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Abstract

In regression settings where explanatory variables have very low correlations and where there
are relatively few effects each of large magnitude, it is commonly believed that the Lasso shall be
able to find the important variables with few errors—if any. In contrast, this paper shows that
this is not the case even when the design variables are stochastically independent. In a regime
of linear sparsity, we demonstrate that true features and null features are always interspersed
on the Lasso path, and that this phenomenon occurs no matter how strong the effect sizes are.
We derive a sharp asymptotic trade-off between false and true positive rates or, equivalently,
between measures of type I and type II errors along the Lasso path. This trade-off states that
if we ever want to achieve a type II error (false negative rate) under a given threshold, then
anywhere on the Lasso path the type I error (false positive rate) will need to exceed a given
threshold so that we can never have both errors at a low level at the same time. Our analysis
uses tools from approximate message passing (AMP) theory as well as novel elements to deal
with a possibly adaptive selection of the Lasso regularizing parameter.

Keywords. Lasso, Lasso path, false discovery rate, false negative rate, power, approximate
message passing, adaptive selection of parameters.

1 Introduction

Almost all data scientists know about and routinely use the Lasso [25, 27] to fit regression models.
In the big data era, where the number p of explanatory variables often exceeds the number n of
observational units, it may even supersede the method of least-squares. One appealing feature of
the Lasso over earlier techniques such as ridge regression is that it automatically performs variable
reduction, since it produces models where lots of—if not most—regression coefficients are estimated
to be exactly zero. In high-dimensional problems where p is either comparable to n or even much
larger, the belief is that the Lasso will select those important variables out of a sea of potentially
many irrelevant features.

Imagine we have an n x p design matrix X of features, and an n-dimensional response y obeying
the standard linear model

y=XB+z,



where z is a noise term. The Lasso is the solution to

B(\) = argmin 4[|y — Xb||* + A[[b]|1; (1.1)
beRp

if we think of the noise term as being Gaussian, we interpret it as a penalized maximum likelihood
estimate, in which the fitted coefficients are penalized in an ¢; sense, thereby encouraging sparsity.
(There are nowadays many variants on this idea including ¢;-penalized logistic regression [27],
elastic nets [36], graphical Lasso [32], adaptive Lasso [35], and many others.) As is clear from
(1.1), the Lasso depends upon a regularizing parameter A, which must be chosen in some fashion:
in a great number of applications this is typically done via adaptive or data-driven methods; for
Instance, by cross-validation [13, 18, 33, 23]. Below, we will refer to the Lasso _path as the family
of solutions B(\) as A varies between 0 and co. A variable j is selected at A if 8;(\) # 0.

The Lasso is, of course, mostly used in situations where the true regression coefficient sequence
is suspected to be sparse or nearly sparse. In such settings, researchers often believe—or, at least,
wish—that as long as the true signals (the nonzero regression coefficients) are sufficiently strong
compared to the noise level, the Lasso with a carefully tuned value of A will select most of the
true signals while picking out very few, if any, noise variables. This faith has served as a popular
assumption, especially in the selective inference literature, see [19] and its many follow-ups; there,
one studies the distributions of statistics under the assumption that all variables truly in the model
(with B; # 0) have been selected before any—or very few—null’ variable (with 3; = 0). However,
the major result of this paper is that in a regime of linear sparsity defined below, this can never
be the case—at least under random designs. We rigorously demonstrate that true features and null
features are always interspersed on the Lasso path, and that this phenomenon occurs no matter how
strong the signals are.

Formally, we derive a fundamental trade-off between power (the ability to detect signals) and
type I errors or, said differently, between the true positive and the false positive rates. This trade-
off says that it is impossible to achieve high power and a low false positive rate simultaneously.
Formally, letting the false discovery proportion (FDP) and the true positive proportion (TPP)
be defined as usual (see (2.1) and (2.2)), we compute the formula for an exact boundary curve
separating achievable (TPP,FDP) pairs from pairs that are impossible to achieve no matter the
value of the signal-to-noise ratio (SNR). Hence, there is a whole favorable region in the (TPP, FDP)
plane that cannot be reached, see Figure 3 for an illustration. A different way to phrase the trade-
off is via false discovery and false negative rates. Here, the FDP is a natural measure of type I
error while 1 — TPP (often called the false negative proportion) is the fraction of missed signals, a
natural notion of type II error. In this language, our results simply say that nowhere on the Lasso
path can both types of error rates be simultaneously low.

As a setup for our theoretical findings, Figure 1 compares the performance of the Lasso under
a 1000 x 1000 orthogonal design, and under a random Gaussian design of the same size. In the
latter setting, the entries of X are independent draws from N(0,1/1000) so that each column is
approximately normalized. Here, note that n = p so that we are not even really discussing a
high-dimensional scenario. Set 81 = -+ = 999 = 50, fo91 = - -+ = B1000 = 0 and the errors to be
independent standard normals. Hence, we have 200 nonzero coefficients out of 1000 (a relatively

'We also say that a variable j enters the Lasso path at )¢ if there is there is e > 0 such that Bj(A) =0
for X € [Ao — &, A0] and B;(A) # 0 for A € (Mo, Ao + ¢]. Similarly a variable is dropped at Ao if 3;(\) # 0 for
X € Ao —¢€,N0) and B;(A) = 0 for X € [Ao, Ao + £].



sparse setting), all 50 times higher than the noise level in magnitude (very large SNR). In the
orthogonal design, all the true predictors enter the Lasso path first, as expected. This is in sharp
contrast with the random design setting, in which the Lasso selects null variables rather early.
When the Lasso includes half of the true predictors so that the false negative proportion falls below
50%, the FDP has already passed 10% meaning that we have already made 11 false discoveries.
The FDP further increases to 18% the first time the Lasso model includes all true predictors,
i.e. achieves full power (false negative proportion vanishes).
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Figure 1: True positive and false positive rates along the Lasso path under the orthogonal
and Gaussian random designs.

Figure 2 provides a closer look at this phenomenon, and summarizes the outcomes from 100
independent experiments under the same Gaussian random design setting. In all the simulations,
the first noise variable enters the Lasso model before 40% of the true signals are detected, and the
last true signal is preceded by at least 21 and, sometimes, even 64 false discoveries. On average,
the Lasso detects about 32 signals before the first false variable enters; to put it differently, the
TPP is only 16.4% at the time the first false discovery is made. The average FDP evaluated the
first time when all signals are detected is 14.0%.

2 The Lasso Trade-off Diagram

Our theoretical results rigorously confirm that the observed Lasso behavior for model selection
holds under certain assumptions. We mostly work in the setting of [3], which specifies the design
X € R"*P, the parameter sequence 8 € RP and the errors z € R".

Working hypothesis The design matrix X has i.i.d. N(0,1/n) entries and the errors z; are
i.i.d. N(0,02), where o is fixed but otherwise arbitrary. Note that we do not exclude the value
o = 0 corresponding to noiseless observations. The regression coefficients 1, ..., 8, are independent
copies of a random variable IT obeying EII? < co and P(IT # 0) = ¢ € (0,1) for some constant e.
For completeness, X, 3, and z are all independent from each other. As in [3], we are interested in
the limiting case where p,n — oo with n/p — § for some positive constant §. A few comments are
in order.
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Figure 2: Left: power when the first false variable enters the Lasso model. Right: false
discovery proportion the first time power reaches one (false negative proportion vanishes).

e The first concerns the degree of sparsity. In our model, the expected number of nonzero
regression coefficients is linear in p and equal to € - p for some ¢ > 0. Hence, this model
excludes a form of asymptotics, where the fraction of nonzero coefficients vanishes in the
limit of large problem sizes.

e Second, Gaussian designs with independent columns are believed to be “easy” or favorable
for model selection due to weak correlations between distinct features. (Such designs happen
to obey restricted isometry properties [6] or restricted eigenvalue conditions [4] with high
probability, which have been shown to be useful in settings sparser than those considered in
this paper.) Hence, negative results under the working hypothesis are likely to extend more
generally.

e Third, the assumption concerning the distribution of the regression coefficients can be slightly
weakened: all we need is that the sequence 1, ..., 8, has a convergent empirical distribution
with bounded second moment. We shall not pursue this generalization here.

2.1 Main result

Throughout the paper, V' (resp. T') denotes the number of Lasso false (resp. true) discoveries while
k= |{j: B; # 0}| denotes the number of true signals; formally, V/(A) = [{j : B;(\) # 0 and ; = 0}|
whereas T'(\) = [{j : Bj()\) # 0 and 8; # 0}|. With this, we define the FDP as usual (a V b =
max{a,b}),

FDP()\) = VY (2.1)

B £ 0} v

and, similarly, the TPP is defined as

T(N)
TPP(\) = —=. 2.2
0= (22)
The dependency on A shall often be suppressed when clear from the context. Our main result

provides an explicit trade-off between FDP and TPP.



Theorem 1. Fiz § € (0,00) and € € (0,1), and consider the function ¢*(-) = ¢*(-;6,€) > 0 given
in (2.4). Then under the working hypothesis, the following conclusions hold:

(a) In the noiseless case (o =0), the event

N {FDP()\) > ¢* (TPP(\)) — 0.001} (2.3)
2>0.01

holds with probability tending to one. (The lower bound on X\ in (2.3) does not impede inter-
pretability since we are not interested in variables entering the path last.)

(b) With noisy data (o > 0) the conclusion is exactly the same as in (a).

(c) Therefore, in both the noiseless and noisy cases, no matter how we choose /)\\(y,X) > 0.01
adaptively by looking at the response y and design X, with probability tending to one we

X ~

will never have FDP(\) < ¢*(TPP(A)) — 0.001.

(d) The boundary curve ¢* is tight: any continuous curve q(u) > ¢*(u) with strict inequality for
some u will fail (a) and (b) for some prior distribution I1 on the regression coefficients.

The numerical values 0.01 and 0.001 in (2.3) are arbitrary, and can be replaced by any positive
numerical constants.

We would like to emphasize that the boundary is derived from a best-case point of view. For a
fixed prior II, we also provide in Theorem 3 from Appendix C a trade-off curve ¢! between TPP
and FDP, which always lies above the boundary ¢*. Hence, the trade-off is of course less favorable
when we deal with a specific Lasso problem. In fact, ¢* is nothing else but the lower envelope of
all the instance-specific curves ¢! with P(II # 0) = e.

Figure 3 presents two instances of the Lasso trade-off diagram, where the curve ¢*(-) separates
the red region, where both type I and type II errors are small, from the rest (the white region).
Looking at this picture, Theorem 1 says that nowhere on the Lasso path we will find ourselves
in the red region, and that this statement continues to hold true even when there is no noise.
Our theorem also says that we cannot move the boundary upward. As we shall see, we can come
arbitrarily close to any point on the curve by specifying a prior II and a value of A\. Note that
the right plot is vertically truncated at 0.6791, implying that TPP cannot even approach 1 in the
regime of § = 0.3,¢ = 0.15. This upper limit is where the Donoho-Tanner phase transition occurs
[12], see the discussion in Appendix B.

Support recovery from noiseless data is presumably the most ideal scenario. Yet, the trade-off
remains the same as seen in the first claim of the theorem. As explained in Section 3, this can be
understood by considering that the root cause underlying the trade-off in both the noiseless and
noisy cases come from the pseudo-noise introduced by shrinkage.

We now turn to specify ¢*. For a fixed u, let t*(u) be the largest positive root? of the equation
in t,

21 —¢€) [(L+)®(—t) —top(t)] +e(1+t2) =4 1—u

e[(1 4 12)(1 — 2®(—t)) + 2to(t)] 1= 20(—t)

2If u = 0, treat +o0 as a root of the equation, and in (2.4) conventionally set 0/0 = 0. In the case where § > 1, or
0 < 1 and € is no larger than a threshold determined only by §, the range of u is the unit interval [0, 1]. Otherwise, the
range of u is the interval with endpoints 0 and some number strictly smaller than 1, see the discussion in Appendix B.
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Figure 3: The Lasso trade-off diagram: left is with § = 0.5 and € = 0.15, and right is with
0 = 0.3 and € = 0.15 (the vertical truncation occurs at 0.6791).

Then
2(1 = e)®(—t*(u))

2(1 — €)®(—t*(u)) + eu’

It can be shown that this function is infinitely many times differentiable over its domain, always
strictly increasing, and vanishes at v = 0. Matlab code to calculate ¢* is available at http:
//wjsu.web.stanford.edu/code.html.

Figure 4 displays examples of the function ¢* for different values of e (sparsity), and ¢ (dimen-
sionality). It can be observed that the issue of FDR control becomes more severe when the sparsity
ratio € = k/p increases and the dimensionality 1/§ = p/n increases.

¢ (u;0,€) =

(2.4)

2.2 Numerical illustration

Figure 5 provides the outcomes of numerical simulations for finite values of n and p in the noiseless
setup where o = 0. For each of n = p = 1000 and n = p = 5000, we compute 10 independent Lasso
paths and plot all pairs (TPP, FDP) along the way. In Figure 5a we can see that when TPP < 0.8,
then the large majority of pairs (TPP,FDP) along these 10 paths are above the boundary. When
TPP approaches one, the average FDP becomes closer to the boundary and a fraction of the paths
fall below the line. As expected this proportion is substantially smaller for the larger problem size.

2.3 Sharpness

The last conclusion from the theorem stems from the following fact: take any point (u,¢*(u)) on
the boundary curve; then we can approach this point by fixing ¢ € (0,1) and setting the prior to

be
M, w.p. €€,

=< MY wp.e(1-¢),
0, w.p. 1 —e
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Figure 5: In both (a) and (b), n/p = § =1, e = 0.2, and the noise level is o = 0 (noiseless).
(a) FDP vs. TPP along 10 independent Lasso paths with P(IT = 50) = 1 — P(IT = 0) = ¢. (b)
Mean FDP vs. mean TPP averaged at different values of A over 100 replicates for n = p = 1000,
P(II = 0) = 1 — € as before, and P(IT = 50|11 # 0) =1 - PII =0.1|TT £ 0) = €.

We think of M as being very large so that the (nonzero) signals are either very strong or very weak.
In Appendix B, we prove that for some fixed ¢ > 0,

lim lim (TPP(A),FDP()\)) — (u,q*(u)), (2.5)
M—oco n,p—00
where convergence occurs in probability. This holds provided that A — oo in such a way that
M/\ — o005 e.8. A= v/ M. Hence, the most favorable configuration is when the signal is a mixture
of very strong and very weak effect sizes because weak effects cannot be counted as false positives,
thus reducing the FDP.

Figure 5b provides an illustration of (2.5). The setting is as in Figure 5a with n = p = 1000 and
P(IT = 0) = 1 — € except that, here, conditionally on being nonzero the prior takes on the values 50
and 0.1 with probability € € {0.3,0.5,0.7,0.9} and 1 — ¢, respectively, so that we have a mixture
of strong and weak signals. We observe that the true/false positive rate curve nicely touches only
one point on the boundary depending on the proportion € of strong signals .

2.4 Technical novelties

The proof of Theorem 1 is built on top of the approximate message passing (AMP) theory developed
in [9, 2, 1], and requires nontrivial extensions. AMP was originally designed as an algorithmic
solution to compressive sensing problems under random Gaussian designs. In recent years, AMP
has also found applications in robust statistics [10, 11], structured principal component analysis
[8, 21], and the analysis of the stochastic block model [7]. Having said this, AMP theory is of crucial
importance to us because it turns out to be a very useful technique to rigorously study various



statistical properties of the Lasso solution whenever we employ a fized value of the regularizing
parameter \ [3, 20, 22].

There are, however, major differences between our work and AMP research. First and foremost,
our paper is concerned with practical research and conclusions that can be obtained when selecting
A adaptively, i.e. from the data; this is clearly outside of the envelope of current AMP results.
Second, we are also concerned with situations where the noise variance can be zero. Likewise, this
is outside of current knowledge. These differences are significant and as far as we know, our main
result cannot be seen as a straightforward extension of AMP theory. In particular, we introduce a
host of novel elements to deal, for instance, with the irregularity of the Lasso path. The irregularity
means that a variable can enter and leave the model multiple times along the Lasso path [14, 29]
so that natural sequences of Lasso models are not nested. This implies that a naive application of
sandwiching inequalities does not give the type of statements holding uniformly over all A’s that
we are looking for. R

Instead, we develop new tools to understand the “continuity” of the support of 3()) as a function
of A. Since the support can be characterized by the Karush-Kuhn-Tucker (KKT) conditions, this
requires establishing some sort of continuity of the KKT conditions. Ultimately, we shall see that
this comes down to understanding the maximum distance—uniformly over A and A'~—between Lasso
estimates B(x\) and B(/\’ ) at close values of the regularizing parameter.

3 What’s Wrong with Shrinkage?

We pause here to discuss the cause underlying the limitations of the Lasso for variable selection,
which comes from the pseudo-noise introduced by shrinkage. As is well-known, the Lasso applies
some form of soft-thresholding. This means that when the regularization parameter X is large, the
Lasso estimates are seriously biased downwards. Another way to put this is that the residuals still
contain much of the effects associated with the selected variables. This can be thought of as extra
noise that we may want to call shrinkage noise. Now as many strong variables get picked up, the
shrinkage noise gets inflated and its projection along the directions of some of the null variables may
actually dwarf the signals coming from the strong regression coefficients; this is why null variables
get picked up. Although our exposition below lacks in rigor, it nevertheless formalizes this point
in some qualitative fashion. It is important to note, however, that this phenomenon occurs in
the linear sparsity regime considered in this paper so that we have sufficiently many variables for
the shrinkage noise to build up and have a fold on other variables that become competitive with
the signal. In contrast, under extreme sparsity and high SNR, both type I and II errors can be
controlled at low levels, see e.g. [17].

For simplicity, we fix the true support 7 to be a deterministic subset of size € - p, each nonzero
coefficient in T taking on a constant value M > 0. Also, assume § > €. Finally, since the noiseless
case z = 0 is conceptually perhaps the most difficult, suppose o = 0. Consider the reduced Lasso
problem first: R

Br(\) = argmin glly — X7br|* + Allbr 1.
breReP
This (reduced) solution 37()) is independent from the other columns X= (here and below T is
the complement of 7). Now take A to be of the same magnitude as M so that roughly half of the
signal variables are selected. The KKT conditions state that

—M\L < X7 (y — X7B7) < AL,



where 1 is the vectors of all ones. Note that if |XJT(y — XTBT)| < X for all j € T, then extending

37—()\) with zeros would be the solution to the full Lasso problem—with all variables included as
potential predictors—since it would obey the KKT conditions for the full problem. A first simple
fact is this: for j € T, if R

X (y — X7B7) > A, (3.1)

then X; must be selected by the incremental Lasso with design variables indexed by 7 U{j}. Now
we make an assumption which is heuristically reasonable: any j obeying (3.1) has a reasonable
chance to be selected in the full Lasso problem with the same A (by this, we mean with some
probability bounded away from zero). We argue in favor of this heuristic later.

Following our heuristic, we would need to argue that (3.1) holds for a number of variables in T
linear in p. Write

X1 (y — X7Br) = X7 (X787 — X7B7) = AT,

where g7 is a subgradient of the #; norm at 57-. Hence, B — ,@7- = )\(X;XT)_1 g7 and

X7(Br — Br) = \X7(X1 X7) ‘97

Since § > e, X7—(X7T-X7—)_1 has a smallest singular value bounded away from zero (since X7 is a
fixed random matrix with more rows than columns). Now because we make about half discoveries,
the subgradient takes on the value one (in magnitude) at about € - p/2 times. Hence, with high
probability,

IX7(Br — Bl > A-co- lgrll > A-e1-p

for some constants ¢, ¢; depending on € and 9.
Now we use the fact that 87 () is independent of X=. For any j ¢ T, it follows that

X (y - X7P7) = X} X7(B7 - B7)
is conditionally normally distributed with mean zero and variance

1 X7(Br = B _ e1Xp

n

2

” Z =C- )\2.

In conclusion, the probability that XjT(y — XTBT) has absolute value larger than A is bounded
away from 0. Since there are (1 — €)p such j’s, their expected number is linear in p. This implies
that by the time half of the true variables are selected, we already have a non-vanishing FDP. Note
that when |7 is not linear in p but smaller, e.g. |7| < con/ log p for some sufficiently small constant
co, the variance is much smaller because the estimation error || X7 (87 — B7)||? is much lower, and
this phenomenon does not occur.

Returning to our heuristic, we make things simpler by considering alternatives: (a) if very few
extra variables in 7 were selected by the full Lasso, then the value of the prediction X3 would
presumably be close to that obtained from the reduced model. In other words, the residuals y— X 3
from the full problem should not differ much from those in the reduced problem. Hence, for any j
obeying (3.1), X; would have a high correlation with y — X 3. Thus this correlation has a good
chance to be close to A, or actually be equal to A\. Equivalently, X; would likely be selected by the
full Lasso problem. (b) If on the other hand, the number of variables selected from T by the full
Lasso were a sizeable proportion of | 7|, we would have lots of false discoveries, which is our claim.

10



_In a more rigorous way, AMP claims that under our working hypothesis, the Lasso estimates
Bj(A) are, in a certain sense, asymptotically distributed as 1,-(8; + 7W;) for most j and Wj’s
independently drawn from N(0,1). The positive constants o and 7 are uniquely determined by
a pair of nonlinear equations parameterized by €, 6,11, 02, and A. Suppose as before that all the
nonzero coefficients of @ are large in magnitude, say they are all equal to M. When about half
of them appear on the path, we have that A is just about equal to M. A consequence of the
AMP equations is that 7 is also of this order of magnitude. Hence, under the null we have that
(Bj + TW;)/M ~ N(0,(r/M)?) while under the alternative, it is distributed as N'(1,(7/M)?).
Because, 7/M is bounded away from zero, we see that false discoveries are bound to happen.

Variants of the Lasso and other ¢;-penalized methods, including ¢;-penalized logistic regression
and the Dantzig selector, also suffer from this “shrinkage to noise” issue. However, this does not
imply an ultimate limit of performance for all methods. If the signals are sufficiently strong, some
other methods, perhaps with exponential computational cost, can achieve good model selection
performance, see e.g. [24]. As an example, consider the simple fy-penalized maximum likelihood
estimate, R

Bo = argmin ||y — Xb|*> + A |[b]o. (3.2)
beRp

Methods known as AIC, BIC and RIC (short for risk inflation criterion) are all of this type and
correspond to distinct values of A. Then such fitting strategies can achieve perfect separation in
some cases.

Theorem 2. Under our working hypothesis, take ¢ < § for identifiability, and consider the two-

point prior
- {M, w.p. €,

0, wp 1l—e¢
Then we can find A\(M) such that in probability, the discoveries of the £y estimator (3.2) obey

lim lim FDP =0 and lim lim TPP =1.

M —o0 n,p—00 M —o0 n,p—00

Similar conclusions will certainly hold for many other non-convex methods, including SCAD
and MC+ with properly tuned parameters [15, 34].

4 Discussion

We have evidenced a clear trade-off between false and true positive rates under the assumption
that the design matrix has i.i.d. Gaussian entries. It is likely that there would be extensions of this
result to designs with general i.i.d. sub-Gaussian entries as strong evidence suggests that the AMP
theory may be valid for such larger classes, see [1]. It might also be of interest to study the Lasso
trade-off diagram under correlated random designs.

Much literature on sparse regression has focused on the case where the number k of signals is
at most a numerical constant times n/log p or n/log(p/k), showing support recovery under various
assumptions on the design and the distribution of signal amplitudes. When n and p tend to infinity
as in our setup, this means that k/p tends to zero, which is different from the linear sparsity regime
discussed in this work. With a moderate degree of sparsity, the strong shrinkage noise makes the
Lasso variable selection less accurate. This implies that model selection procedures derived by

11



stopping the Lasso path at some point (see e.g. [16, 26]) would lose power even for very strong
signals. Thus it would be of interest to design and study other variable selection techniques to
remedy this problem; e.g. by addressing the bias in Lasso estimates.

Of concern in this paper are statistical properties regarding the number of true and false dis-
coveries along the Lasso path but it would also be interesting to study perhaps finer questions such
as this: when does the first noise variable get selected? Consider Figure 6: there, the setting is
the same as in Figure 1 before (high SNR regime) except that the number k of signals now varies
from 5 to 150. In the very low sparsity regime, all the signal variables are selected before any noise
variable. Once the sparsity passes a threshold, the first discovery keeps on occurring earlier as k
continues to increase. The turning point is around k& = n/(2logp), which is inline with some of the
findings in [31] although this latter reference does not discuss the other aspect of this plot; namely
the fact that the curve decreases after the turning point. In the linear sparsity regime, it would be
interesting to derive a prediction for the time of first entry, in the case where the signals are large,
say.

o .
o — '
i '
. e
g 8- i
3 !
> Ll
)
L] |
-..(E [l
S o | !
s ¥ |
z .
o 5
| T ' T |
0 50 100 150
Sparsity
Figure 6: Rank of the first false discovery. Here, n = p = 1000 and 5, = --- = B = 50 for

k ranging from 5 to 150 (8; = 0 for ¢ > k). We plot averages from 100 independent replicates
and display 1-SE error bars. The vertical line is placed at & = n/(2logp) and the 45° line
passing through the origin is shown for convenience.
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A For all Values of A Simultaneousy

Throughout, we work under our working hypothesis and, for the moment, take ¢ > 0. Also, we shall
frequently use results in [3], notably, Theorem 1.5, Lemma 3.1, Lemma 3.2, and Proposition 3.6
therein. Having said this, most of our proofs are rather self-contained, and the strategies accessible
to readers who have not yet read [3].

At a high level, the proof of uniform convergence has two distinct aspects: we first characterize
the Lasso solution at fixed values of A, and then exhibit uniformity of these results over A. The
first step is accomplished largely by resorting to off-the-shelf AMP theory, whereas the second step
is new and presents technical challenges.

As a start, our first result below accurately predicts the asymptotic limits of FDP and power
at a fixed A\. This lemma is borrowed from [5], which follows from Theorem 1.5 in [3] in a natural
way, albeit with some effort spent in resolving a continuity issue near the origin. Recall that n.(-)
is the soft-thresholding operator defined as n(x) = sgn(z)(|x| — t)+, and II* is the distribution of
IT conditionally on being nonzero;

o= I*, w.p. e,
0, w.p. 1 —e.

Denote by ag the unique root of (1 4 t2)®(—t) — té(t) = 6/2.

Lemma A.1 (Theorem 1 in [5]; see also Theorem 1.5 in [3]). The Lasso solution with a fived A > 0
obeys

V;)‘) 5 2(1 — €)®(—a), T;/\) 5 P(I+7W| > ar, IL#0) = e P([II* + 7W| > ar),

where W is N'(0,1) independent of II, and 7 > 0, « > max{ao, 0} is the unique solution to

=02+ %IE (Nar (I 4 7W) — I1)?
1 (A.1)
A= <1 - SPOH +7W| > cw)) QrT.

We briefly discuss how Lemma A.1 follows from Theorem 1.5 in [3]. There, it is rigorously
proven that the joint distribution of (3, 8) is, in some sense, asymptotically the same as that of
(B,Mar(B + TW)), where W is a p-dimensional vector of i.i.d. standard normals independent of
3, and where the Soit—thresholding operation acts in a componentwise fashion. Roughly speaking,
the Lasso estimate (; looks like 7, (8; + 7Wj), so that we are applying soft thresholding at level
aT rather than A and the noise level is 7 rather than o. With these results in place, we informally
get

VN /p=#{j: B #0,8; = 0}/p ~ P(ar (Il + 7W) # 0,11 = 0)
=(1—¢) P(|7W]| > ar)
=2(1—¢€) P(—a).
Similarly, T'(\)/p = ¢ P(|II* + 7W| > a7). For details, we refer the reader to Theorem 1 in [5].

Our interest is to extend this convergence result uniformly over a range of A\. The proof of the
next result is the subject of Section A.1. Note that both 7 = 7, and a = «) depend on A.
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Lemma A.2. For any fired 0 < Amin < Amax, the convergence in Lemma A.1 is uniform over
A € [Amins Amax)- That is, setting

fd=(\) :=2(1 — €)®(—a), td>=(A\):=eP(|]II* +7W| > aT) (A.2)
we have Vix
sup Vi) _ fd°°()\)' 50,
)\ming)‘g)\max p
and T
sup ™ _ td”(A)' 0.
AminSASAmax p

A.1 Proof of Lemma A.2

Lemma A.3. For any c > 0, there exists a constant r. > 0 such that for any arbitrary r > r.,

T
sup #{1§j§p:|XjTUI>}§cp

Jull=1 vn

holds with probability tending to one.

A key ingredient in the proof of Lemma A.2 is, in a certain sense, the uniform continuity of the
support of B(\). This step is justified by the auxiliary lemma below which demonstrates that the
Lasso estimates are uniformly continuous in ¢ norm.

Lemma A.4. Fize 0 < Apin < Amax. Then there is a constant ¢ such for any \= < AT in
[)\minu Amax];

BOY = B < e/ = A

sup
A= <ALAt

holds with probability tending to one.

Proof of Lemma A.2. We prove the uniform convergence of V(\)/p and similar arguments apply
to T'(\)/p. To begin with, let Apin = Ao < A1 < -+ < Ay = Amax be equally spaced points and set
A= Xit1 — A = (Amax — Amin)/m; the number of knots m shall be specified later. It follows from
Lemma A.1 that

max [V (A)/p— fd*(A)] — 0 (A.3)
by a union bound. For any constant w > 0, the continuity of f{d> () as a function of A on [Amin, Amax)

gives that
[fd>=(\) — fd=(\)| < w (A.4)

holds for all Ayin < A, N < Apax satisfying |A — X'| < 1/m provided m is sufficiently large. We now
aim to show that if m is sufficiently large (but fixed), then

max — sup  [V(A)/p—V(Ai)/p| Sw (A.5)

0Si<m )\ <A<Xita

holds with probability approaching one as p — co. Since w is arbitrary small, combining (A.3),
(A.4), and (A.5) gives uniform convergence by applying the triangle inequality.
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Let S(A) be a short-hand for supp(a(/\)). Fix 0 <i <m and put A~ = \; and AT = \; ;4. For

any A € [A\7, AT,
V) = VA <ISMNSAT)+ISAT)\NSA)]. (A.6)

Hence, it suffices to give upper bound about the sizes of S(A) \ S(A7) and S(A7) \ S(A). We start
with [S(A\) \ S(A7)].

The KKT optimality conditions for the Lasso solution state that there exists a subgradient
g(A) € 9|IB(A)[l1 obeying R

Xy — XB(M) = g()

for each X\. Note that g;(A\) = £1 if j € S(\). As mentioned earlier, our strategy is to establish
some sort of continuity of the KKT conditions with respect to A. To this end, let

X(Bm B0))
| (B - B)|

be a point in R” with unit £2 norm. Then for each j € S(\) \ S(A™7), we have

u =

XTal - X]'TXA(B(A) —AB(A))’ _ g =2 g0 . A— Mg (Al
[X(BA) =BANI IIXBA) =BANI — 1X(BA) —BA))

Now, given an arbitrary constant a > 0 to be determined later, either |g;(A7)| € [1 —a,1) or
lgj(A7)] € [0,1 — a). In the first case ((a) below) note that we exclude |g;(A7)| = 1 because for

random designs, when j ¢ S(\) the equality \XjT(y — XB()\_))| = A~ can only hold with zero
probability (see e.g. [28]). Hence, at least one of the following statements hold:
(a) 1X] (y = XBA))=A"g;(A7)| € [(1 — a)A=, A7);
A—(1— a))\ al”
Ul 2 X BB TRBO-BOI

In the second case, since the spectral norm opax(X) is bounded in probability (see e.g. [30]), we
make use of Lemma A.4 to conclude that

a\” ar” a\”
— — > — — >
[X(BA) =BANI omax(X)BA) = B comax(X) /(AT —

holds for all A= < A < AT with probability tending to one. Above, the constant ¢ only depends on
Amin, Amax, 0 and II. Consequently, we see that

(b) X}

sup [SO)\SOT) < #{j: (1 - A" < X[ (y - XBO) <A}
A=A
+ #{ |XTu| > ca\/m/n} .
Equality (3.21) of [3] guarantees the existence of a constant a such that the event?

#{it(1—ar <Xy - XBA) <A p<=F (A7)

3Apply Theorem 1.8 to carry over the results for AMP iterates to Lasso solution.
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happens with probability approaching one. Since A~ = )\; is always in the interval [Amin, Amax],
the constant a can be made to be independent of the index i. For the second term, it follows from
Lemma A.3 that for sufficiently large m, the event

# {j : |X]Tu] > c’a\/m/n} < % (A.8)

also holds with probability approaching one. Combining (A.7) and (A.8), we get

sup  |S(A)\S(AT)| < % (A.9)

A—<AAH N

holds with probability tending to one.
Next, we bound |S(A7) \ S(A)|. Applying Theorem 1.5 in [3], we can find a constant v > 0
independent of A~ € [Amin, Amax| such that

#{i0< B0 <vp <=L (A.10)

happens with probability approaching one. Furthermore, the simple inequality
1B = BOOIP 2 v {55 € SOONSO B 2 v},
together with Lemma A.4, give

457 € SONSMLIBO) 2 v} < BAIZBOOIE L AT ZN

v v

for all A € [Amin, Amax] With probability converging to one. Taking m sufficiently large such that
AT — A7 = (Mmax — Amin)/m < wr?/4c? in (A.11) and combining this with (A.10) gives that

sup  |[S(A)\ S| < =2 (A.12)
A= <AAF 2
holds with probability tending to one.
To conclude the proof, note that both (A.9) and (A.12) hold for a large but fixed m. Substituting
these two inequalities into (A.6) confirms (A.5) by taking a union bound.
As far as the true discovery number T'(\) is concerned, all the arguments seamlessly apply and
we do not repeat them. This terminates the proof. ]

A.2 Proofs of auxiliary lemmas

In this section, we prove Lemmas A.3 and A.4. While the proof of the first is straightforward, the
second crucially relies on Lemma A.7, whose proof makes use of Lemmas A.5 and A.6. Hereafter,
we denote by op(1) any random variable which tends to zero in probability.

Proof of Lemma A.83. Since

2
Tyvi2 <’ . . T r
luTX| zn#{mswxjubﬁ},
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we have ) )
NOmax (X)) |lu|
7“2

= (14 or(a) LY

; xT r T X2
#{i<i<psiniu> < St <

where we make use of limn/p = § and opax(X) = 14 6~ 1/2 4+ 0p(1). To complete the proof, take
any r. > 0 such that (1 4+ /0)/r. < /.

O
Lemma A.5. Take a sequence a1 > az > --- > a, > 0 with at least one strict inequality, and
suppose that
pZz 1 2
2 -_
( f 1a1)
for some M > 1. Then for any 1 < s <p,
> i1 az2 p®
p 2= 1- Ms3'
i=1%; §
Proof of Lemma A.5. By the monotonicity of a,
2 a2
21 9 > 19
s - p
which implies
2
pizlai > SZZ 1 z ﬂ (A13)

(Eleai)2 ( flaz)z P ‘
Similarly,
p s N\ 2
S @< (p—s) (Z=) (A.14)
s
1=s+1

and it follows from (A.13) and (A.14) that

s ) s 2 SM 3
D ie14; D ie1 4 2 b
> > >1 .
P a2 - Z‘? @ 2 = sM + —S — 83
ST @) (Bpe) e

O]

Lemma A.6. Assume n/p — 1, i.e. 6 = 1. Suppose s obeys s/p — 0.01. Then with probability
tending to one, the smallest singular value obeys

l\DM—l

|I§l‘11’l Omin (XS) >

where the minimization is over all subsets of {1,...,p} of cardinality s.
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Proof of Lemma A.6. For a fixed S, we have

P (omin(Xs) < 1 - V/5/n — t) <2

for all ¢ > 0, please see [30]. The claim follows from plugging ¢ = 0.399 and a union bound over
(7) < exp(pH (s/p)) subsets, where H(q) = —qlogq — (1 — ¢q)log(1 — ¢). We omit the details. [

The next lemma bounds the Lasso solution in ¢ norm uniformly over A. We use some ideas
from the proof of Lemma 3.2 in [3].

Lemma A.7. Given any positive constants Amin < Amax, there exists a constant C such that

P (A sup BV < Cﬁ) —1

min §>\§>\max

Proof of Lemma A.7. For simplicity, we omit the dependency of ,6’ on A when clear from context.
We first consider the case where 6 < 1. Write B ="Pi(B)+ 772(6), where Py (3) is the projection
of ,6 onto the null space of X and 732(,8) is the projection of ﬁ onto the row space of X. By
the rotational invariance of 1.i.d. Gaussian vectors, the null space of X is a random subspace of
dimension p —n = (1 — 0 + o(1))p with uniform orientation. Since P;(3) belongs to the null space,
Kashin’s Theorem (see Theorem F.1 in [3]) gives that with probability at least 1 — 277,

18I = |IP1(B )I!2+H7>2( )H2

- ||B||1 + ||P2<B> i (A.15)
p

I pu@)p

2¢1||8|12 3
Scﬂzlg/@'\h+(1+2c1)||732(6)ll2

for some constant ¢; depending only on J; the first step uses Kashin’s theorem, the second the

triangle inequality, and the third Cauchy-Schwarz inequality. The smallest nonzero singular value

of the Wishart matrix X "X is concentrated at (1/ V8 — 1)? with probability tending to one (see
g. [30]). In addition, since P2(3) belongs to the row space of X, we have

IP2(B)I1” < eal| X Pa(B)1”

with probability approaching one. Above, ¢ can be chosen to be (1/v6 — 1)=2 + o(1). Set
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c3 = c2(1 + 2¢1). Continuing (A.15) yields

R 21 B‘ 2 ~
1BI? < M T a1+ 20| X Pa(B)|P
— 20118l + cs]| X B2
b
9 2112 ~
< Qf’” + 2y — X B + 2¢sly]?
. ~ 2
2e1 (3 ly — XBI* + MBI L a1 2
< § +des  Slly — XBI + MBI ) + 2¢s]yl
A2p 2
01||y|| 2
< 4c
< Sy el

where in the last inequality we use the fact %Hy—XB\P—i—/\H,@Hl < 3|ly|*. Thus, it suffices to bound
|y|>. The largest singular value of X " X is bounded above by (1/v/8 + 1)? 4 op(1). Therefore,

Iyl = 1X8 + 2II* < 2| XB* + 2]|2]1* < call BII* + 2] 2]

Since both B; and z; have bounded second moments, the law of large numbers claims that there
exists a constant ¢ such that c4|B]|? + 2||2||* < c5p with probability approaching one. Combining
all the inequalities above gives

-~ C1C p
sup BV < AGP +2C3c5p<(

2
+ 2c3c
)\mirAS)\S)\max 2)\2 )\2 ’ 5) p

min

with probability converging to one.

In the case where § > 1, the null space of X reduces to 0, hence P; (,Z‘i\) = 0. Therefore, this
reduces to a special case of the above argument.

Now, we turn to work on the case where 6 = 1. We start with

IXBI1* < 2llyl* + 2|ly - XB]*

and ) ]
Sy = XBI2 + MBIl < 51yl

These two inequalities give that simultaneously over all A,

IXBOWI? < 4lly|? < desp (A.162)
2 C5p
IBOI < gyl < 57— (A.16D)

with probability converging to one. Let M be any constant larger than 1.7 x 107. pr||,§||2/||ﬁ\|% <
M, by (A.16b), we get
vV MC5

18] < T VP (A.17)
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Otherwise, denoting by 7T the set of indices 1 < i < p that correspond to the s := [p/100] largest
|8li, from Lemma A.5 we have

Brl* o, »° o 10°

AN QU (A.18)
182 Ms? M

To proceed, note that
|1 X8I = 1 X7B7 + X767
> | X787l - | X787
> [ X787l — Tumax(X) | Bl
By Lemma A.6, we get ||X7—,§7—H > %HBTH, and it is also clear that oyax(X) = 2+ op(1). Thus,
by (A.18) we obtain

~ ~ ~ 1 ~ ~
1XB 2 | X787l = omax(X) Bl 2 S 1B7Il = (2 + 0r(1)) || 57l

1 106 ~ 106
S\1- M”Aﬁ” —(2+ o[p(l))\/;HBII
= (c+op(1)lBIl,

where ¢ = 14/1—105/M — 2,/106/M > 0. Hence, owing to (A.16a),

>

~ (2 + Op(l)) Cs
I8l < ———— ‘F\/fo (A.19)
In summary, with probability tending to one, in either case, namely, (A.17) or (A.19),
18l <Cvp
for come constant C. This holds uniformly for all A € [Apin, Amax], and thus completes the proof.

O
Now, we conclude this section by proving our main lemma.

Proof of Lemma_ A.4. The proof extensively applies Lemma 3.1%in [3] and Lemma A.7. Let x+7r =
B(A) and & = B(A7) be the notations in the statement of Lemma 3.1 in [3]. Among the fives
assumptions needed in that lemma, it suffices to verify the first, third and fourth. Lemma A.7
asserts that

sup e\l = sup BN = BO)I| < 24P

A~ <ALt A~ <ALt

with probability approaching one. This fulfills the first assumption by taking ¢; = 2A4. Next, let
g(\") € ABO) 1 obey o
X (y—XB(A7))=A"g(\).

Hence,
|-XT (- XBO)) + 2900 = 0= A)lgO ) < (W = A7) B

“The conclusion of this lemma, ||7| < VPE(e,c1,. .., c5) in our notation, can be effortlessly strengthened to

HT” < (\/E+ 6/)‘)5(017 .. 'ac5)\/ﬁ-
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which certifies the third assumption. To verify the fourth assumption, taking ¢ — oo in Proposition
3.6 of [3] ensures the existence of constants ¢, c3 and ¢4 such that, with probability tending to one,
omin(X7ur) > ca for T = {j : |g;(A7)] > 1 — ¢2} and arbitrary 77 C {1,...,p} with |T'] < c3p.
Further, these constants can be independent of A~ since A~ € [Amin, Amax| belongs to a compact
interval. Therefore, this lemma concludes that, with probability approaching one,

300 — Br- A—A-
sup [IB) = BA)| < sup < PRI >W
ATSASH A= ANT
+ _ —
(o
=0 ( (AT — A‘)p) .
This finishes the proof. -

B Optimizing the Tradeoff

In this section, we still work under our working hypothesis and o > 0. Fixing § and ¢, we aim to

show that all the pairs above the boundary curve can be realized. In the setting from Lemma A.1,
define

td>= (A
tpp=(\) :=P(|IT* + 7W| > art) = 6( )

2(1 — €)®(—a) B fd> ()
2(1 — €)®(—a) + eP(I* + 7W| > ar)  fd=(A) + td=(A)’

fdp=(A) :=

to be the predicted FDP and TPP. (We shall often hide the dependence on A.) Note that both
tpp> and fdp™ also depend on II, §, ¢ and o.

Owing to the uniform convergence established in Appendix A, it is sufficient to study the range
of (tpp>=(A),fdp™(A)) by varying IT* and A. To this end, we introduce a useful trick based on the
following lemma.

Lemma B.1. For any fizred o > 0, define a function y = f(x) in the parametric form:
z(t) =P(t+ W] > «a)
y(t) = E(na(t + W) = t)?

fort > 0, where W is a standard normal. Then f is strictly concave.

We use this to simplify the problem of detecting feasible pairs (tpp, fdp™). Denote by 7* :=
IT* /7. Then (A.1) implies

(1—¢) IEna(T/V)2 + eE(no(m* + W) — )% < 6,

(1—e)P(|W| > «a) + eP(|7* + W| > ) < min{d, 1}. (B-1)

We emphasize that (B.1) is not only necessary, but also sufficient in the following sense: given
0 <91 <6,0<d2 <min{d, 1} and 7*, we can solve for 7 by setting

(1= ) Ena(W)? + eE(nu(r* + W) — 7%)% = 6
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and making use of the first line of (A.1), which can be alternatively written as
2
=02+ % [(1 =€) Ena(W)? + eE(na(r* + W) — 7%)?] .
(IT* = 77* is also determined, so does II),®> and along with
(1—e)P(]W| > a) + eP(|7* + W| > a) = do,

A is also uniquely determined.

Since (B.1) is invariant if 7* is replaced by |7*|, we assume 7* > 0 without loss of generality.
As a function of ¢, P(|t + W| > «) attains the minimum P(|W| > «) = 2®(—«) at t = 0, and the
supremum equal to one at ¢ = oco. Hence, there must exist € € (0,1) obeying

P(l7*+W|>a)=(1-)P(W|>a)+ €. (B.2)
As a consequence, the predicted TPP and FDP can be alternatively expressed as
2(1 - e)®(—a)
2(1 — e )®(—a) + €€’

Compared to the original formulation, this expression is preferred since it only involves scalars.
Now, we seek equations that govern ¢ and «, given ¢ and €. Since both E(n,(t + W) —t)? and
P(|t+W/| > «) are monotonically increasing with respect to ¢ > 0, there exists a function f obeying

E(na(t+ W) —1)* = f (P(|t + W| > a)).

tpp™ = 2(1 — €)®(—a) + ¢, fdp™ = (B.3)

Lemma B.1 states that f is concave. Then
E(ne(m* + W) — 7%)2 = f (P(|7* + W| > a)

and (B.2) allows us to view the argument of f in the right-hand side as an average of a random
variable taking value P(|]W| > «) with probability 1—¢" and value one with probability €¢’. Therefore,
Jensen’s inequality states that

E(a(r* + W) =) > (1 =€) f (B(W] > a)) +€f(1) = (1 = €)Ena(W)* + € (® +1).
Combining this with (B.1) gives
(1 —e)Ene(W)* 4+ e (a® +1) <6, (B.4a)
(1 —e)P(|W| > a) + e < min{4, 1}. (B.4b)

Similar to (B.1), (B.4) is also sufficient in the same sense, and (B.4b) is automatically satisfied if
o> 1.

The remaining part of this section studies the range of (tpp>, fdp™) given by (B.3) under the
constraints (B.4). Before delving into the details, we remark that this reduction of 7* to a two-point
prior is realized by setting 7 = oo (equivalently IT* = co) with probability ¢ and otherwise +0,
where +0 is considered to be nonzero. Though this prior is not valid since the working hypothesis
requires a finite second moment, it can nevertheless be approximated by a sequence of instances,
please see the example given in Section 2.

The lemma below recognizes that for certain (J,¢) pairs, the TPP is asymptotically bounded
above away from 1.

®Not every pair (1, d2) € (0,8)x (0, min{é, 1}) is feasible below the Donoho-Tanner phase transition. Nevertheless,
this does not affect our discussion.
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Lemma B.2. Put

otherwise.

_ (1-9)(e—e€*) *
W (6.) m {1 e d <1 and e > €(9),

Then
tpp™ < u*(0,€).

Moreover, tpp™ can be arbitrarily close to u*.

This lemma directly implies that above the Donoho-Tanner phase transition (i.e. § < 1 and
€ > €*(9)), there is a fundamental limit on the TPP for arbitrarily strong signals. Consider

2(1 —€) [(1+t))®(—t) — tp(t)] +e(1 + 1) = 6. (B.5)

For 0 < 1, €* is the only positive constant in (0, 1) such that (B.5) with e = €* has a unique positive
root. Alternatively, the function e* = €*(d) is implicitly given in the following parametric form:

2¢(t)
2¢>( ) +t(20(t) — 1)
«_ 20(1) = 2t®(—t)

- 20(t) +t(20(t) — 1)

for ¢ > 0, from which we see that ¢ < § < 1. Take the sparsity level k such as e*p < k < ép = n,
from which we have u* < 1. As a result, the Lasso is unable to select all the k true signals even
when the signal strength is arbitrarily high. This is happening even though the Lasso has the
chance to select up to n > k variables.

Any u between 0 and u* (non-inclusive) can be realized as tpp™. Recall that we denote by t*(u)
the unique root in (g, 00) (ay is the root of (1 + t2)®(—t) — te(t) = §/2) to the equation

20— ) [(14+)B(—t) —tp(t)] + (1 +t*) -0  1—wu

e[(1+2)(1 — 28(—t)) + 2t6(1)] T 1 20(—0) (B.6)

For a proof of this fact, we refer to Lemma B.4. Last, recall that

2(1 — &) 2(—t*(u))
2(1 — €)®(—t*(u)) + eu’

q"(u; 6,€) =
We can now state the fundamental tradeoff between fdp™ and tpp™.
Lemma B.3. If tpp™ > u for u € (0,u*), then
fdp™ > ¢*(u).

In addition, fdp™ can be arbitrarily close to q*(u).
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B.1 Proofs of Lemmas B.1, B.2 and B.3
Proof of Lemma B.1. First of all, f is well-defined since both x(¢) and y(t) are strictly increasing
functions of ¢. Note that

d dy

* = ola—t) —g(-a—1), T =2[@(a—t)-d(-a-1).

Applying the chain rule gives

, dy ydz 2t [@(a—1) — P(—a —1)]
TO=%/ %~ ota—b—ol-a—1

_ 2 _ (u— t)
2t ffaft e 7 du 2tf du
_ (a—1)? (—a—t)2 o242 2at _ a24242at
e 2 — e 2 e 2 — e 2

a2 u2 2
2te 2 ff‘ae_Tet“du 262 Iy e T (e et duy

et _ g—at f etu + e—tudq

Since x(t) is strictly increasing in ¢, we see that f”(t) < 0 is equivalent to saying that the function

u2
Jo e 7z (e 4 em™) fo -7 cosh tu)du

t) = =
9(t) Jo etv + e_t“du o cosh(tu)du

is decreasing in t. Hence, it suffices to show that

Jo e Zusinh(tu)du [ cosh(tv)dv — [;"e™ = cosh(tu)du [ vsinh(tv)dv

g’(t) B (foa cosh(tv)dv)2 0
Observe that the numerator is equal to
/Ooc /Oa e_gu sinh(tu) cosh(tv)dudv — /Oa /Oa e_gv cosh(tu) sinh(tv)dudv
/ / _MT (usinh(tu) cosh(tv) — v cosh(tu) sinh(tv)) dudv
/ / e_é (vsinh(tv) cosh(tu) — u cosh(tv) sinh(tu)) dvdu
/ / *% - *%) (usinh(tu) cosh(tv) — v cosh(tu) sinh(tv)) dudv.

Then it is sufficient to show that

2

(€77 — e~ 7) (usinh(tu) cosh(tv) — v cosh(tu) sinh(tv)) < 0

M

M)

v

w2
for all u,v,t > 0. To see this, suppose u > v without loss of generality so that e 2 —e™2 <0 and

usinh(tu) cosh(tv) — v cosh(tu) sinh(tv) > v(sinh(tu) cosh(tv) — cosh(tu) sinh(tv))
= vsinh(tu — tv) > 0.

This analysis further reveals that f”(¢) < 0 for ¢ > 0. Hence, f is strictly concave. O
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To prove the other two lemmas, we collect some useful facts about (B.5). This equation has (a)
one positive root for 6 > 1 or § < 1,e = €*, (b) two positive roots for § < 1 and € < €*, and (c) no
positive root if 6 < 1 and € > €*. In the case of (a) and (b), call t(¢, ) the positive root of (B.5)
(choose the larger one if there are two). Then t(e,0) is a decreasing function of e. In particular,
t(e,8) — oo as € = 0. In addition, 2(1 — €) [(1 + t?)D(—t) — t(t)] + (1 +t2) > 5 if t > t(e, 6).

Lemma B.4. For any 0 < u < u*, (B.6) has a unique root, denoted by t*(u), in (ap,00). In
addition, t*(u) strictly decreases as u increases, and it further obeys 0 < (1—u)/(1—2®(—t*(u))) <
1.

Lemma B.5. As a function of u,

2(1 — (=" (u))

T =50 )P (—t*(u)) + eu

is strictly increasing on (0,u*).

Proof of Lemma B.2. We first consider the regime: § < 1,e > ¢*. By (B.3), it is sufficient to show
that tpp™ = 2(1 — €)®(—a) + € < u* under the constraints (B.4). From (B.4b) it follows that

& — e€

®(0) = 3 B(W| > ) < 10—

which can be rearranged as

_ _ /
2(1 —EI)CI)(—C)()—{—E, < (1 6)(5 66) —|—€/.
1—e€

The right-hand side is an increasing function of €’ because its derivative is equal to (1 — €)(1 —
§)/(1 — ee’)? and is positive. Since the range of € is (0, €*/¢), we get

(1 —€/€e)(0 —€-€]/e)

1—€-€"/e

21 — YP(—a) +€ < + e /e = u*.

This bound u* can be arbitrarily approached: let ¢ = €*/e in the example given in Section 2.3;
then set A = /M and take M — oo.

We turn our attention to the easier case where § > 1, or § < 1 and € < €*. By definition, the
upper limit «* = 1 trivially holds. It remains to argue that tpp™ can be arbitrarily close to 1. To
see this, set II* = M almost surely, and take the same limits as before: then tpp™ — 1.

Proof of Lemma B.3. We begin by first considering the boundary case:
tpp™ = wu. (B.7)
In view of (B.3), we can write

2(1 —€)P(—a) o 2(1—-e)®(—a)

fdp™ = 2(1 — €)®(—a) + etpp®  2(1 — €)®(—a) +eu’

Therefore, a lower bound on fdp™ is equivalent to maximizing a under the constraints (B.4) and
(B.7).
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Recall Eno(W)? = 2(1 + a?)®(—a) — 2a¢(a). Then from (B.7) and (B.4a) we obtain a sand-
wiching expression for 1 — ¢’:

(1—e) [2(1 + a®)®(—a) — 2a¢(a)] + e(1 + a?) = 1 1—u
el(14a?)(1 —20(—a)) + 2a¢(a)] - 1-28(—a)’
which implies
(1—e) [2(1 + a®)P(—a) — 2a¢(a)] + €(1 + a?) — 6 . 1-u <0
el(14+a2)(1 —20(—a)) + 2a¢(a)] 1-29(—a) ’

The left-hand side of this display tends to 1 — (1 —u) = u > 0 as @ — oo, and takes on the value
0 if @ = t*(u). Hence, by the uniqueness of ¢*(u) provided by Lemma B.4, we get a@ < t*(u). In
conclusion,

2(1 — €)P(—a) 2(1 — €)P(—t*(u))
21— €)P(—a) +eu = 2(1 —e)P(—t*(u)) + eu
It is easy to see that fdp™ can be arbitrarily close to ¢*(u).

To finish the proof, we proceed to consider the general case tpp>* = u’ > u. The previous
discussion clearly remains valid, and hence (B.8) holds if u is replaced by «'; that is, we have

fdp>™ > ¢*(u').

By Lemma B.5, it follows from the monotonicity of ¢*(+) that ¢*(u') > ¢*(u). Hence, fdp> > ¢*(u),
as desired.

fdp> = = q¢*(u). (B.8)

]
B.2 Proofs of auxiliary lemmas
Proof of Lemma B.4. Set
- 201 —€) [(1 +2)B(—t) — to(t)] + (1 + ) —
¢=1- |1+ 2)(1 — 28(-1)) 1 266(0)]
or, equivalently,
2(1—€C) [(1 + ) @(—t) — td(t)] + C(1 + %) = 6. (B.9)

As in Section B.1, we abuse notation a little and let ¢({) = t(e(, d) denote the (larger) positive root
of (B.9). Then the discussion about (B.5) in Section B.1 shows that #({) decreases as { increases.
Note that in the case where 6 < 1 and € > €*(J), the range of ¢ in (B.9) is assumed to be (0, €*/e),
since otherwise (B.9) does not have a positive root (by convention, set €*(d) =1if § > 1).

Note that (B.6) is equivalent to

21 —¢) [(1+t3)®(—t) —tp(t)] +e(L +12) — 6

T 21— 20(—1) + 2to(0)] /(1 — 20 (1)) (B.10)

Define
h(¢) =

201 =) [(1+£()*)2(t(C)) — L P(E(C))] + (1 +£(¢)*) — 3
e[(1+(¢)*)(1 = 20(—(C))) + 2t()B(¢(O)] /(1 = 20(=1(C)))
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In view of (B.9) and (B.10), the proof of this lemma would be completed once we show the existence
of ¢ such that h(¢) = u. Now we prove this fact.
On the one hand, as ¢ \, 0, we see t(¢) / co. This leads to

h(¢) — 0.
On the other hand, if ¢ /” min{1,e*/e} , then ¢(¢) converges to t*(u*) > ay, which satisfies
2(1 — minfe, e*}) [(1 + ) @(—t*) — t*¢(t*)] + min{e, e }(1 + ) = 0.

Consequently, we get

h(¢) — u™.
Therefore, by the continuity of h(¢), for any u € (0,u*) we can find 0 < ¢ < min{1, €*/e} such that
h(€') = u. Put t*(u) = t(e’). We have

1—u

1—20(—t*(u))

=1—-¢€ < 1.

Last, to prove the uniqueness of t*(u) and its monotonically decreasing dependence on u, it
suffices to ensure that (a) ¢({) is a decreasing function of ¢, and (b) h(() is an increasing function
of (. As seen above, (a) is true, and (b) is also true as can be seen from writing h as h({) =
2(1 = ¢)®(—t(¢)) + ¢, which is an increasing function of ¢.

O

Proof of Lemma B.5. Write

2(1—¢)

q*(u) = 21— €) + eu/D(—t*(u))”

This suggests that the lemma amounts to saying that u/®(—t*(u)) is a decreasing function of wu.
From (B.10), we see that this function is equal to

1 (1 —2®(—t*(w))) {2(1 —€) [(1 + (t*(w)H)P(—t*(w)) — t*(u)p(t*(u))] + €(1 + (t*(u

_5}

S(—t*(u) e®(—t*(w)) [(1 + (t*(u))*) (1 = 2@(=t*(u))) + 2t*(U)¢(t*(U))]

With the proviso that t*(u) is decreasing in w, it suffices to show that

1 (1—28(—t)) {2(1 —¢) [(1 + ) B(—1t) — td(t)] + e(1 +*) — &}

o(—t) €®(—1) [(1+12)(1 — 20(=1)) + 2to(t)]
0 1—20(—t) 2 (1—28(—t) [(1+2)®(—t) — to(t)]
e (=) [+ )1 —20(=1)) + 2tp(t)] € D(—t)[(1+ 2)(1 —2B(—t)) + 2(t)]
At f2(t)

is an increasing function of ¢ > (0. Simple calculations show that f; is increasing while fo is
decreasing over (0, 00). This finishes the proof. O]
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C Proof of Theorem 1

With the results given in Appendices A and B in place, we are ready to characterize the optimal
false/true positive rate trade-off. Up until now, the results hold for bounded A, and we thus need
to extend the results to arbitrarily large A. It is intuitively easy to conceive that the support size
of B will be small with a very large A, resulting in low power. The following lemma, whose proof
constitutes the subject of Section C.1, formalizes this point. In this section, o > 0 may take on the
value zero.

Lemma C.1. For any ¢ > 0, there exists X such that

sup #17 : Bi(A) # 0} <e

A>N p

holds with probability converging to one.
Assuming the conclusion of Lemma C.1, we prove claim (b) in Theorem 1 (noisy case), and then

(a) (noiseless case). (c) is a simple consequence of (a) and (b), and (d) follows from Appendix B.

Case 0 > 0. Let ¢ be sufficiently small such that ¢*(¢/e) < 0.001. Pick a large enough X\ such
that Lemma C.1 holds. Then with probability tending to one, for all A > X, we have
T

TPP(Y) = 100 < 1+ op(1) HLE AN 20

(1+02(1))%.
On this event, we get
¢*(TPP(X)) — 0.001 < ¢*(¢/e + op(1)) — 0.001 < 0,

which implies that
N {FDP(A) > ¢* (TPP())) — 0.001} (C.1)
A> N

holds with probability approaching one.
Now we turn to work on the range [0.01, \']. By Lemma A.2, we get that V' (\)/p (resp. T'(\)/p)
converges in probability to fd>*(A) (resp. td*(A)) uniformly over [0.01, \']. As a consequence,

vV P £ ()

FDP(\) = = fdp*= (A C.2
N = e V) + O] =) o=y P (©2)

uniformly over A € [0.01, \']. The same reasoning also justifies that
TPP()\) - tpp™()\) (C.3)

uniformly over A € [0.01, \']. From Lemma B.3 it follows that
fdp*(A) > ¢"(tpp™(A)).
Hence, by the continuity of ¢*(-), combining (C.2) with (C.3) gives that
FDP()\) > ¢*(TPP()\)) — 0.001

holds simultaneously for all A € [0.01, \'] with probability tending to one. This concludes the proof.

30



Case 0 = 0. Fix A and let o > 0 be sufficiently small. We first prove that Lemma A.1 still holds
for 0 = 0 if @ and 7 are taken to be the limiting solution to (A.1) with o — 0, denoted by o’ and
7. Introduce B" to be the Lasso solution with data y := X3+ z = y + 2z, where z ~ N(0, 0%1,,)
is independent of X and 3. Our proof strategy is based on the approximate equivalence between
B and E".

It is well known that the Lasso residuals y — X B are obtained by projecting the response y
onto the polytope {r : || X T7||oc < A}. The non-expansive property of projections onto convex sets
gives

|- xB") ~ - XB)| < Iy~ vl = |=I.

If P(-) is the projection onto the polytope, then I — P is also non-expansive and, therefore,

|xB7 - xB| < |z (C.4)

Hence, from Lemma A.3 and [|z]| = (1 + op(1))o/n it follows that, for any ¢ > 0 and 7.
depending on c, R R

#{1<j<p: X[ (y" - XB" —y+ XP)| > 2rea} <cp (C.5)

holds with probability converging to one. Let g and g7 be subgradients certifying the KKT condi-
tions for B and 3. From
X[ (y" — XB%) = \gf,

we get a simple relationship:
{71951 > 1=a/2\{j : 9] > 1 —a/2 = 2rea/A} € {j : | X (¥ — XB° —y + XB)| > 2reo}.
Choose o sufficiently small such that 2r.c/\ < a/2, that is, o < a\/(4r.). Then
(gl = 1—a/2\{5: 1gf| 2 1—a} S {j: |X] (¥ — XB" —y+ XPB)| > 20} (C.6)

As earlier, denote by S = supp(8) and S° = supp(3°). In addition, let S, = {j : lgj| > 1 —wv}
and similarly S7 = {j : [¢7| > 1 —v}. Notice that we have dropped the dependence on A since A is
fixed. Continuing, since & C S%, from (C.6) we obtain

S\SIC{j:|X](y" —XB" —y+XB)| > 2rc0}. (C.7)

This suggests that we apply Proposition 3.6 of [3] that claims® the existence of positive constants
ay € (0,1),az, and ag such that with probability tending to one,

Umin(XSglus’) > as (CS)

for all |S’| < agp. These constants also have positive limits af, aj, af, respectively, as ¢ — 0. We
take a < al,c < aby (we will specify a,c later) and sufficiently small o in (C.7), and &’ = {j :

|XT( ~ X3 —y+ Xﬁ)| > 2r.0}. Hence, on this event, (C.5), (C.7), and (C.8) together give

1XB — XB7|| = | Xszus (Bszus — Bus)

|2 agllB - B

5Use a continuity argument to carry over the result of this proposition for finite ¢ to co.

31



for sufficiently small o, which together with (C.4) yields

(1—0—0]}»(1))0\/5‘ (C.9)

as

18- 87| <

Recall that the || B |lo is the number of nonzero entries in the vector B. From (C.9), using the same
argument outlined in (A.10), (A.11), and (A.12), we have

1Bllo = 11870 — ¢p + 0z(p) (C.10)

for some constant ¢ > 0 that decreases to 0 as o Jag — 0.
We now develop a tight upper bound on [|3]|o. Making use of (C.7) gives

1Bllo < 187l +#{J : 1 —a < [g7| <1} + cp.

Asin (A.7), (3.21) of [3] implies that
#{j:(1—a)<|g?| <1} /p == P((1 —a)ar < |+ 7W]| < a7).

Note that both o and 7 depend on o, and as ¢ — 0, @ and 7 converge to, respectively, o/ > 0 and
7/ > 0. Hence, we get

1Bl < 11870 + ¢"p + 0p(p) (C.11)

for some constant ¢ > 0 that can be made arbitrarily small if ¢ — 0 by first taking a and ¢
sufficiently small.
With some obvious notation, a combination of (C.10) and (C.11) gives

|V —-Vvo<dp, |T-T°<"p, (C.12)

for some constant ¢’ = ¢/ — 0 as 0 — 0. As 0 — 0, observe the convergence,

fd>=7 = 2(1 — €)®(—a) = 2(1 — )®(—a’) = fd=?,
and
td>? = ¢ P(|IT* + 7W| > a1) — e P(|IT* + 7'W| > o/7’) = td>=".
By applying Lemma A.1 to V7 and T° and making use of (C.12), the conclusions

VBt and = -y =0
p p
follow.

Finally, the results for some fixed A can be carried over to a bounded interval [0.01, \'] in exactly
the same way as in the case where ¢ > 0. Indeed, the key ingredients, namely, Lemmas A.2 and
A4 still hold. To extend the results to A > X\, we resort to Lemma C.1.

For a fixed a prior II, our arguments immediately give an instance-specific trade-off. Let
¢"(-;6,0) be the function defined as

¢ (tpp=7(N); 6, o) = fdp= (\)
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for all A > 0. It is worth pointing out that the sparsity parameter e is implied by II and that ¢'!
depends on II and o only through II/o (if ¢ = 0, ¢'! is invariant by rescaling). By definition, we

always have
¢ (u;8,0) > ¢*(u)

for any w in the domain of ¢'I. As is implied by the proof, it is impossible to have a series of instances
II such that ¢'(u) converges to ¢*(u) at two different points. Now, we state the instance-specific
version of Theorem 1.

Theorem 3. Fiz 6 € (0,00) and assume the working hypothesis. In either the noiseless or noisy
case, the event
N {FDP()\) > ¢ (TPP())) — 0.001}
2>0.01

holds with probability tending to one.

C.1 Proof of Lemma C.1

Consider the KKT conditions restricted to S(\):
X:qro\) (y - XS(A)B(/\)) = Ag(A).

Here we abuse the notation a bit by identifying both B()\) and g(\) as |S(A)|-dimensional vectors.
As a consequence, we get

~

B = (XginXs) ™ (Xgny — Ag(V). (C.13)

Notice that X:Sr( )\)X s() 1s invertible almost surely since the Lasso solution has at most n nonzero

components for generic problems (see e.g. [28]). By definition, /@()\) obeys

1 . . 1 1
Slly - XsnBWI?+ MBI < Slly = Xs0n) - O[> + Allo]lx = §HyHQ- (C.14)

Substituting (C.13) into (C.14) and applying the triangle inequality give

1 _ _ 2 ~ 1

5 (10X (X0 Xs0) g = lly = Xsoa) (X Xson) ™ Xdoowll )+ BN < 5wl
Since L5y — X5y (Xg(/\)XS(A))_ng(/\) is simply a projection, we get

ly — XS(,\)(X;(A)XS(A))AX;(A)?JH <yl

Combining the last displays gives

M XXy Xson) g < 2llyll, (C.15)

which is our key estimate.
Since omax(X) = (14 op(1))(1 + 1//9),

X500 (X Xs) 901 = (14 0r) 2AD = (14 o) TEETL (a9
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As for the right-hand side of (C.15), the law of large numbers reveals that

2llyll =21 X8 + z[| = (2 + 0x(1)V/n([IBI1?/n + 0?) = (2 + 0p(1)) VP EII? + no.

Combining the last two displays, it follows from (C.15) and (C.16) that

2 n02 2
WEIL £ QUL _ (14 p(1) 2

1BV llo = [S(N),] < (4 + 0p(1))

for some constant C. It is worth emphasizing that the term op(1) is independent of any A > 0.
Hence, we finish the proof by choosing any X > /C/c.

D Proof of Theorem 2

We propose two preparatory lemmas regarding the x2-distribution, which will be used in the proof
of the theorem.

Lemma D.1. For any positive integer d and t > 0, we have

P(xq > Vd+1t) <e /2

Lemma D.2. For any positive integer d and t > 0, we have
P(x3 < td) < (et)?.

The first lemma can be derived by the Gaussian concentration inequality, also known as the
Borell’s inequality. The second lemma has a simple proof:

221“(%)
td [
< / 1 :U%_ldx _ 2(td)>2
0 220(%) d2:T'(%)

Next, Stirling’s formula gives

d
2
P(xg < td) < <
d2:T () ~ d22Vrd()
Now, we turn to present the proof of Theorem 2. Denote by S a subset of {1,2,...,p}, and let
mo =|SN{j:B; =0} and m; =|SN{j:B; # 0}|. Certainly, both mg and m; depend on S, but
the dependency is often omitted for the sake of simplicity. As earlier, denote by k = #{j : 8; # 0},

which obeys k = (e + op(1))p. Write B\gs for the least-squares estimate obtained by regressing y
onto Xs. Observe that (3.2) is equivalent to solving

argmin ||y — Xs85%%(% + AlS]. (D.1)
Sc{l,...p}
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As is clear from (3.2), we only need to focus on § with cardinality no more than min{n, p}. Denote
by S the solution to (D.1), and define my and m; as before. To prove Theorem 2 it suffices to show
the following: for arbitrary small ¢ > 0, we can find A and M sufficiently large such that (3.2) gives

P(mg > 2ck or my < (1 —c)k) — 0. (D.2)

Assume this is true. Then from (D.2) we see that mo < 2ck and m; > (1—c)k hold with probability
tending to one. On this event, the TPP is
% >1—c,

and the FDP is R
mo 2ck 2c

< = .
mo+mp ~ 2ck+(1—ck 1+c¢
Hence, we can have arbitrarily small FDP and almost full power by setting ¢ arbitrarily small.
It remains to prove (D.2) with proper choices of A and M. Since

{mo > 2ck or m1 < (1 —c)k} C {mo+m1 > (1+c)k}U{m < (1-c)k},
we only need to prove
P(m; < (1—c¢)k) =0 (D.3)

and
P(mg 4+ m1 > (14 c)k) — 0. (D.4)

We first work on (D.3). Write
y= > MX;+ > MX;+=z
JES,Bi=M JES,Bi=M
In this decomposition, the summand 3 j€S,B=M MX is already in the span of Xs. This fact

implies that the residual vector y—XS,[/%S is the same as the projection of ) J€5.8,=M M X ;+z onto
the orthogonal complement of Xs. Thanks to the independence among 3, X and z, our discussion
proceeds by conditioning on the random support set of 3. A crucial but simple observation is that
the orthogonal complement of X s of dimension n — my — m; has uniform orientation, independent
of Y. =5 _2, MX; + z. From this fact it follows that

J€S,Bj=M J

L(S) = |ly — XsBE|* + AIS| £ (0% + M (k — m1) /1) X3 g —m; + Alimg + ma). (D.5)
Call Es, the event on which
L(S) < o*(n — k+2uvn — k +u?) + Mk

holds; here, u > 0 is a constant to be specified later. In the special case where & = 7 and
T ={j: Bj # 0} is the true support, Lemma D.1 says that this event has probability bounded as

P(ETu) =P (U2X%—k Tk < o%(n—k+2uv/n — k +u?) + Ak)
:]P)<X$Lfk: < n—k+2um+u2) (D.6)

w2

>1—e 2.
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By definition, Eg is implied by E7,. Using this fact, we will show that m; is very close to k,
thus validating (D.3). By making use of

{m1 < (1 =0k} C{mo+m1 > (k+n)/2} U{mi < (1—c)k,mo+mi < (k+n)/2},
we see that it suffices to establish that
P(mo+m1 > (k+mn)/2) -0 (D.7)
and
P(mi < (1—c)k,mo+m; < (k+n)/2) =0 (D.8)

for some A and sufficient large M. For (D.7), we have

P(fg 4+ 1 > (k+n)/2) < P(ET.y) + P(Er. 0 {ig + my > (k+n)/2})

<P(E7u) +P(Eg, N{mo+m1 > (k+n)/2})

<P(ETu)+ > P(Es,u) (D.9)
mo+m1>(k+n)/2

w2

<e T + Y P(Esa),
mo+m1>(k+n)/2

where the last step makes use of (D.6), and the summation is over all S such that my(S)+m(S) >
(k+mn)/2. Due to (D.5), the event Eg,, has the same probability as

(0% + M?*(k —m1)/n) Xo_my—m, + A(mo +m1) < o*(n—k+2uvn — k +u?) + Ak
o?(n —k+2uvn — k +u?) + Xk — AN(mo + my) (D.10)
0?2+ M?(k—m1)/n '

2
— Xn—mo—m1 <

Since mg +my > (k+n)/2, we get
o2(n —k+2uvn —k+u?) + Mk — Xmg +my) < o%(n — k+2uvn — k+u?) — \n —k)/2.

Requiring

A > 207, (D.11)
would yield 02(n — k + 2uv/n — k + u?) — AM(n — k)/2 < 0 for sufficiently large n (depending on u)
as n — k — oo. In this case, we have P(Es,) = 0 whenever mg +m; > (k + n)/2. Thus, taking

u — oo in (D.9) establishes (D.7).
Now we turn to (D.8). Observe that

P (71 < (1 - c)k and g + 7y < (k +1)/2)
< P(E7.) + P(Br N {ig < (1 — )k and g + iy < (k +n)/2})

u2
<e T +P(Eg, N {1 < (1—c)k and Mg + iy < (k+n)/2}) (D.12)

+ > P(Es..)-

m0+m1<k+T”,m1§(1—c)k‘

_u?
2

IN

e
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For mp+m; < (k+n)/2 and m; < (1—c)k, notice that n—mo—m; > (n—k)/2 = (6—e+op(1))p/2,
and M2(k —m1)/n > ecM?k/n ~ (ce/6 + op(1))M?. Let to > 0 be a constant obeying

o —
?6(1 +logto) +log2 < —1,

then choose M sufficiently large such that

20%(6 — €) + 2)\e
(02 4 ceM?/5)(6 — €)

< tg. (D13)

This gives
o?(n — k4 2uvn — k +u?) + Ak — A(mo + my)
(02 + M?(k —mq)/n)(n —my —mq)

for sufficiently large n. Continuing (D.12) and applying Lemma D.2, we get

< tg

P(mi < (1 —c¢)k and mo+ my < (k+n)/2)
2

<e 7+ > P(Xp— gy < to(n —mg —mi))
m0+m1<k+Tn,m1§(1—c)k;

e T > (eto) "3~

m0+m1<k+Tn,m1§(1—c)k: (D.14)

(6—0)
. (eto) =

mo+mi1<(k+n)/2,mi1<(1—c)k

»

IN

IN

_u? (6—€)p
<e 2 +2P(ety) s
w2
<e 2z 4¢P

Taking u — oo proves (D.8).
Having established (D.3), we proceed to prove (D.4). By definition,

ly — XBI1*+ N|Bllo = ly — X8| + M8 lo
<y —XB[*+XBlo

= ||z||* + \k.
If 25
A> 22 (D.15)
ce
then ) )
mo + my < I=] +k=(1+ 0]?(1))% +k<(1+4+c)k

holds with probability tending to one, whence (D.4).
To recapitulate, selecting A obeying (D.11) and (D.15), and M sufficiently large such that (D.13)
holds, imply that (D.2) holds. The proof of the theorem is complete.
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