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Numerical study of turbulent two-phase
Couette flow

By A.Y. Ovsyannikov, D. Kim{, A. Mani AND P. Moin

1. Motivation and objectives

The motivation underpinning this work is the need to understand bubble generation
mechanisms due to interactions between free surface and turbulent boundary layers as
commonly seen near ship walls. As a canonical problem, we consider a turbulent plane
Couette flow with vertical parallel sidewalls and an air-water interface established by
gravity in the vertical direction. Two-phase Couette flow has been described in the liter-
ature in different flow setups. Most studies were limited to cases of low Reynolds number
and the evolution of a single bubble/droplet. Deformation and breakup of a single droplet
in a plane Couette flow at low Reynolds number has been studied experimentally, the-
oretically, and numerically (see e.g., Li et al. 2000; Renardy et al. 2002; Rallison 1984).
In another example of the two-phase Couette flow is the two-layers of immiscible fluids
which are set between moving horizontal walls. Due to viscosity difference between flu-
ids, there is a jump in the tangential velocity gradient across the interface which induces
instabilities at the fluid interface (Coward et al. 1997; Charru & Hinch 2000).

At high Reynolds number, there are only a few studies of two-phase Couette flow.
Iwasaki et al. (2001) studied the dynamics of a single immiscible drop in turbulent gas
flow between two moving walls. Fulgosi et al. (2003); Liu et al. (2009) performed direct
numerical simulation (DNS) of interface evolution in Couette flow between two moving
horizontal walls. One interesting case of a two-phase Couette flow in a turbulent regime
is when the initial interface is set to be orthogonal to the moving vertical walls. In such
a setup, the interaction between the fluid interface and the turbulent boundary layer
is a key phenomenon. At sufficiently high Reynolds, Weber and Froude numbers, shear-
induced interfacial waves can break, which leads to the formation of air cavities. These air
cavities will be further fragmented by turbulence to smaller bubbles. These complexities
make two-phase Couette flow at high Reynolds number a challenging problem for both
experiments and numerical analysis. Capturing the small-scale flow and interface features
requires high-resolution experimental techniques and very expensive DNS calculations.
Only two numerical studies (Kim et al. 2012, 2013) have been performed for investigation
of air entrainment and bubble generation in two-phase Couette flow.

The current work is a continuation of our recent studies (Kim et al. 2012, 2013), where
we performed numerical simulations of the interface breakup in two-phase Couette flow
at Reynolds number of approximately 13000 and Weber number of approximately 42000
(surface tension coefficient was much smaller than the realistic value for an air-water
system). The effect of Froude number on the interface breakup and bubble generation
was studied in Kim et al. (2012). The second paper of Kim et al. (2013) was mostly
devoted to the development and assessment of a mass conservative interface-capturing
method based on a geometric volume-of-fluid (VOF) approach, and one simulation of
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FIGURE 1. Schematic illustration of the flow geometry.

the two-phase Couette flow was performed for a Reynolds number of 12000 and a Weber
number of 200. However, there have been no studies with one-to-one matched experiments
and numerical simulations. The primary objective of this work is to perform a numerical
simulation of a two-phase Couette flow with flow parameters very close to those of the
laboratory experiment conducted by our collaborators (the group of Dr. James Duncan
at the University of Maryland). The bubble formation rate, bubble size distribution, and
the effect of interface on the modulation of turbulence are the main characteristics of
this flow type, and our investigations are focused on understanding these characteristics.
This paper is structured as follows. In Section 2 we present the equations for the
problem and discuss the key dimensions chosen for our simulations, grid resolution re-
quirements and details of the numerical method. Preliminary results of the numerical
simulation are presented and analyzed in Section 3. In Section 4 we show the effect of
water depth on air entrainment. Finally, conclusions are summarized in Section 5.

2. Problem formulation

We perform a simulation of a two-phase system with realistic air/water density and
viscosity ratios. The density of liquid is piiq = 1000kg/m? and the density of gas is
Pgas = 1.2Kkg/ m?3. However, to reduce computational cost, the viscosity of gas and liquid
are increased four times compared to their realistic values. Thus the viscosity of the
gaseous phase is pgas = 7.2 X 107°Pa - s and the viscosity of the liquid phase is Hliqg =
4 x 1073 Pa - s. The surface tension coefficient ¢ and gravity acceleration g take realistic
values of 0.07N/m and 9.81m/s?, respectively. Figure 1 depicts the schematic of the
flow configuration and domain size. The computational domain is a rectangular box with
sizes 2mh, 2h and 6h in the streamwise (), wall-normal (y) and spanwise (z) directions,
respectively. Here h = 2cm is the half-distance between walls. Initially, the interface
is located at a plane z = 4h, hence a height of liquid layer Hj;q is 4h and a height of
gas layer Hgas is 2h. The sidewalls are moving in the opposite directions with speed
of Uy = 1.6m/s. Based on the chosen parameters, the following main dimensionless
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Re We Fr plia/pgas taia/bgas Hiia/h
Simulation (Kim et al. 2012) 12760 41600 3.9, 6.8 833.33 50 1.57
Simulation (Kim et al. 2013) 12000 206 3.8 833.33 55.55 1.57
Exp. (Masnadi et al. 2013)  46750-74750 837-2142 2.06-3.29 833.33 55.55 18.7
Exp. (Washuta et al. 2014) 32000 730 3.6 833.33 55.55 35
Present simulation 8000 730 3.6 833.33 55.55 4

TABLE 1. Flow configurations for two-phase turbulent Couette flow from experimental and
numerical studies. In Masnadi et al. (2013), dimensionless parameters were defined in a different
way. Here we recompute all parameters according to Eq. (2.1).

parameters are

. U2 .
_ pthwh, We — Pthwh, Fr — Uw ar — th

Miq o \/gh, R

which are Reynolds, Weber, Froude numbers, and aspect ratio (ratio of water depth to
h), respectively. All non-dimensional groups are determined using properties of the liquid
phase. In the current study, Re = 8000, We = 730, Fr = 3.6 and ar = 4.

Table 1 summarizes recent experiments and numerical studies on the two-phase Cou-
ette flow problem in turbulent regime. The experiments reported in Table 1 are all per-
formed by Masnadi et al. (2013) in a 7.5m x 0.075m X 1 m air-water channel at different
operating parameters. In their setup one wall is stationary and the other is moving. The
belt velocity is varied in a range from 2.5 to 4.0 m/s, leading to a range of Reynolds num-
bers from 46750 to 74750, Weber numbers from 837 to 2142, and Froude numbers from
2.06 to 3.29. Note that there have been no studies with one-to-one matched experiments
and numerical simulations, in particular concerning the matching of such key dimension-
less parameters as Re, We and Fr. In the present work we selected these parameters in
accordance with the experiments being performed currently by our collaborators for a
channel of width h = 2cm (Washuta et al. 2014) and Reynolds number of 32000, We-
ber number of 730 and Froude number of 3.6. These match with the experiment in the
narrow channel Weber and Froude numbers, density and viscosity ratios; however, the
Reynolds number is four times lower in our numerical study. We expect that a four fold
difference in Reynolds number should not be critical in predicting bubble generation due
to the large difference between turbulent and interfacial length scales (see paragraph 2.3
for an estimation of Kolmogorov and Hinze scales). Also, the aspect ratio in simulations
is much smaller than in experiments.

Re (2.1)

2.1. Governing equations and numerical method

The governing equations describing the motion of two immiscible, incompressible New-
tonian fluids are the conservation of mass and momentum. The first equation is given in
terms of the volume fraction function v as

o

S+ V- (w =0, (2.2)
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and the second is

%Jrv-(puu)=—Vp+V-T+pg+Fst, (2.3)
where u is the velocity, p is the pressure, p is the density, 7 = u(Vu + Vu®) is the
shear stress tensor, p is the dynamic viscosity, g is the acceleration due to gravity and
Fy. = okdsn is the surface tension force. Here, o is the surface tension coefficient, dx
is the Dirac delta function, s is the interface curvature, and n is the interface normal
vector. The volume fraction function 1 is equal to 1 in the gas phase and 0 in the liquid
phase. The interface is then represented by the volume fraction values, 0 < ¢» < 1. In the
case of a two-phase flow with immiscible fluids, the density and dynamic viscosity are
the stepwise functions and can be written in terms of v,

p(X, t) = PgasU)(Xv t) =+ Plig [1 - 1/)(X7 t)] ) (24)

,LL(X, t) = :ugasd)(xv t) + hiq [1 - 1/}()(’ t)] . (25)

For discretization of Egs. (2.2)-(2.3), we use numerical schemes as described in Kim et al.
(2013). In brief, we use the finite-volume pressure-correction method, where the inter-
face dynamics is captured by the volume-of-fluid method. Geometric flux reconstruction
is based on a piecewise line interface calculation (PLIC) algorithm. The VOF method
conserves the mass of each phase within machine precision, and this is essential for simu-
lation of two-phase flows at high Reynolds and Weber numbers. The surface tension force
is computed using the continuum surface force model (Brackbill et al. 1992) coupled with
the balanced force method (Francois et al. 2006). For an accurate calculation of interface
normal vector and curvature, a level set function is used which is reconstructed from the
 field at every timestep using a fast marching method (Sethian 1999).

2.2. Initial and boundary conditions

The flow is assumed to be statistically homogeneous in the streamwise x direction where
periodic boundary conditions are used. On the side counter-moving walls (y = £h), we
use no-slip boundary conditions. On the top and bottom walls (z = 0 and z = 6h), we
use slip boundary conditions. On all solid wall boundaries, no-flux conditions are used for
the volume fraction function. As the initial condition, we use a laminar velocity profile
perturbed by 10% noise. The initial value for ¢ corresponds to the flat shape of the
interface.

2.3. Grid resolution requirement

In order to accurately capture the interface dynamics, we need to resolve the typical
interface scale (r¢;) and turbulent scales (n and d,).

2.3.1. Turbulent lengthscale
The Kolmogorov lengthscale is given by
n=/e)"* ~ 110 ym. (2.6)

Here ¢ is the mean energy dissipation rate per unit mass and it can be estimated according
to

~0.5m?s ™3 (2.7)

. . 2
=gt an)
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where u, = (1,/p)'/? is the friction velocity, and 7, = “%_Z is the wall shear stress. The

viscous lengthscale is defined as follows
0, = v/u, = 60 pm. (2.8)

Here, for simplicity, we dropped the subscripts, and all quantities p, u, v and € are based
on properties of the liquid phase.

2.3.2. Interface lengthscale

In addition to turbulent lengthscales, we need to resolve an interfacial lengthscale
(bubble radius) in two-phase simulations. There are two major mechanisms of bubble
formation: turbulent fragmentation (Kolmogorov 1949; Hinze 1955) and instability of the
air film due to liquid-liquid impact (Esmailizadeh & Mesler 1986; Pumphrey & Elmore
1990). In our simulations we resolve only the bubbles due to the first mechanism. This
lengthscale can be estimated using the Kolmogorov-Hinze theory. We apply this theory
to estimate the breakage of bubbles in a turbulent liquid flow. If the bubble diameter is
larger than the Kolmogorov lengthscale, then the critical bubble radius (referred to as
the Hinze scale) is given by

We., 3/5

ror =278/ (—U S ) e 2% it 2, >, (2.9)
Pliq

If the bubble diameter is smaller than the Kolmogorov lengthscale, then the critical

bubble radius is given by

1/3
Fer & <UW€CT> 3 2r <. (2.10)
Pliq

In our case, the Hinze scale is much larger than the Kolmogorov lengthscale and the
critical bubble radius is given by Eq. (2.9). For critical Weber number 4.7 (according
to Deane & Stokes 2002), the critical bubble radius is rc; &~ 3mm >> 7. Therefore, we
choose conventional DNS resolution as in single-phase flows. We use a Cartesian grid
with uniform mesh spacing in x and z directions, and stretched mesh in the y direction
according to

h tanh (7(—1 + %))
Y =

tanh(7y) ’
where the stretching parameter v is 2.9. Based on the viscous lengthscale in the liquid
phase the grid resolution is AzT ~ 13, Ayt =~ 0.2, Ayf,, ~ 13 and Azt =~
Such discretization results in at least 4 grid points per Hinze scale (8 points per bubble
diameter) and 18 grid points per viscous sublayer.

Finally, the timestep is given from the stability constraint due to surface tension as it
is more restrictive than the stability conditions due to convection and gravity terms (the
viscous terms are treated implicitly):

At = (/P9 Paas n 32 g6, (2.12)
4o
3. Results

To get a statistically developed flow we run the simulations for about 100 flow-through
times. Figure 2(a) and Figure 2(b) show the time histories of the potential energy due

(2.11)
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FIGURE 2. Time history of (a) potential energy due to gravity, Es = [, p(x,t)g - xdx; (b)

normalized area of the air-water interface A/Ao, where A = [|, 6(¢)|V¢|dx, ¢ is the level-set
function. The gray box depicts a statistical sampling window.

to gravity and the total area of the air-water interface, respectively. Figure 2(a) shows
that it takes about 70 flow-through times to achieve fully developed state, after which
turbulent statistics are collected over 30 flow-through times (this region is depicted by
the gray box). The maximum potential energy is about 1.3% of the initial value at the
time of maximum deformation (around 15 flow-through times), and it is about 0.4%
higher than its initial value at the fully developed state. Figure 2(b) shows the evolution
of the gas-liquid interface area. Due to interface corrugation and generation of bubbles,
the total area of the interface increases about 22 times compared to the initial area of
the unperturbed interface.

Figure 3(a-d) show instantaneous snapshots of the interface (given by iso-surface
1 = 0.5). On the free surface, shear-induced oblique wave structures are observed (Fig-
ure 3(a)), then the interfacial waves grow in amplitude (Figure 3(b)), leading to breakup
of the interface (Figure 3(c)). The air cavities are found underneath the free surface,
trapped between the breaking interfacial waves. These air cavities are subsequently frag-
mented into air bubbles in the water. Finally, Figure 3(d) shows the interface at the fully
developed state.

Figure 4 shows time- and streamwise-averaged flow for two cases: (a) a two-phase
Couette flow and (b) a single-phase Couette water flow at the same Reynolds number of
8000. The color contours correspond to the streamwise component of the mean velocity,
@, while the wall-normal and spanwise components, (,@), are shown as vector plot.
The maximum root-mean-square (rms) value of in-plane velocities represents (after 100
flow-through times) approximately 6-7% of the maximum streamwise velocity for both
cases and does not diminish with time. For the single-phase Couette flow, secondary flow
is represented by four large eddies, while for the two-phase case the secondary flow is
more complex due to the effects of the interface. In our simulations the length of the
computational domain, 27h, was chosen as in classical simulations of pressure-driven
channel flow. However, it is known from studies of single-phase Couette flow (Lee & Kim
1991; Komminaho et al. 1996; Papavassiliou & Hanratty 1997) that the domain length
should be much longer. In this work we focus on a study of interface/boundary layer
interaction and leave the study of Couette flow in longer channels for future research.

Mean streamwise velocity profiles measured at z/h = 1.5, z/h = 2.5, z/h = 3.5 and
z/h = 4 locations are shown in Figure 5. In addition to two-phase Couette results,
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FIGURE 3. Snapshots of the air-water interface at different times: (a) t* = 5; (b) t* = 10; (c)
= 15; (d) t* = 60.

we show the result of simulation for single-phase Couette flow at the same Reynolds
number of 8000. Figure 5(a) shows velocity profiles in non-dimensional units, U/Uy
versus y/h. Figure 5(b) shows the same data in non-dimensional viscous units according
to Ut = (U — Uy)/u, and y* = (h — y)/d,. As seen from Figure 5(b), there is no
collapse of the results for two-phase Couette flow with the log-law even for a velocity
profile quite far from the interface at z/h = 1.5. Even for single-phase Couette flow, a
particular profile of streamwise velocity does not necessarily collapse with the log-law
owing to the presence of persistent roller structures. Only after averaging of velocity in
a vertical direction does the velocity profile for single-phase Couette flow matches with
the log-law.

Figure 6 shows the rms value of the streamwise turbulent intensity. The 2D field of
the turbulent fluctuations is presented on the left, while 1D profiles at different locations
z/h =15, z/h = 2.5, z/h = 3.5 and z/h = 4 are presented on the right. Compared
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FI1GURE 4. Turbulent statistics: time- and streamwise-averaged velocity field. Color plot shows
the mean streamwise velocity; vector plot depicts mean in-plane flow. (a) Two-phase Couette
flow at Re = 8000, We = 730 and Fr = 3.6; (b) Single-phase Couette flow at Re = 8000.
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FIGURE 5. Turbulent statistics for two-phase Couette flow at Re = 8000, Fr = 3.6, We = 730:
(a) mean streamwise velocity; (b) mean streamwise velocity in viscous units. Lines represent
profiles at different depths: ,z/h=4;——— z/h=35; ——,2/h=25; —--—, z/h = 1.5.
Symbols o correspond to DNS results (also averaged in the vertical direction) for single-phase
Couette water flow at the same Reynolds number.

to single-phase Couette flow at z/h = 4, amplification of turbulent intensity was found
near the interface, whereas a diminished turbulent intensity was observed in the core
region. Figure 7 and Figure 8 show rms values of the wall-normal and spanwise turbulent
intensities, respectively. Note that for wall-normal and spanwise turbulent intensities,
turbulence near the wall and near the interface (profile at z/h = 4) increases compared
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FIGURE 6. Turbulent statistics: rms of the streamwise velocity fluctuation. (a) 2D field; (b) 1D
profiles at different depths: ,z/h=4;——— 2z/h=35; ——,2/h=25; —--—, z/h = 1.5.
Symbols o correspond to DNS results for single-phase Couette water flow.
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FIGURE 7. Turbulent statistics: rms of the wall-normal velocity fluctuation. (a) 2D field; (b) 1D
profiles at different depths: ,2/h=4;——— 2z/h =35, —-—, 2/h =25, —--—, z/h = 1.5.
Symbols o correspond to DNS results for single-phase Couette water flow.

to turbulent intensity at other depths. However, the absolute value of turbulent intensity
is larger for single-phase Couette flow.



50 Ovsyannikov et al.

s (/5] TR
0.11 i
0.09
0.08
0.06
0.05
0.03
0.02
< 34
N
2-_ '
1: ’
¢ 07 — T I T T T 7
01 5 1 -1 -0.5 7 0.5 1
R y/h
(@) v/ (b)
FIGURE 8. Turbulent statistics: rms of the vertical velocity fluctuation. (a) 2D field; (b) 1D

profiles at different depths: ,z2/h=4;——— 2z/h=35; ——, 2/h=25; —--—, z/h = 1.5.
Symbols o correspond to DNS results for single-phase Couette water flow.

(a)
FIGURE 9. Air-water interface at fully developed state: (a) Results for an aspect ratio of 1.57
and Re = 12000, We = 206, Fr = 3.8 (Kim et al. 2013); (b) Present results for an aspect ratio
of 4 and Re = 8000, We = 730, Fr = 3.6.

4. Influence of the water depth

Figure 9 shows a comparison of the fully developed air-water interface from our previ-
ous results (Kim et al. 2013) (Figure 9(a)) and the current simulation (Figure 9(b)). The
results on the left figure were obtained for an aspect ratio of 1.57, whereas in the current
simulation the aspect ratio is 4. As seen, the simulation for the higher value of the aspect
ratio predicts much less air entrainment. To confirm our hypothesis of the influence of
the water depth on bubble density, we are currently running simulations for low and
high values of the aspect ratio (1.57 and 8) for the same non-dimensional parameters:
Reynolds, Weber and Froude numbers, as in the simulation presented in this work.
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5. Conclusions

In this work we performed a numerical simulation of a two-phase Couette flow at a
Reynolds number of 8000, Froude number of 3.6, Weber number of 730 and at realistic
air-to-water density and viscosity ratios. Except for Reynolds number and water depth,
the parameters of simulation correspond to experiments currently being performed at the
University of Maryland. The VOF method has been used to predict interface dynamics.
To achieve statistically state, two-phase simulations of Couette flow require much longer
time compared to simulations of single-phase Couette flow. Amplification of turbulent
intensity was found near the interface, whereas diminished turbulent intensity was ob-
served in the core region. It was found that the bubble density depends on the water
depth. To validate this result, in our ongoing work we compare numerical results obtained
for different aspect ratios with experimental data. In addition, a simulation is being car-
ried out with deeper water at an aspect ratio Hiiq/h of 8 and the same non-dimensional
parameters, Re = 8000, We = 730, Fr = 3.6.
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