
They can solve routine problems involving fractions and percents, recognize properties of
basic geometric figures, and work with exponents and square roots. They can solve a
variety of two-step problems using variables, identify equivalent algebraic expressions,
and solve linear equations and inequalities. They are developing an understanding of
functions and coordinate systems.

Math Performance Level Descriptors for National Assessment of Educational Progress,
Long Term Trend. Available here: https://nces.ed.gov/nationsreportcard/ltt/math-
descriptions.aspx
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Table III: Results from Ranking Exercise

Reading Math

Mean Mean-by-Distance Mean Mean-by-Distance

Level 150 0.751 *** 0.647 *** 0.691 *** 0.531 ***

(0.026) (0.063) (0.027) (0.066)

Distance 150 0.161 * 0.143

Distance 200 0.1 0.228 **

Level 200 0.788 *** 0.733 *** 0.661 *** 0.585 ***

(0.027) (0.044) (0.027) (0.047)

Distance 150 0.059 0.062

Distance 200 0.153 * 0.258 **

Level 250 0.672 *** 0.603 *** 0.721 *** 0.664 ***

(0.026) (0.037) (0.027) (0.038)

Distance 150 0.163 ** 0.062

Distance 200 0.106 0.238 **

Level 300 0.697 *** 0.59 *** 0.711 *** 0.713 ***

(0.026) (0.045) (0.027) (0.047)

Distance 150 0.155 ** 0.072

Distance 200 0.184 * -0.223 **

Level 350 0.627 *** 0.478 *** 0.637 *** 0.531 ***

(0.027) (0.066) (0.027) (0.066)

Distance 150 0.14 0.136

Distance 200 0.197 ** 0.122

N 1455 1461

Respondents 485 487

Regression model estimates linear probability that respondents ranked performance level descriptor correctly. Samples
excludes respondents if (a) they were randomly assigned “ties” or (b) they did not rank all three items. Column “Mean”
describes percent of reading or math level descriptors ∈ (150, 200, 250, 300, 350) ranked correctly. “Mean-by-Distance”
disaggregates percentages into three categories: whether the cumulative distance of the three descriptors summed to 100,
150, or 200 (e.g., a random draw of 150, 200, 250 sums to 100). Stars indicate * for p<.05, ** for p<.01, and *** for p<.001.
Mean-by-Distance test is relative to omitted category, Distance 100.
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