Bio


Christian Linder is an Assistant Professor of Civil and Environmental Engineering with a research focus on the development of advanced computational methods and mathematical frameworks to predict the mechanical response of new materials. Relying on a detailed representation of the actual material microstructure, his models allow to understand microscopic mechanisms in biological materials and subsequently mimic and adapt those to new man-made sustainable materials with unprecedented mechanical properties used in large-scale Civil and Environmental Engineering applications. He is particularly interested in soft matter materials such as elastomers, nonwoven fabrics, hydrogels, or cellular foams and his numerical methods range from macroscopic continuum based finite element simulations to highly parallelized nanoscale electronic structure calculations.

As a Fulbright scholar Dr. Linder received his Ph.D. in Structural Engineering, Mechanics and Materials from the University of California, Berkeley. He earned his Dipl.-Ing. degree in Civil Engineering from the Technical University of Graz, an M.Sc. in Computational Mechanics of Materials and Structures from the University of Stuttgart, and an M.A. in Mathematics from the University of California, Berkeley. Before joining Stanford in 2013 he was an Assistant Professor of Micromechanics of Materials within the Applied Mechanics Institute of Stuttgart University where he also received his Habilitation in Mechanics.

Academic Appointments


Honors & Awards


  • 2016 NSF CAREER Award, National Science Foundation (2016)
  • Richard-von-Mises Prize, International Association of Applied Mathematics and Mechanics (2013)
  • Haythornthwaite Research Initiation Award, ASME Applied Mechanics Division. (2013)

Professional Education


  • PhD, UC Berkeley (2007)

Stanford Advisees


All Publications


  • Computational aspects of growth-induced instabilities through eigenvalue analysis COMPUTATIONAL MECHANICS Javili, A., Dortdivanlioglu, B., Kuhl, E., Linder, C. 2015; 56 (3): 405-420
  • All-electron Kohn-Sham density functional theory on hierarchic finite element spaces JOURNAL OF COMPUTATIONAL PHYSICS Schauer, V., Linder, C. 2013; 250: 644-664
  • Effect of electric displacement saturation on the hysteretic behavior of ferroelectric ceramics and the initiation and propagation of cracks in piezoelectric ceramics JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS Linder, C., Miehe, C. 2012; 60 (5): 882-903
  • The maximal advance path constraint for the homogenization of materials with random network microstructure PHILOSOPHICAL MAGAZINE Tkachuk, M., Linder, C. 2012; 92 (22): 2779-2808
  • A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS Linder, C., Tkachuk, M., Miehe, C. 2011; 59 (10): 2134-2156
  • Finite elements with embedded strong discontinuities for the modeling of failure in solids INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Linder, C., Armero, F. 2007; 72 (12): 1391-1433

    View details for DOI 10.1002/nme.2042

    View details for Web of Science ID 000251949400002

  • A micromechanical model with strong discontinuities for failure in nonwovens at finite deformations INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES Raina, A., Linder, C. 2015; 75-76: 247-259
  • The reduced basis method in all-electron calculations with finite elements ADVANCES IN COMPUTATIONAL MATHEMATICS Schauer, V., Linder, C. 2015; 41 (5): 1035-1047
  • A Complex Variable Solution Based Analysis of Electric Displacement Saturation for a Cracked Piezoelectric Material JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME Linder, C. 2014; 81 (9)

    View details for DOI 10.1115/1.4027834

    View details for Web of Science ID 000355556000006

  • Three-dimensional finite elements with embedded strong discontinuities to model failure in electromechanical coupled materials COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING Linder, C., Zhang, X. 2014; 273: 143-160
  • A homogenization approach for nonwoven materials based on fiber undulations and reorientation JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS Raina, A., Linder, C. 2014; 65: 12-34
  • A homogenization approach for nonwoven materials based on fiber undulations and reorientation Journal of the Mechanics and Physics of Solids. Accepted for publication Raina, A., Linder, C. 2014
  • A marching cubes based failure surface propagation concept for three-dimensional finite elements with non-planar embedded strong discontinuities of higher-order kinematics INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Linder, C., Zhang, X. 2013; 96 (6): 339-372

    View details for DOI 10.1002/nme.4546

    View details for Web of Science ID 000325687400001

  • A strong discontinuity approach on multiple levels to model solids at failure COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING Linder, C., Raina, A. 2013; 253: 558-583
  • 3D finite elements to model electromechanical coupled solids at failure. Linder, C. 2013
  • Modeling reorientation phenomena in nonwoven materials with random fiber network microstructure. Raina, A., Linder, C. 2013
  • An analysis of the exponential electric displacement saturation model in fracturing piezoelectric ceramics. Technische Mechanik. Linder, C. 2012; 32: 53-69
  • Homogenization of random elastic networks with non-affine kinematics. Tkachuk, M., Linder, C.  2012
  • New three-dimensional finite elements with embedded strong discontinuities to model solids at failure. Zhang, X., Linder, C.  2012
  • Modeling quasi-static crack growth with the embedded finite element method on multiple levels. Raina, A., Linder, C. 2012
  • All-electron calculations with finite elements. Schauer, V., Linder, C. 2012
  • New finite elements with embedded strong discontinuities for the modeling of failure in electromechanical coupled solids COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING Linder, C., Rosato, D., Miehe, C. 2011; 200 (1-4): 141-161
  • A strong discontinuity based adaptive refinement approach for the modeling of crack branching. Raina, A., Linder, C. 2011
  • Microstructural driven computational modeling of polymers. Tkachuk, M., Linder, C. 2011
  • Finite element solution of the Kohn-Sham equations. Schauer, V., Linder, C. 2011
  • Modeling crack micro-branching using finite elements with embedded strong discontinuities. Raina, A., Linder, C. 2010
  • Numerical simulation of dynamic fracture using finite elements with embedded discontinuities INTERNATIONAL JOURNAL OF FRACTURE Armero, F., Linder, C. 2009; 160 (2): 119-141
  • Finite elements with embedded branching FINITE ELEMENTS IN ANALYSIS AND DESIGN Linder, C., Armero, F. 2009; 45 (4): 280-293
  • Numerical modeling of dynamic fracture. Armero, F., Linder, C. 2009
  • New finite elements with embedded strong discontinuities in the finite deformation range COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING Armero, F., Linder, C. 2008; 197 (33-40): 3138-3170
  • Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Report No. UCB/SEMM-2008/01, Department of Civil and Environmental Engineering Armero, F., Linder, C.  2008
  • On configurational compatibility and multiscale energy momentum tensors JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS Li, S., Linder, C., Foulk, J. W. 2007; 55 (5): 980-1000
  • Recent developments in the formulation of finite elements with embedded strong discontinuities IUTAM SYMPOSIUM ON DISCRETIZATION METHODS FOR EVOLVING DISCONTINUITIES Armero, F., Linder, C. 2007; 5: 105-122
  • New finite elements with embedded strong discontinuities for the modeling of failure in solids. Ph.D. Thesis, Department of Civil and Environmental Engineering Linder, C. 2007
  • Application of differential topology for the derivation of compatibility conservation laws in mechanics. M.A. Thesis, Department of Mathematics, University of California Linder, C. 2006
  • Finite elements with strong discontinuities. Qualifying Report, Department of Civil and Environmental Engineering Linder, C. 2005
  • Analogy model for the axisymmetric elastic edge bending problem in shells of revolution based on Geckeler’s approximation. Guggenberger, W., Linder, C.  2004
  • An arbitrary Lagrangian-Eulerian finite element formulation for dynamics and finite strain plasticity models. M.Sc. Thesis, Computational Mechanics of Materials and Structures, University of Stuttgart. Linder, C. 2003
  • Elastic stress analysis of axisymmetric discontinuities in shells of revolution by an effective ring analogy model. Guggenberger, W., Linder, C. 2003