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Comparison between Lagrangian and Eulerian
methods for the simulation of particle-laden flows

subject to radiative heating

By A. Vié, H. Pouransari, R. Zamansky† AND A. Mani

1. Motivation and objectives

Turbulent particle- or droplet-laden flows play a key role in numerous applications, in-
cluding natural processes such as droplet clouds, dust storms, and protoplanetary disks,
as well as in industrial applications such as fuel sprays in internal combustion engines,
fluidized beds, particle-based solar receivers, and pharmaceutical sprays. Understanding
the key processes underlying the coupled dynamics of particles and fluids in such sys-
tems requires the development of models capable of reproducing their physics. In most of
these systems the particle-laden mixture is under turbulent conditions, and turbulence
can induce preferential concentration in the particle field (Squires & Eaton 1991b; El-
gobashi & Truesdell 1992; Eaton & Fessler 1994; Fessler et al. 1994): inertial particles
are ejected from vortex cores and accumulated in low-vorticity zones. This phenomenon
is characterized by the particle Stokes number Stk = τp/τk, i.e., the ratio between the
particle inertial relaxation time to the Kolmogorov time scale of the turbulence (Eaton
& Fessler 1994).

Previous investigations have indicated that preferential concentration is strongest for
systems with a Stokes number of order unity (Eaton & Fessler 1994). Very small par-
ticles with small Stokes number essentially follow the flow streamlines, and cannot be
effectively centrifuged outside of vortex zones; in the limit of very large Stokes number,
the particle phase is hardly influenced by the flow field and thus the effects of preferential
concentration are suppressed. Preferential concentration plays a key role in various pro-
cesses including enhancement of particle-particle collision (e.g., leading to faster particle
agglomeration or drop coalescence Sundaram & Collins (1997); Wang et al. (1998)), and
turbulence modulation (Gore & Crowe 1989; Elgobashi & Truesdell 1993; Fessler et al.
1994; Boivin et al. 1998). In some scenarios preferential concentration plays a primary
role even in generating and sustaining turbulence (Zamansky et al. 2014; Mizukami et al.
1992). Therefore, when it comes to modeling of particle-laden flow phenomena, one key
concern is the capability of the model to capture preferential concentration.

Early numerical models attempted to couple Lagrangian particle methods with tra-
ditional Eulerian fluid turbulence simulations (Riley & Patterson 1974; Elgobashi &
Truesdell 1992; Squires & Eaton 1991a,b). In the most simple limit, trajectory of the
particles can be determined by use of the Stokes drag formula (Stokes 1851). In this
study, the following assumptions are made: (i) the particles are smaller than the Kol-
mogorov length scale (d < η), microscopic particle-resolved DNS is not necessary, and a
mesoscopic‡ point-particle approximation is envisaged (Maxey & Riley 1983; Fox 2012);

† CNRS, UMR 5502 , Institut de Mécanique des Fluides de Toulouse, France
‡ Microscopic details of the flow field around the particle are embedded into a mesoscopic

closure like Stokes drag.
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(ii) the density between the particles and the gas phase is large (ρp >> ρg), so that the
drag force is the dominant external force that is acting on the particle motion; (iii) the
Reynolds number of the particles is smaller than one (Rep < 1), the Stokes drag formu-
lation can be used, i.e., the relaxation time of the particle is τp = ρpd

2/18µg, where ρ,
µ, and d denote density, viscosity, and particle diameter respectively, and subscripts p
and g represent particle and fluid (gas), respectively; (iv) a dilute regime is considered,
thus the volume fraction is small (αp < 10−3) enough so that particle-particle colli-
sion would have a negligible impact on primary dynamics; (v) the mass loading is small
(αpρp/ρg < 10−2), so momentum two-way coupling between the two phases is avoided;
(vi) the particles are solid and spherical, so the size of the particles does not change with
time; (vii) and the particles have a negligible heat capacity (cp,particle << cp), so that
the heat absorbed by the particles is immediately transferred to the gas phase and there
is no need to solve the temperature equation of the particle.

Under such conditions, Lagrangian point particle methods have been tested against
experiments and were shown to be able to capture the preferential concentration phenom-
ena fairly accurately (Squires & Eaton 1991a; Elgobashi & Truesdell 1992). In a typical
simulation, the number of numerical particles would be equal to the number of physical
particles. Following these simplifications, the equations for the Lagrangian particles are
limited to their position Xp and velocity Up

dXp

dt
= Vp, (1.1)

dVp

dt
=

ug(t,Xp)−Vp

τp
, (1.2)

where τp =
ρpd

2

18µg
is the relaxation time of the particles and ug the gas phase velocity.

In the context of mesoscopic DNS simulations, the Lagrangian particle tracking is the
reference. However, it still has some limitations. First, if one is aiming at the statistics
of the disperse phase, i.e., the values of local Number Density Function (NDF), many
realizations are needed to develop converged statistics. Additionally, when the average
number of particles per control volume is large, Lagrangian methods can become very
expensive due to the extensive computing clock time needed to track all particles, as well
as to complexities associated with the computational load balancing on parallel machines
(Garcia 2009).

Eulerian particle methods have been explored as an alternative to Lagrangian particle
tracking (Druzhinin & Elghobashi 1998; Ferry & Balachandar 2001, 2002; Kaufmann
et al. 2008; Masi & Simonin 2014; Masi et al. 2014; de Chaisemartin 2009b; Laurent
et al. 2012; Vié et al. 2015). The goal of such methods is to solve the statistics of the
disperse phase directly. Inspired by approaches in kinetic theory of gases (Chapman &
Cowling 1939), the NDF f(t, x, vp) is defined as the number of particles per unit volume,
with certain velocity, vp, averaged over many realizations. This NDF satisfies a Population
Balance Equation (PBE) (referred to as the Williams-Boltzmann equation in the context
of spray Williams (1958))

∂f

∂t
+ vp,i

∂f

∂xi
+

∂

∂vp,i

(
ug,i − vp,i

τp
f

)
= 0. (1.3)

Equation 1.3 is the equivalent of Eq. 1.2, but is written in a Eulerian framework. However,
to avoid solving the NDF in the full phase space, moment methods have been developed
(see for instance, Simonin (1996)), which aim to integrate the PBE over the velocity
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space to get equation on moments, i.e., integrals over the velocity space. Let us consider
a monodisperse cloud of particles, i.e., the same size for all particles at the same location†.
The resulting moment equations will be (Simonin 1996)

∂C

∂t
+
∂Cup,j
∂xj

= 0, (1.4a)

∂Cup,i
∂t

+
∂C (up,iup,j + σij)

∂xj
= C

ui − up,i
τp

, (1.4b)

where C(t,x) is the local number density of the particles, up,i(t,x) is the mean velocity
of the particles at the position x, and σij(t,x) the covariance matrix of the velocity
distribution‡

C =

∫
f(t,x,vp)dvp, (1.5)

up,i =
1

C

∫
vp,if(t,x,vp)dvp, (1.6)

σij =
1

C

∫
(vp,i − up,i) (vp,j − up,j) f(t,x,vp)dvp. (1.7)

Equation 1.4b needs a closure for the covariance matrix of the NDF. The two quantities
that drive the choice are the particle Stokes number Stk based on the Kolmogorov time
scale and the volume fraction (Laurent et al. 2012). These two quantities control the
broadness and shape of the NDF in the velocity space. The Stokes number indicates the
occurrence of Particle Trajectory Crossings, i.e., the possibility of multivalued particle
velocity at a given space-time instant. It has been shown that for Stk < 1 a monokinetic
assumption is indeed valid (Balachandar & Eaton 2011) i.e., only one velocity can describe
the particle field per location in physical space. In this range, the covariance is zero,
and Eq. 1.4b is closed without any modeling requirement. As classified by Balachandar
(Balachandar 2009), three approaches of increasing complexity exist in this range of
Stokes number: (i) Dusty gases (Saffmann 1962; Marble 1970) for which the disperse
phase velocity is equal to the gas-phase velocity and the disperse-phase total number
density is solved for only; (ii) Equilibrium Eulerian (Ferry & Balachandar 2001, 2002)
for which the disperse phase is evaluated as an expansion around the gas-phase velocity
and, again, only an equation on the disperse-phase total number density is needed; (iii)
Monokinetic approach (Druzhinin & Elghobashi 1998; Laurent & Massot 2001), for which
the disperse-phase velocity is solved through an additional momentum equation, as in
Eq. 1.4. When Stk > 1, particles have sufficient inertia to leave the high-vorticity regions,
and particle trajectory crossings occur (Wells & Stock 1983; de Chaisemartin 2009b;
Ijzermans et al. 2010), also referred to as the Random Uncorrelated Motion (Février
et al. 2005; Ijzermans et al. 2010). In this case when the volume fraction of particles is
sufficiently large to allow for many collisions, the velocity distribution relaxes towards the
Maxwellian distribution, following the kinetic theory (Chapman & Cowling 1939). For
low volume fractions, assumptions have to be made on the NDF itself (Kinetic-Based
Moment Methods, Vié et al. (2015); Laurent et al. (2012)) or on the moment system

† This assumption may be easily relaxed using Multifluid approaches or moment methods,
see Laurent & Massot (2001); Kah et al. (2012); Vié et al. (2013).
‡ Let us emphasize that Eulerian fields are defined in every location in the phase space,

either the spatial position or the velocity, whereas Lagrangian particle tracking is defined in a
point-particle sense, that is a sum of Dirac’s δ−functions in the phase space.
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directly (Algebraic-Closure-Based Moment Methods, Kaufmann et al. (2008); Masi &
Simonin (2014); Masi et al. (2014)).

In this study, we use the Monokinetic Eulerian approach. Hence, we will be limited
only to the condition of Stk < 1, which is still relevant to a broad range of applications.
We then focus on addressing two sources of error under such conditions: the statistical
convergence and the numerical resolution.

Concerning the statistical convergence, as the Eulerian approach solves the infinite-
realization limit of the Lagrangian system, the effect of the number of particles must
be assessed. In this context, we ask: how large a particle system would be, to allow for
a Lagrangian system to be accurately represented by a Eulerian model? Moreover, we
are considering an infinite number of realizations that can modify the gaseous phase in
a different way. Consequently, the gas phase obtained from fully Eulerian simulations
is an average over each particle realization of the infinite sample. Is the averaged gas
phase equivalent to that of the individual particle realization of the Lagrangian reference
simulation?

Concerning the numerical resolution, one of the main problems in the Eulerian ap-
proach is the design of numerics, as the disperse phase can exhibit large gradients and
vacuum zones. Realizable capturing of these extreme conditions inevitably requires nu-
merical methods with inherent dissipation. Here too we ask how fine should be the
Eulerian grid to allow for accurate representation of particles and flow field statistics.

In this paper, we first present the modeling approach and the numerics. Then the test
configuration is introduced along with the controlling parameters that drive the physics
of the problem. We present results for radiatively heated particle-laden flow subject to
gravity and buoyancy effects. In this case, heating of the fluid by the particles can generate
and sustain turbulence (Zamansky et al. 2014). In other words, the particle field, and
specifically particle segregation, is the main driver of turbulence in the long run. We then
present an analysis on whether the error in the particle segregation due to the under-
resolved Eulerian method would have consequences in the prediction of turbulence itself.
The paper concludes with a summary of our general recommendations for simulation of
particle-laden flows.

2. Simulation methods

Before describing the results of Eulerian and Lagrangian methods, we briefly explain
the computational methods and aspects of the model problem used in this study. Equa-
tions are spelled out in dimensionless form.

2.1. Particulate phase equations

In the Monokinetic assumption, the Eulerian Moment method equations for the dimen-
sionless concentration C, and velocity up,i are (Laurent & Massot 2001)

∂C

∂t
+
∂Cup,j
∂xj

= 0, (2.1)

∂Cup,i
∂t

+
∂Cup,iup,j

∂xj
= C

ui − up,i
τp

. (2.2)
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2.2. Gas phase equations

The equations for dimensionless gas density ρ, velocity ui and temperature T are

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.3)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂P
∂xi

+ ν
∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
+ (ρ− 1) gi, (2.4)

1

γ

∂ρT

∂t
+
∂ρTuj
∂xj

=
ν

Pr

∂

∂xi

(
∂T

∂xi

)
+ α(C − 1), (2.5)

where ν is the dimensionless viscosity, Pr the Prandtl number, γ the heat capacity ra-
tio, g the dimensionless gravity, and α the radiative heat flux parameter. Density and
temperature are linked through the dimensionless equation of state ρT = 1. The term
involving −gi in the momentum equation represents the hydrostatic pressure gradient.
Here we have included this term explicitly to allow for use of a periodic assumption in
the remaining portion of the pressure field. The term −α in the energy equation stands
for a homogeneous cooling in order to avoid global energy accumulation. Therefore, we
subtract the mean energy added by the radiative input from the domain.

2.3. Numerical methods

These gas phase equations are solved using the low-Mach number approximation (Choi &
Merkle 1993; Guillard & Viozat 1998). Spatial derivatives are evaluated through second-
order central differences. The variable coefficient Poisson equation for aerodynamic pres-
sure is solved using FFT in an iterative procedure to account for dilatability effects.
For time integration of the Eulerian moment methods, a second-order scheme is used
(Bouchut et al. 2003; de Chaisemartin 2009a). Integration of the source terms is per-
formed using a second-order Strang Splitting. The limiter used for slope evaluation is a
double minmod (Sabat et al. 2014a,b) to handle the large gradients which the particle
concentration and velocity fields are subject to.

In the Lagrangian tracking, a fourth-order Runge-Kutta method is used to solve
Eq. 1.2. A second-order linear interpolation is used for gas phase-disperse phase ex-
changes (Apte et al. 2003).

2.4. Initial conditions and controlling parameters

In the present work, the domain we consider is a triply periodic box with no mean flow
(< ui >= 0). The heat capacity ratio γ is equal to 1.4 and the Prandtl number Pr =

cpµ
λ

is equal to 1.0.
The Reynolds number Re is set by the initial condition of the turbulence. Here we use

a Passot-Pouquet spectrum (Passot & Pouquet 1987) with a Reynolds number based on
the Taylor microscale Reλ = 27 with a total kinetic energy equal to 3 and a dimensionless
viscosity ν = 1.46× 10−3. As no artificial forcing is considered, the turbulent energy will
decay if no physical forcing is involved.

The radiative heat flux parameter α controls the heating level through particle ac-
cumulations in the domain, thus driving the final state of turbulence. This parameter
will be fixed at α = 0.1. As this parameter is fixed, the next parameter will vary the
turbulence level.

The relaxation time of the particles τp controls the level of inertia of the particles, and
thus their preferential concentration (Eaton & Fessler 1994). This is a key parameter
because it will decide whether our Eulerian approach is adapted or not. In the following,
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we will consider τp = 0.01, 0.025, 0.05, 0.10, 0.20, 0.40, and 0.80. This dimensionless
relaxation time is linked to the Stokes number Stk.

Concerning the size of the domain, Zamansky et al. (2014) and Yoshimoto & Goto
(2007) stated that the ratio between the scales of turbulence and the box size influences
the development of turbulence and preferential concentration. In the present study, as our
goal is mainly to compare Eulerian and Lagrangian approaches, we will not investigate
this issue, but keep the same domain size for every test case, i.e., Lbox = 2π. Combin-
ing the Reynolds number and the domain size, the nominal mesh size for resolving the
turbulence at initial conditions is 643 cells.

Finally, particles are uniformly distributed at time t = 0: for the Lagrangian particle
tracking, they are randomly drawn over the entire space, whereas for the Eulerian simu-
lations, the initial concentration is set to C(t,x) = 1. In terms of the number of particles,
as we are interested in the statistical convergence, we investigate cases with 1 and 256
particles per cell, i.e., 0.262M and 67M particles in the whole domain. All simulations
start with a particulate phase at rest, i.e., up(t = 0,x) = 0 or Vp(t = 0) = 0.

2.5. Post-processing

To analyze each test case, we investigate macroscopic quantities obtained by spatially
averaging over the domain 〈·〉. For the gas phase, we focus on the Turbulent Kinetic
Energy (TKE) of the gas phase

〈
u2g,i
〉

as a measure of the turbulence level, and the

temperature variance
〈
T ′g

2
〉

=
〈
T 2
g

〉
−〈Tg〉2, as a measure of the effect of segregation on

the heat exchange between the two phases.

For the disperse phase, we investigate two statistical quantities: the Turbulent Kinetic
Energy of the particulate phase (PTKE), as a measure of the effect of the turbulence
level on the dynamics of the particles, and the segregation of the particulate phase as a
measure of preferential concentration effects due to the turbulence.

The disperse phase quantities are evaluated in a different way for each modeling ap-
proach. For the Lagrangian particle tracking method, the PTKE is evaluated as the
average over all particles

PTKE =
1

Np

Np∑
k=1

V 2
k,i, (2.6)

whereas in the Eulerian method, PTKE is defined as
〈
u2p,i
〉
.

Segregation is defined as the normalized mean square concentration. However, given
that for the Lagrangian particles, the definition of concentration is scale dependent, a
reference projection scale needs to be defined. In Vié et al. (2015), the authors used a
reference mesh as a projection for mesh for all Lagrangian and Eulerian quantities. Here
the native scale is arbitrarily defined as the nominal Kolomogorov-resolved mesh for the
initial conditions, that is 643 cells. Consequently, we define a projected particle number
density as

CLag(t,x) =
1

Npδ3E

Np∑
k=1

∫
δ(x−Xk)H(x|δE)dx, (2.7)

where H is the cubic hat function centered at x and of characteristic width δE . In our
simulations, δE is equal to the reference grid spacing of the Lagrangian simulations, i.e.,
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δE = 2π/64. It follows that the Lagrangian evaluation of the segregation is

gLagpp =

〈
C2

Lag

〉
〈CLag〉2

. (2.8)

For the Eulerian approach, to be consistent with the Lagrangian method, the concen-
tration field is also projected onto the reference mesh of the Lagrangian simulations and
then the segregation is evaluated as

gEul
pp =

〈
C2

proj

〉
〈Cproj〉2

, (2.9)

where Cproj is the projected concentration field. At this point, we emphasize that even
for a statically uniform distribution for the Lagrangian Particle, the segregation is not
equal to exactly one. As they are randomly and independently drawn, the local number
of particles follows the Poisson distribution. Thus the segregation for a homogeneous
Lagrangian sampling can be shown to be gpp = (λ + 1)/λ where λ is the number of
particles per cell. Consequently, the initial segregation of the Lagrangian computations
is g = 2 and 1.003 for 1 and 256 particles per cell.

In our test case, gravity and radiation are active. As explained by Zamansky et al.
(2014), a buoyancy-driven turbulence is triggered, resulting in long-term statistically
stationary and homogeneous signals. To analyze these signals, the temporal mean of the
spatially averaged statistics is investigated.

3. Results

In the following, for each case we first present statistical results from Lagrangian calcu-
lations. The most important quantity which is highly sensitive to the number of particles
is the segregation. Once impact of statistical convergence for this quantity is established,
we present results of the corresponding Eulerian simulations, and demonstrate the reso-
lution requirement to capture each field. Both Lagrangian and Eulerian calculations are
performed over a wide range of parameters by varying the particle Stokes number.

3.1. Statistical convergence

In Figure 1, the temporal means of the segregation and the PTKE are plotted against
the relaxation time of the particles. The number of particles has a great effect on the
segregation. For the PTKE, it has a negligible influence for moderate to large relaxation
time, while the most significant effect is found for the smallest relaxation time, for which
the segregation is mainly due to the lack of statistical convergence. This is similar to
temperature statistics in Figure 2), and is expected, given that the induced turbulence
is highly influenced by the local gas temperature. This is also consistent with results in
Zamansky et al. (2014), obtained under the Boussinesq-Oberneck assumption.

Figure 3 shows the mean Kolmogorov time and length scales for different particle
relaxation times. This information can be used to determine the range of particle relax-
ation times for which the long term Stokes number is less than unity, as shown with the
intersection with the dashed line. Next we examine Eulerian simulations in this range.

3.2. Comparison between Lagrangian and Eulerian results

Finally, the ability of the Eulerian method to reproduce the Lagrangian results is assessed
in this test case in which turbulence itself is coupled with particle segregation. In this
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Figure 1. Turbulence with radiation and gravity: effect of the number of particles on the
statistics of the Lagrangian simulations. Mean segregation (left) and Particle Total Kinetic
Energy (right) versus τp, for 1 particle per cell (dashed line) and 256 particles per cell (full line).
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Figure 2. Turbulence with radiation and gravity: effect of the number of particles on the
statistics of the Lagrangian simulations. Mean Total Kinetic Energy (left) and Temperature
variance (right) versus τp, for 1 particle per cell (dashed line) and 256 particles per cell (full
line).
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Figure 3. Turbulence with radiation and gravity: effect of the number of particles on the
statistics of the Lagrangian simulations. Mean Kolmogorov time (left) and length (right) scales
versus τp, for 1 particle per cell (dot-dashed line) and 256 particles per cell (full line). The
dashed line corresponds to a Stokes number based on the Kolmogorov time scale equal to one.
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Figure 4. Turbulence with radiation and gravity: Lagrangian (black) versus Eulerian (red)
simulations with 643 (dotted line) and 1283 (dot-dashed line) cells. Mean segregation (left) and
Particle Total Kinetic Energy (right) versus τp.
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Figure 5. Turbulence with radiation and gravity: Lagrangian (black) versus Eulerian (red)
simulations with 643 (dotted line) and 1283 (dot-dashed line) cells. Mean Total Kinetic Energy
(left) and temperature variance (right) versus τp.

test case, the temperature field generated by the heat transfer from the disperse phase
to the gas triggers turbulence through buoyancy effects. The question is whether the
unresolved temperature field will influence the statistics of the generated turbulence.

Our simulations confirmed that the employed Eulerian method can reach a self-sustained
turbulence, which is the minimal requirement for assessing the validity of the Eulerian
strategy. Temporally averaged quantities are compared in Figures 4-5. The segregation
is underestimated, whereas the PTKE is relatively well predicted. A similar conclusion
is reached for the gas-phase TKE, and temperature variance. Finally, the Kolmogorov
scales of the generated flows are evaluated in Figure 6. Results shows a good agreement
between Lagrangian and Eulerian results. Moreover, we confirm that simulation with
relaxation time below 0.1 corresponds to a Stokes number below one, thus justifying the
validity of the present Monokinetic closure.

4. Conclusion

In the present work, Eulerian and Lagrangian strategies to describe a thermally two-
way coupled system have been compared. In the configuration introduced in Zamansky
et al. (2014), a self-sustained turbulence is generated by the thermal coupling between
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Figure 6. Turbulence with radiation and gravity: Lagrangian (black) versus Eulerian (red)
simulations with 643 (dotted line) and 1283 (dot-dashed line) cells. Kolmogorov time (left) and
length (right) scales versus τp. The dashed line corresponds to a Stokes number based on the
Kolmogorov time scale equal to one.

a disperse phase subject to a homogeneous radiation input and a gas phase subject to
buoyancy effects. The generated feedback loop is a preferred benchmark to assess the
ability of Eulerian methods to reproduce the physics of a two-way coupled system.

As the Eulerian methods solve the statistics of the disperse phase over an infinite
number of realizations whereas the reference Lagrangian particle tracking solves an indi-
vidual realization, the effect of the number of particles, and thus statistical convergence,
has first been assessed for Lagrangian simulations. Results demonstrated the important
effect of the number of particles on the segregation statistics of the disperse phase, as
expected. However, it turned out these discrepancies do not affect the gas statistics, as
they are weakly sensitive to the number of particles. Another interesting conclusion is
the fact that the gas phase obtained from both methods is equivalent, even if the Eu-
lerian method is intrinsically averaging the gas phase over an infinite sample of particle
realization.

The Eulerian approach that has been chosen is the Monokinetic moment method. As
it cannot capture more than one velocity per position, this strategy is valid only if no
particle trajectory crossing occurs, thus limiting the range of interest of our comparisons
to a Stokes number based on the Kolmogorov time scale below one. For the sake of
comparison, a statistically converged Lagrangian solution has been selected as a reference.
Results have demonstrated the ability of the method to reproduce the gas phase statistics
accurately, whereas the segregation of the disperse phase is still challenging to capture
because of numerical diffusion effects. We also mentioned that this numerical diffusion
has no effect on the gas phase statistics, as the thermal diffusion of the gas phase makes
the gas temperature field less sensitive to disperse phase structures smaller than the
diffusive scale.

In conclusion, as long as the evolution of the flow is not determined by individual par-
ticle effects, the Monokinetic Eulerian moment method is an accurate way to describe
gas-particle flows in a two-way context, as long as no significant particle trajectory cross-
ing occurs. In the case of very small Stokes numbers, where results are highly sensitive to
the number of particles involved, Lagrangian simulations are still the preferred method,
and new developments are necessary for Eulerian methods. As a perspective, it is en-
visioned that high-order moment methods (Vié et al. 2015; Laurent et al. 2012), would
be able to reproduce particle trajectory crossings. High-order numerical methods could
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also be used, like Discontinous Galerkin approaches (Sabat et al. 2014b,a), to reduce the
mesh requirements of the Eulerian simulations as well as the CFL number sensitivity
highlighted for the case with radiation and no gravity.
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Sabat, M., Larat, A., Vié, A. & Massot, M. 2014b On the development of high
order realizable schemes for the Eulerian simulation of disperse phase flows: a convex-
state preserving Discontinuous Galerkin method. J. Comput. Multiphase Flows 6,
247–270.

Saffmann, U. 1962 On the stability of laminar flow of a dusty gas. J. Fluid Mech.
13(1), 120–128.

Simonin, O. 1996 Combustion and turbulence in two phase flows. Lecture series 1996-02.

Squires, K. & Eaton, J. 1991a Measurements of particle dispersion obtained from
direct numerical simulations of isotropic turbulence. J. Fluids Mech. 226, 1–35.

Squires, K. D. & Eaton, J. 1991b Preferential concentration of particles by turbulence.
Phys. Fluids 3, 1169–1178.

Stokes, G. 1851 On the effect of the inertial friction of fluids on the motions of pendu-
lums. Trans. Cambridge Phil. Soc. 9.

Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden
turbulent suspension. part 1. direct numerical simulations. J. Fluid Mech. 335,
75–109.
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