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Numerical simulation of a turbulent hydraulic
jump: Characterization of the free interface and

large bubble structure

By M. Mortazavi, V. Le Chenadec † AND A. Mani

1. Motivation and objectives

Bubble generation is a ubiquitous and complex phenomenon occurring as a result of
non-linear behavior of the free surfaces. Plunging breakers, spilling breakers and plunging
jets are just a few scenarios where bubble generation occurs. Due to its complexity and
our lack of complete understanding of this phenomenon, the models developed in the
literature are far from being predictive (Moraga et al. 2008) (Ma et al. 2011). In addition
to macro-bubble generation another mechanism has been discovered by Sigler & Mesler
(1990), which generates micro bubbles, bubbles which are generated as a result of impact
of two interfaces. A thin air film is trapped in a gap between the surfaces at impact.
This thin film becomes unstable and fragments into tens to hundreds of micro bubbles
(Thoroddsen et al. 2012). The sizes of these bubbles are in the range of tens to hundreds
of microns. One important instance of bubble generation is near the ship hulls, where
turbulent boundary layer interactions with the free surface result in a large amount
of macro and micro bubble entrainment. Due to their dominant buoyancy forces, large
bubbles come to the interface and leave the domain much faster than micro bubbles.
Micro bubbles stay under the interface for a long time and leave a trail behind the ships.
Due to the complexity of this problem, we have considered a simpler case of a hydraulic
jump, where turbulence interactions with a free surface generating a continuous stream
of wave breaking. In this work we aim to understand the structure of the interface, the
length scales associated with them, and the local shape of the interface. Finally, we assess
whether micro-bubble generation is plausible in this scenario. Pumphrey & Elmore (1990)
have characterized different bubble-generation scenarios for the case of a drop impacting
a flat surface, parameterized on the drop diameter and impact velocity. Based on this
study, we can assess whether the impact phenomena occurring in a turbulent hydraulic
jump are prone to producing micro bubbles. A hydraulic jump with a Froude number
of 2 and a Reynolds number of 11000, based on inlet height and velocity, is simulated
with the physical density ratio of 831 after an experiment by Murzyn et al. (2005). Large
bubbles are observed to form in a patch structure with the specific frequency matching
the peak in the velocity energy spectrum.

2. Problem set up

2.1. Governing equations

The governing equations for incompressible two-phase flows include continuity and bal-
ance of momentum,

∇ · u = 0
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∂u

∂t
+ u ·∇u = −∇p

ρ
+

1

ρ
∇ · (µ[∇u +∇Tu ]) + g + fST ,

where u , p, ρ, µ, g and fST are velocity, pressure, density, dynamic viscosity, gravita-
tional acceleration and surface tension force, respectively. Second-order accurate central
differencing is used on a structured uniform mesh to discretize the equations in space,
and a second-order Adams-Bashforth scheme is used to discretize the equations in time.
The Ghost Fluid Method is used for applying the surface tension force (Fedkiw et al.
1999). In order to advect the interface a geometric Volume of Fluid (VOF) method is
used (Le-Chenadec & Pitsch 2013), The equation governing the VOF reads,

∂f

∂t
+ u ·∇f = 0. (2.1)

In the context of incompressible flows, the velocity divergence vanishes and we can
write Eq. (2.1) as

Dm

Dmt

∫
Ωm

fdx = 0, (2.2)

where Dm represents the material derivative and Ωm is the control volume over which
the VOF is defined, i.e., grid cell. In addition to the VOF, a Level Set (LS) is also tracked
in order to be used for accurate curvature and normal calculations,

∂G

∂t
+ u ·∇G = 0.

A third-order accurate WENO scheme is used for Level Set time advection. In order to
make the two solutions of VOF and LS consistent, the level set is modified by a distance
function constructed from the VOF field at each time step. Details of the numerical
procedures can be found in Le-Chenadec & Pitsch (2013).

2.2. Computational domain and boundary conditions

Our simulation is based on the experiment of Murzyn et al. (2005). The inflow Froude
number, based on the inflow height and velocity, is 2. The inflow water height is h =
5.9 cm and the inflow velocity is 1.5 m s−1. The Reynolds number is 11000 and the
Weber number is 1866. The domain length size is chosen to be large, 20h × 4h × 4h
(length× height× width), to minimize the effect of the outlet boundary condition. We
have used a grid of 1280× 256× 256 in order to have at least three grid points across the
Hinze scale as reported in the experiment of Murzyn et al. (2005). Our Reynolds number
does not match the experiment because we have artificially increased the water viscosity
for stability reasons. Increasing the viscosity does not contaminate the results because
the most important turbulence interaction with bubbles and interface is at the scale of
the smallest bubbles (Hinze scale), which we capture with our grid, and turbulence at
much smaller scales has no significant effect on bubble generation and interface dynamics.
The bottom and top boundary conditions are chosen to be Neumann. Since the boundary
layer thickness does not exceed 36% of the inflow height according to the experiment, its
effect on the interface is not significant. The periodic boundary condition is used for the
spanwise direction and a convective boundary condition for the outflow. At the outflow
boundary, in addition to balancing the total flow rate, which is a necessary condition for
the Poisson equation (with Neumann boundary conditions for pressure) to be well-posed,
we ensure that the water flow rate balances with the inflow water flow rate. Both water
and air flow rates are balanced by letting the air flow in or out at a small section of the
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(a) (b)

Figure 1. Two regions in a hydraulic jump with different bubble generation mechanisms and
void fraction characteristics.(a) Lower region of the jump (turbulent shear region). (b) Upper
region of the jump (roll-up region).

outflow boundary. This treatment does not affect the flow inside the domain nor does it
affect the stability of the code. The inflow boundary condition is uniform for the water
and is a sharp 1D Blasius divergence-free velocity profile for the air side.

3. Validation

3.1. Bubble generation

There are two regions of bubble generation with different characteristics, as argued by
Murzyn et al. (2005). Figure 1 shows these two regions. The lower region, Figure 1(a),
is characterized by an advection-diffusion process, and the interaction of the interface
is minimal in this region. Therefore, the bubbles generated at the toe are convected
and diffused downstream of the flow. According to Chanson (1996), the void fraction
in this region can be expressed as a Gaussian profile, which is the solution to a steady
advection-diffusion process,

C = Cmax exp

[
−1

4

U

D

(z − zCmax)2

x

]
, (3.1)

where x, Cmax, U , D and zCmax are, respectively, stream-wise location, maximum void
fraction, characteristic velocity, effective diffusivity and vertical location of the maximum
void fraction, all at the particular x location. Murzyn et al. (2005) also showed that their
results follow a Gaussian profile with appropriate coefficients, which they report in the
experiment.

We compare our time and span-wise averaged void fraction, C, to the experiment, as

a function of the similarity variable (U/4xD)
1/2

(z − zCmax) in Figure 2. The simulation
results agree with the experiment very well, and we can see the self-similar behavior of
the void fraction in the lower region of the hydraulic jump.

The upper region is a result of interfacial aeration as argued by Murzyn et al. (2005),
and a good fit to the void fraction is found by Brattberg et al. (1998), and is in the form
of an error function (Eq. (3.2)),

C =
1

2
erf

(
z − zC50

2
√
Dx/U

)
, (3.2)
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Figure 2. Simulation results of void fraction in the lower region of a hydraulic jump for different
stream-wise locations compared with the theoretical and experimentally validated Gaussian
profile (Murzyn et al. 2005).
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Figure 3. Simulation results of void fraction in the upper region of a hydraulic jump for different
stream-wise locations compared with the experimentally suggested error function of Eq (3.2),
(Murzyn et al. 2005).

where zC50 is the vertical position for which the void fraction equals one half. The void
fraction is not normalized in this case since the maximum value is one in the air side.

Similarly, by using the values for the zC50 and D/Uh from the experiment, we compare
the simulation results with the suggested fit in Eq. (3.2) in Figure 3. The value of zC50

used for the plot comes from the simulation itself. We notice a discrepancy of at most
30% between the value of zC50 in the simulation and experiment, which may be due
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Figure 4. Simulation results of interface length scale compared with the experiment (Murzyn
et al. 2007).

to lack of statistical convergence of the void fraction in the upper region. Nevertheless,
the void fraction in the upper region follows the trend of the error function proposed by
Murzyn et al. (2005) in Eq. (3.2).

3.2. Interface length scale

The interface length scale for hydraulic jumps is another quantity that is computed by
Murzyn et al. (2007). They define the interface length scale as the integral under the
autocorrelation curve of the phase detection signal. We have used the signed distance
function, which is a measure of the distance of a point from the interface, as the signal,
and define the integral of its autocorrelation curve as the interface length scale. Figure 4
shows a comparison between the simulation results and the experiment. The agreement
is quite good for larger values of x; however, it deviates more for smaller values of x.

4. Interface characteristics

In order to find local values of curvature and velocity, we triangulate the interface
using the Marching Cubes method (Lorensen & Cline 1987). For each triangle, we can
compute the two principal curvatures from the information of the LS field. In order to
compute the local interface characteristics of the interface, we divide the interface into
10 windows in the steam-wise direction. Each window has a length of 2h. In the following
sections, the averages are taken over the triangles residing in a particular window.

4.1. Interface local shape

Bermejo-Moreno & Pullin (2008) characterized the local geometrical shapes of the tur-
bulence structures by means of principal curvatures, k1 and k2. We have computed the
principal curvatures on the interface for each window and have plotted their joint pdf
functions in Figure 5. We can observe that the joint pdf is stretched along the two hor-
izontal and vertical axes, an indication that the local shape of the interface is mostly
cylindrical. This is an important observation of the impact process. It is important to
know what kind of interfaces are impacting each other with what kind of local shapes.
We can also observe that the joint pdfs have a tendency to shift to the line k1 = k2
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Figure 5. First principal curvature vs. second principal curvature on the interface for different
stream-wise locations of the hydraulic jump. Each window has a length of 2h. Window 3 starts
at the toe of the jump.

for larger values of x (larger window numbers). The reason is that the area ratio of the
bubbles to total area increases for those places as compared to the windows closer to
the toe of the jump. Since the line of k1 = k2 is a characteristic of a spherical shape
and indicates the presence of the bubbles, the contours shift towards this line for larger
window numbers.

4.2. Interface curvedness distribution

Interface curvedness, as apparent by its name, is a measure of how much an interface is
curved (Bermejo-Moreno & Pullin 2008). It also reduces the two principal curvatures to
a single number, making it a convenient way to measure the local interface curvature. It
is defined as the geometrical mean of the two principle curvatures,
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C =

√
κ2

1 + κ2
2

2
.

To gain insight into the curvedness distribution along the interface of the turbulent hy-
draulic jump, we have computed the Probability Density Function (PDF) of the curved-
ness for different positions of the jump. Figure 6 shows the PDF of the curvedness on the
interface. The PDF of the curvedness is computed based on area. The sum of the area
of a particular curvedness divided by the total area is a measure of probability of finding
a point with that particular curvedness on the interface. The results for two different
resolutions are shown in Figure 6. The solid line represents the grid of 1280× 256× 256
and the dash-dotted line represents a mesh with half the resolution in each direction.
The finer mesh resolves smaller structures, the reason why the value of the PDF for the
fine mesh at larger values of curvedness is higher. The vertical dashed lines represent the
values of curvedness for which the calculations of curvedness for coarse and fine grids are
unreliable. The values for the maximum curvedness, according to our assessments on a
canonical case of a sphere, are set to 1.5/∆x. Interestingly, we can observe a power law
distribution for the PDFs with the slope of −5/3 which extends for a long range.

4.3. Potential interface impact and micro-bubble generation

Pumphrey & Elmore (1990) have studied different types of bubble generation for the
case of a droplet impacting a flat surface of the same liquid. They have organized their
observations into a plot, which is shown in Figure 7. Droplet diameter and impact ve-
locity are the parameters which determine the type of bubble generation. Micro-bubble
generation is observed to occur for relatively low velocities. In this study, in Figure 8,
we have plotted the joint PDF of the velocity fluctuations from the mean value at the
interface and the equivalent diameter corresponding to the interface. Since we know that
the local shape of the interface is mostly cylindrical, the local equivalent diameter can
be defined based on the curvedness as D =

√
2/C. The joint PDF shows that if impact

happens on the interface, based on the relative velocity of the two impacting interfaces
(characterized by the velocity fluctuations) and their shape (characterized by the equiv-
alent diameter), there is a strong likelihood that micro-bubble generation occurs, in the
domain. Experimental observations of micro-bubble generation are also plotted on top
of simulation results in Figure 8.

5. Large bubble formation structure

5.1. Velocity energy spectrum and connection with bubble generation

The energy spectra of the three components of velocity are computed as a function
of frequency for three locations of the jump, x/h = 6, 8, 10, shown in Figures 9-11.
We averaged the spectra in the periodic span-wise direction. Two grid resolutions are
compared. The fine grid of 1280 × 256 × 256 is compared with the results of the coarse
grid, which has half the grid resolution in each direction. The slope of −5/3 is observed
in the inertial range of the turbulence spectrum. Liu et al. (2004) have also reported
on the spectrum of their hydraulic jump experiments, and they have also observed the
−5/3 slope. Note that the Kolmogorov energy cascade assumption to smaller scales is
also valid for highly bubbly two-phase flows.

Another interesting observation from the energy spectrum profiles is that a distinctive
frequency is recognizable, especially for the vertical velocity component, which is believed
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Figure 6. Interface curvedness PDF for different locations of the jump. Each window has a
length of 2h and window 3 starts at the toe of the jump. Solid line: fine grid, dash-dotted line:
coarse grid, dotted line: slope of −5/3, and vertical dashed line: values of curvedness after which
the simulation results are not reliable (computed as 1.5/∆x).

to be the result of the bubble-generation mechanism and the structure of the flow. These
peaks are at frequencies of 3.47Hz and 3.97Hz for locations x/h = 8 and x/h = 10,
respectively, which correspond to non-dimensional Srtouhal numbers of S = fh/U1 =
0.136 and S = fh/U1 = 0.156.

5.2. Large bubble-patch structure

Visual observations of bubble generation suggest that the large bubbles are generated in
a patch-structure pattern and are generated periodically (Figure 12). Therefore, there is
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Figure 7. Pumphrey diagram of bubble generation for droplet impact on a flat surface of the
same liquid, Pumphrey & Elmore (1990).
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Figure 8. Joint PDF of velocity fluctuations on the interface and interface equivalent
diameter computed from the curvedness D =

√
2/C.

an intrinsic frequency associated with this bubble-patch generation. In order to quantify
this frequency we have divided the domain into 100 sections and computed the void
fraction in each section as a function of time. Figure 13(a) shows this void fraction signal
for the interval of 8.8 < x/h < 9.0 . This interval was chosen because it is neither too
close to the jump toe, where the bubble patches are still not fully formed, not too far from
it, where the bubbles are too dissipated and the void fraction signal becomes faded and
the frequency is not recognizable. Figure 13(b) shows the autocorrelation of the signal
as computed from Eq. (5.1).

RV (∆t) =

∫ T

0
Vb(t)Vb(t+ ∆t)dt∫ T

0
Vb(t)Vb(t)dt

. (5.1)
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Figure 9. Energy spectrum of velocity components for x/h = 6.
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Figure 10. Energy spectrum of velocity components for x/h = 8.
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Figure 11. Energy spectrum of velocity components for x/h = 10.

The autocorrelation plot shows the periodic behavior of the void fraction signal. The
period can be determined from the first peak of the plot, which occurs for non-dimensional
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Figure 12. Bubble patches generated periodically and convected downstream with
non-dimensional frequency of S = fh/U1 = 0.145.
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Figure 13. Bubble volume signal and its normalized autocorrelation, for a region of
8.8 < x/h < 9.0. The autocorrelation plot shows a periodic behavior of bubble patches passing
through the domain. The non-dimensional Strouhal number associated with this phenomenon
is S = fh/U1 = 0.145.

∆t = 6.9. The non-dimensional frequency associated with that is S = fh/U1 = 0.145. The
Strouhal number obtained from the energy spectrum peak has less than 8% error relative
to the observed bubble patch non-dimensional Strouhal number. From this observation
we conclude that the nature of bubble generation has a footprint in the velocity spectrum
and shows itself as a dominant frequency, which is especially observable in the spectrum
of the vertical component of velocity. Liu et al. (2004) also observed a peak in their
velocity spectrum at frequency of f = 3.7Hz, which corresponds to S = fh/U1 = 0.157.
This value also matches well with our calculations.

6. Conclusion

In this paper we have discussed the interface local shape and curvedness distributions
of a turbulent hydraulic jump with a Froude number of 2, Reynolds number of 11000 and
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Weber number of 1866, following the experiment of Murzyn et al. (2005). We compared
the void fraction and interface length scale with the experimental results, which showed
good agreement between them. We have observed that the impact events on the interface
have a strong likelihood of generating micro bubbles based on the experimental obser-
vations of Pumphrey & Elmore (1990). Velocity energy spectra for different stream-wise
locations of the hydraulic jump were computed. A −5/3 power law is observed in the
inertial range and the presence of a dominant peak is noticed. This dominant frequency
is associated with the bubble-generation mechanism. The frequency of the peak matches
with the frequency of the bubble-patch generation.
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