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Accurate interface normal and curvature
estimates on three-dimensional unstructured

non-convex polyhedral meshes

By C. B. Ivey AND P. Moin

1. Motivation and objectives

The volume-of-fluid (VOF) method is one of the most widely used formulations to
simulate interfacial and free-surface flows (Scardovelli & Zaleski 1999). In this method,
the interface evolution is implicitly tracked using a discrete function, F , whose value
represents the volume fraction of the tagged fluid within a cell of the computational
mesh. F is a discretized version of the fluid marker function, f , that is constant in each
phase, jumps at the interface from 0 to 1, and follows the scalar convection equation

∂f

∂t
+ ~v · ∇f = 0, (1.1)

where ~v is the velocity vector.
The piecewise-linear interface calculation (PLIC) has become the standard interface

representation within the VOF community (Tryggvason et al. 2011). PLIC-VOF methods
describe the interface by a series of disconnected planes, each oriented by a unit normal,
n̂, and positioned by a constant, C, such that n̂ · ~x+C = 0. Two key steps in any PLIC
representation include volume truncation, determination of F given n̂ and C, and volume
enforcement, determination of C given n̂ and F . The importance of the volume truncation
and enforcement operations has led researchers to develop analytic and geometric tools
to expedite computations for rectangular and hexahedral elements (Scardovelli & Zaleski
2000), for triangular and tetrahedral elements (Yang & James 2006), and for convex
polyhedral elements (López & Hernández 2008). We extended the class of geometric
tools to non-convex polyhedral meshes in order to implement the PLIC-VOF method in
a collocated node-based finite-volume flow solver (Ham et al. 2006). As evidenced by the
volume enforcement and truncation operations, estimation of n̂ is key to the accuracy of
any PLIC-VOF method.
The equations governing the motion of an unsteady, viscous, incompressible, immisci-

ble two-fluid system are the Navier-Stokes equations, augmented by a localized surface
tension force

ρ

(

∂~v

∂t
+ ~v · ∇~v

)

= −∇p+∇ ·
(

µ
[

∇~v + {∇~v}T
])

+ σκδn̂,

∇ · ~v = 0,

κ = −∇ · n̂,

(1.2)

where, ρ is the density, p is the pressure, µ is the viscosity, σ is the surface tension
coefficient, κ is the interface curvature, and δ is the Dirac Delta function. As evidenced
by Eq. (1.2), in addition to accurately estimating n̂, the PLIC-VOF framework also needs
to calculate the rate at which n̂ turns along the interface, κ.
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Determination of n̂ and κ in the VOF method is problematic due to the discontinuous
nature of F . Nevertheless, various algorithms to calculate n̂ and κ have been proposed.
The traditional Parker-Youngs (PY) method (Parker & Youngs 1992) uses simple dif-
ference formulas to calculate gradients in F for the estimation of n̂. The method was
extended to nonorthogonal meshes (Ito et al. 2009); however, PY is at most a first-order
accurate method because n̂ for a rectilinear interface is not calculated exactly, a necessary
condition for second-order accuracy (Pilliod Jr. & Puckett 2004). The least-squares fit
procedure (Scardovelli & Zaleski 2003; Aulisa et al. 2007) is more accurate than PY and
has been extended to unstructured meshes (Ashgriz et al. 2004); however, it too does not
satisfy the necessary condition for a second-order method. Several second-order methods
for estimating n̂ have been proposed, namely the least-squares volume-of-fluid interface
reconstruction algorithm (LVIRA) and the efficient least-squares volume-of-fluid method
interface reconstruction algorithm (ELVIRA) for structured grids (Pilliod Jr. & Puck-
ett 2004), and the geometric least-squares (GLS) method for unstructured grids (Mosso
et al. 1996), each able to reconstruct a rectilinear interface exactly. LVIRA orients n̂ such
that the discrepancy in F from using the calculated linear interface over a neighborhood
of cells is minimized in the least-squares sense. The procedure requires costly geometric
iterations in which the volume enforcement step must be performed. ELVIRA bypasses
the iterations by selecting n̂ amongst a set of candidate estimates that uses conventional
methods. GLS follows the procedure of LVIRA, requiring geometric iterations within an
unstructured framework – a prohibitively costly procedure. A well-known non-iterative
method for estimating n̂ is the height-function (HF) technique. In the HF method, F is
integrated in the cartesian direction closest to n̂ (approximated with a simpler method)
to calculate a height, H . Slopes of a local H distribution in the other two cartesian
directions are used to correct n̂ (Cummins et al. 2005; Sussman 2003; Francois et al.

2006). The HF method was shown to be second-order accurate with proper handling for
particular alignments of the interface with respect to the grid lines (Bornia et al. 2011;
Ferdowsi & Bussmann 2008). In two dimensions, the method was extended to nonuni-
form rectangular grids (Francois & Swartz 2010) and, by adapting the definition ofH and
using a least-squares fit, to unstructured rectangular/triangular grids (Ito et al. 2014),
both exhibiting second-order convergence in n̂.

As shown in Eq. (1.2), κ requires higher differentiability than that of n̂. To combat the
lack of differentiability of F , various methods have been posited to calculate κ. In the con-
tinuum surface force (CSF) method, F is convoluted with a kernel function to provide
a smoothed-out distribution to calculate second derivates over (Brackbill et al. 1992).
The reconstructed-distance function (RDF) builds a signed-distance function away from
the interface to provide a smooth field from which κ can be calculated (Cummins et al.
2005). The RDF technique was extended to unstructured rectangular/triangular meshes
(Ito et al. 2013). Both CSF and RDF have shown lack of convergence under refinement
on structured (Cummins et al. 2005) and unstructured (Ito et al. 2014) meshes. In ad-
dition to the calculation of n̂, the HF method has been used to calculate κ (Cummins
et al. 2005), demonstrating second-order accuracy over a series of canonical test prob-
lems on uniform cartesian meshes (López et al. 2009; López & Hernández 2010; Bornia
et al. 2011). In two dimensions, calculation of κ with the HF method was extended to
nonuniform rectangular grids without loss of the second-order convergence (Francois &
Swartz 2010). The HF technique was extended to two-dimensional unstructured rectan-
gular/triangular grids (Ito et al. 2014); however, the reframed definition of H required
quadric fitting to calculate κ, and the method was less than first-order accurate. To the



Interface normal and curvature estimates on unstructured meshes 55

best of our knowledge, the HF technique for calculating n̂ and κ has not been extended
to three-dimensional unstructured meshes.
It is hoped that the superiority of the HF technique for estimating n̂ and κ on uniform

cartesian meshes, in regard to both cost and accuracy, has been made evident. In this
paper, we extend the HF technique for estimating n̂ and κ to three-dimensional unstruc-
tured non-convex polyhedral meshes. The method embeds structured HF stencils in the
unstructured mesh and interpolates the mesh F data to the stencils to construct the H
distribution; as such, it will be called the embedded height-function (EHF) technique in
the rest of the article. The EHF technique differs from the unstructured HF method (Ito
et al. 2014) in that it uses the traditional H distribution on cartesian stencils to calculate
numerical derivates in an attempt to reclaim the second-order accuracy of the structured
HF method in the calculation of n̂ and κ. The structure of the report is as follows. Sec-
tion 2 presents the EHF technique, where Section 2.1 reviews the traditional structured
HF technique, Section 2.2 discusses the construction of embedded stencils, and Section
2.3 presents two geometric methods for interpolating F from the mesh to the EHF sten-
cils. Section 3 demonstrates the performance of the EHF technique, as compared to the
contemporary methods, on a sphere of radius 2 centered in an 83 domain.

2. Interface curvature calculation

2.1. Overview of the height-function technique on a structured grid

This section provides an overview of the HF method for calculating curvature on uniform
cartesian meshes with a focus on 3×3 stencils. Consider an interfacial cell (i, j, k), where
0 < F < 1, in which the absolute value of the z component of the n̂, nz, is largest (assume
n̂ is known and points outward). Using a 3× 3 stencil centered at the cell (i, j, k) on the
xy plane, a local distribution of H is calculated as follows

Hr,s =

tup
∑

t=−tdown

F ∗

i+r,j+s,k+t∆z, for r = −1, 0− 1 and s = −1, 0, 1, (2.1)

where tdown and tup are adaptively adjusted from 0 to 3, ∆z is the cell size in the z
direction, and F ∗ is a modified distribution of F that is forced to follow a local monotonic
variation along the z direction. The stencil is adapted as suggested by Hernández et al.

(2008). tup is gradually increased up to a maximum of 3 cells as long as the following
conditions are satisfied

sign (nz)
(

αk+tup
− αk+tup−1

)

< 0 and 0 < αk+tup
< 9, (2.2)

where αk =
∑1

r=−1

∑1

s=−1 Fi+r,j+s,k. tdown is adjusted similarly. The stencil adaptation
guarantees that the entire H distribution is monotonic in the HF direction. F ∗ satisfies
local monotonicity across the HF direction by the following modification proposed by
López et al. (2009)

F ∗

i+r,j+s,k+t =
1

2
(1− sign (t) sign (nz)) ,

if sign (nz) (Fi+r,j+s,k+t − Fi+r,j+s,k+t−1) < 0 for t = −1, . . . ,−tdown

or sign (nz) (Fi+r,j+s,k+t − Fi+r,j+s,k+t−1) > 0 for t = 1, . . . , tup.

F ∗

i+r,j+s,k+t = Fi+r,j+s,k+t otherwise.

(2.3)

From the local H distribution, n̂ and κ of the interface at cell (i, j, k) are determined
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as

n̂ = −〈Hx Hy sign (nz)〉⊤
√

1 +H2
x +H2

y

,

κ = −
Hxx

(

1 +H2
y

)

+Hyy

(

1 +H2
y

)

− 2HxyHxHy
(

1 +H2
x +H2

y

)3/2
,

(2.4)

where Hx and Hy are the partial derivatives of H in the x and y directions, respectively.
The n̂ and κ of cell (i, j, k) are determined using Eq. (2.4) if the following condition
is satisfied: zk−1/2 < H0,0 < zk+1/2, where zk−1/2 and zk+1/2 are the heights of the
lower and upper faces of cell (i, j, k) from the bottom face of the lowest HF stencil cell
(i, j, k − tdown). When this constraint is not satisfied, the interface crosses multiple cells
along the middle HF column, degrading the accuracy of this method (López et al. 2009;
Ferdowsi & Bussmann 2008; Bornia et al. 2011). For the interface cells, 0 < F < 1, that
do not satisfy this criterion, n̂ and κ are determined through an interpolation of the
neighboring interface cells that do satisfy this criterion. If the interface cell is isolated,
meaning that there are no neighbors satisfying the HF interface criterion, n̂ and κ have
to be determined through an auxiliary method that does not involve HF.

The partial derivatives of H over the 3 × 3 stencil can be calculated, to second-order
accuracy, with the smoothed central difference formulas (López et al. 2009; López &
Hernández 2010) written as

Hx (γ) = [γ (H1,1 −H−1,1) + (H1,0 −H−1,0)

+ γ (H1,−1 −H−1,−1)] / (2∆x (1 + 2γ)) ,

Hxx (γ) = [γ (H1,1 − 2H0,1 +H−1,1) + (H1,0 − 2H0,0 +H−1,0)

+ γ (H1,−1 − 2H0,−1 +H−1,−1)] /
(

∆x2 (1 + 2γ)
)

,

Hxy = [(H1,1 −H1,−1)− (H−1,1 −H−1,−1)] / (4∆x∆y) ,

(2.5)

where γ is a smoothing coefficient, and ∆x and ∆y are the grid spacings in the x and y
directions, respectively. The partial derivatives in the y direction are calculated similarly.
As shown in Eq. (2.5), the partial derivatives in a direction are potentially smoothed along
the other direction in the plane. γ is prescribed to improve the n̂ and κ computation by
averaging out the errors in H (see discussion in Section 3.2). Local osculating spheres
have also been implemented to further correct H (López & Hernández 2010); however,
this correction was not invoked here to agglomerate all secondary corrections into γ,
simplifying the analysis.

2.2. Construction of height-function stencils on an unstructured grid

The HF definition proposed in Section 2.1 has been shown to be second-order conver-
gent in n̂ and κ numerically (Cummins et al. 2005; Ferdowsi & Bussmann 2008; López
et al. 2009). The second-order accuracy was corroborated analytically provided that the
function describing the interface could be approximated to second order with H (Bornia
et al. 2011). The constraint requires that the fourth derivative of the function is bounded
and, for the mean value theorem to hold, that the interface crosses the HF column.
To reconstruct H from the F data, the mean value theorem requires that the series of
cells in the HF column are bounded by a full cell, F = 1, and an empty cell, F = 0.
The algorithm described in Section 2.1 was designed to meet such constraints, and to
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leverage such a method, we propose embedding local uniform cartesian stencils in the
unstructured mesh.
Our collocated node-based finite-volume flow solver (Ham et al. 2006) creates node-

based volumes by tessellating each cell of the primal mesh into sub-tetrahedra, each
composed of a node, a face center, an edge center, and a cell center, and agglomerating
the sub-tetrahedra associated with the node together to form, in general, a non-convex
polyhedron. The node volumes comprise the median-dual mesh. An example of a two-
dimensional median-dual mesh, composed of non-convex polygons, formed from a primal
mesh composed of convex polygons, is shown in Figure 1(a).
For each node, the HF stencil is constructed by forming the bounding box of the node

volume and shifting it in each coordinate direction in increments of its respective length
to fill a (3× 7× 7)∪ (7× 3× 7)∪ (7× 7× 3) stencil. To construct the mapping from the
mesh to the stencils at the beginning of the simulation, each stencil encompasses the x,
y, and z stencils of maximum column height (tup = tdown = 3), ensuring the availability
of any possible subset of the stencil required by Eq. (2.1) to construct the local H
distribution. Each node has its own HF stencil to ensure that the n̂ and κ estimates for
the center bounding box of the HF stencil directly correspond to the node, i.e., if H in
the central column resides in the node bounding box, it also resides in the node volume.
Under this construction, by performing the algorithm in Section 2.1 on the stencil, the
mean value theorem will hold for the node volume. Unfortunately, a single auxiliary
uniform cartesian mesh, similar to that used by the balanced-force refined level-set grid
method (Herrmann 2008), could not satisfy the constraint placed by the mean value
theorem. If stored properly, each HF stencil needs only 135 units in three dimensions (33
in two dimensions), where a given stencil unit, u, can be indexed by the node, p, and
the local local cartesian indices, (i, j, k): u← [p, (i, j, k)]. Each stencil unit needs to store
the associated minimum and maximum vertex coordinates of the bounding box, a list of
nodes whose volumes intersect with the bounding box, and the intersection volumes of
each of these nodes with the bounding box.
In order to efficiently find all the intersections, the alternating digital tree (ADT) search

algorithm of Bonet & Peraire (1991) is employed. Bounding boxes of the node volumes
are used to build the tree structure. Given the ADT and an HF stencil-unit bounding
box, the node volumes whose bounding boxes intersect with the HF stencil-unit bounding
box can be efficiently found. For the node-volume bounding boxes that intersect with the
HF stencil-unit bounding box, the node volumes are checked for intersection. If the node
volume and the HF stencil unit are found to intersect, the node index and intersection
volume are added to the list of nodes.
Figure 1(b) shows an example of a two-dimensional stencil created from the bounding

box of a node volume of the median-dual mesh constructed in Figure 1(a). In a parallel
setting, the embedded stencil can reside on multiple processors, which need not be the
same as the unstructured stencils used for differentiating the properties on the median-
dual mesh. An example partition is shown to the right of Figures 1(a,b), where the
processor boundary separates cells in the primal mesh, cutting through the node volumes.

2.3. Interpolation of volume fraction data from unstructured grid to stencils

To perform the calculation in Section 2.1, the HF stencils need to be populated with F
data interpolated from the median-dual mesh. As described in Section 2.2, each stencil
unit has an associated bounding box and a list of nodes that intersect the bounding box
with their respective intersection volumes. From the information available, two simple
geometric interpolation schemes can be constructed.
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(a) (b)

Figure 1. HF stencil embedded in median-dual mesh. The primal mesh is outlined with a solid
black line in (a) and the associated median-dual mesh is outlined with dashed black line in (a,b).
The processor boundary is indicated by a thick black line in (a,b). The central bounding box of
the node volume of interest is indicated by a closed solid black line filled with dark gray, with
the associated HF stencil indicated by a closed solid black line filled with light gray in (b).

The simplest method to interpolate F to a single HF stencil unit is to take a weighted
average of the F data from the nodes it intersects, where the weight is determined by the
intersection volume of the node. The intersection volume-weighted (IVW) interpolation
follows the update rule

Fu =

∑

p ǫ intersecting nodes V
∩
u,pFp

Vu
, (2.6)

where Fu is the volume fraction of the stencil unit, Fp is the volume fraction of a node, Vu

is the stencil-unit bounding box volume, and V ∩
u,p is the intersection volume of p’s node

volume and u’s stencil-unit bounding box. Figure 2 illustrates the interpolation scheme
for a single stencil unit. IVW provides a first-order approximation to Fu; however, except
for Fp, all the required information needs to be calculated once only at the start of the
calculation, making it quite efficient over the course of the simulation (note that Vu is
the same for all units in a given HF stencil). Once Fu is determined for every HF stencil
unit, n̂ and κ can be calculated using Eqs. (2.1)-(2.5).
A higher-order interpolation scheme for Fu can be constructed by utilizing the PLIC

information from the list of intersected nodes. To interpolate using the PLIC recon-
struction, n̂ needs to be predetermined: e.g., the PY method. Then the planar interface
constant, C, needs to be determined through the volume-enforcement operation using n̂
and F . From the PLIC information a more accurate approximation to Fu can be found,

Fu =

∑

p ǫ intersecting nodes V
(

HPLIC
p ∩ Pp ∩ Pu

)

Vu
, (2.7)

where V (·) is the volume operator, HPLIC
p is the half-space formed behind the PLIC

plane (in the −n̂ direction), Pp is the polyhedral representation of the node volume, and
Pu is the polyhedral representation of the bounding box. HPLIC

p ∩ Pp is the polyhedron
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(a) (b) (c)

Figure 2. IVW interpolation of Fu of the stencil-unit bounding box u from the Fp of the
intersected node volumes p. The median-dual mesh is outlined by a solid black line in (a,b,c).
The stencil-unit bounding box is outlined by a dashed black line in (a,b,c). The volume-fraction
is visualized using a light gray filling in (a,b,c).

formed by truncating Pp by the PLIC plane. PLIC, along with an accurate estimate of
n̂, provides a second-order approximation to the fluid interface (Ferdowsi & Bussmann
2008), yielding a second-order accurate Fu. The added accuracy is at the cost of an added
volume-enforcement step to reconstruct the PLIC interface. Furthermore, interpolation
requires a polyhedron-plane truncation step to find the polyhedron bounding the tagged
fluid and a polyhedron-polyhedron intersection step to determine the intersection volume
between the bounding box and the tagged fluid. Figure 3 schematically shows the PLIC-
based interpolation procedure in two dimensions. Once Fu is determined for the entire
HF stencil, n̂ can be updated using Eqs. (2.1)-(2.5) and the approximation to Fu can be
ameliorated by iterating. IVW, along with Eqs. (2.1)-(2.5), can be used instead of PY to
get a first estimate of n̂ to perform the PLIC-based interpolation scheme; however, both
PY and IVW will provide only a first-order approximation to Fu, so at least two iterations
will be required to get a second-order accurate estimation to n̂ and κ. The accuracy of
the interpolation derives from the accuracy of n̂ used in the PLIC reconstruction, so
different methods to estimate n̂ and iteration counts are surveyed in Section 3.1.

3. Surface normal and curvature tests

Three primal mesh elements are used to test the EHF method, a hexahedron, a
wedge, and a tetrahedron. The wedge and tetrahedron mesh elements’ uniform edge
lengths, ∆, are prescribed such that their respective cell volumes matched that of the
hexahedral mesh of the same cell count. Specifically, ∆3

wedge ≈ 4/
√
3∆3

hexahedron and

∆3
tetrahedron ≈ 6

√
2∆3

hexahedron. Unfortunately, the edge constraints could only be ap-
proximately satisfied, so the wedge and tetrahedron elements are only approximately
uniform in shape. Furthermore, the uniformity constraint on the edge length inadver-
tently resulted in fewer cells in the wedge- and tetrahedron-packed primal meshes (see
Figure 4). The median-dual meshes will have an even larger disparity in node count.
Although the primal mesh elements are simple convex polyhedra, the node volumes of
the median-dual mesh can be complicated in structure.

A sphere of radius 2 is used to test the EHF technique. The sphere is centered in a
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(a) (b) (c)

Figure 3. PLIC-based interpolation of Fu of the stencil-unit bounding box u from the H
PLIC
p

of the intersected node volumes p. The median-dual mesh is outline by a solid black line in
(a,b,c). The stencil-unit bounding box is outlined by a dashed black line in (a,b,c). The PLIC
reconstruction is visualized with a closed black line filled with light gray in (a,b). The PLIC
region in the stencil-unit bounding box is visualized with a closed black/dashed line filled with
dark gray in (b).The volume-fraction is visualized using a light gray filling in (c).

(a) (b) (c)

Figure 4. Example of primal meshes used in EHF tests of different topology. (a) A mesh
composed of 8000 hexahedral elements. (b) A mesh of 7620 wedge elements is shown. (c) A
mesh composed of 7302 tetrahedral elements is shown. The wedge and tetrahedron elements in
(a) and (b) were created such that their volumes approximately matched a hexahedron element
from (a).

domain of size 83. The n̂ and κ error norms are, respectively, defined as

L1(n̂) =
∑

p ǫ interface nodes

∣

∣1− n̂∗
p · n̂p

∣

∣Vp
∑

p ǫ interface nodes Vp
,

L1(κ) =
∑

p ǫ interface nodes

∣

∣

(

κ∗
p − κp

)

/κ∗
p

∣

∣Vp
∑

p ǫ interface nodes Vp
,

(3.1)

where n̂∗
p and n̂p are, respectively, the true and calculated surface normals at node p,

κ∗
p and κp are, respectively, the true and calculated surface curvatures at node p, and a

node p is considered an interface node if 0 < Fp < 1.
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3.1. Impact of interpolation scheme

Section 2.3 describes methods for interpolating Fp from nodes p that intersect HF stencil
unit u to Fu, the stencil-unit volume fraction. The methods are broken down into IVW-
and PLIC-based methods. The PLIC-based methods rely on an estimate of n̂ to perform
the interpolation. Further, n̂ can be updated by the EHF method and the interpolation
repeated. Methods are compared by checking the convergence of L1(n̂) and L1(κ) for a
sphere of radius 2 in a domain of size 83 over a series of tetrahedral primal meshes. The
investigated methods are IVW interpolation, PLIC-based interpolation using the exact
n̂ for a sphere, PLIC-based interpolation using n̂ calculated from the PY method, IVW
interpolation followed by PLIC-based interpolation using n̂ calculated from the EHF
method, PLIC-based interpolation using n̂ calculated from the PY method followed by
PLIC-based interpolation using n̂ calculated from the EHF method, and PLIC-based
interpolation using n̂ calculated from the PY method followed by 9 iterations of PLIC-
based interpolation using n̂ calculated from the EHF method. The results of the study
are shown in Figure 5. From Figure 5(a), it is evident that the accuracy of n̂ calculated
using the EHF method is second-order convergent regardless of interpolation method
or number of iterations; however, IVW interpolation was the least accurate, whereas
PLIC-based interpolation using n̂ calculated from the PY method followed by PLIC-
based interpolation using n̂ calculated from the EHF method was closest in accuracy to
the PLIC-based interpolation using exact n̂. The differences in the interpolation schemes
are more apparent in L1(κ), shown in Figure 5(b). Both IVW interpolation and PLIC-
based interpolation using the PY method begin to diverge for large Nno. The methods
using at least two iterations continue to converge; however, PLIC-based interpolation
for the first iteration was more accurate than IVW interpolation. Following the first it-
eration of PLIC-based interpolation using the PY method, L1(κ) is insensitive to the
number of subsequent iterations of PLIC-based interpolation using n̂ calculated from
the EHF method, showing greater than first-order convergence and a nominal error that
is slightly larger than interpolation using exact n̂. As each iteration requires a volume
enforcement operation, and in light of the insensitivity of L1(κ) to the number of itera-
tions of PLIC-based interpolation after two, we implemented PLIC-based interpolation
using n̂ calculated from the PY method followed by PLIC-based interpolation using n̂
calculated from the EHF method for the remainder of the tests.

3.2. Impact of smoothing parameter

The calculations of n̂ and κ using Eq. (2.4) have an implicit dependence on γ from the
smoothed finite difference formulas in Eq. (2.5). The parameter was proposed as a means
to increase the accuracy of κ by addressing H errors due to misalignment of the HF
direction and n̂ (López et al. 2009). γ was prescribed as

γ =

{

0.2 if θ ≥ θcrit

0 otherwise
, (3.2)

where θ = acos(nz) (z is assumed to be the HF direction), and θcrit = 0.8.
Errors in H , e, are amplified by numerical differentiation. Specifically, the errors in Hx

and Hxx using second-order finite differences are

E(Hx) = (e1 − e−1) / (2∆x) +O(∆x2) ≈ e/∆x+O(∆x2),

E(Hxx) = (e1 − 2e0 + e−1) /∆x2 +O(∆x2) ≈ 4e/∆x2 +O(∆x2),
(3.3)

so for small ∆x, errors in Hx and Hxx are dominated by errors in H . From Eqs. (2.4)
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Figure 5. L1 Errors in n̂ (a) and κ (b) for a sphere of radius 2 in a domain of size 83 using
different interpolation schemes on a tetrahedral primal mesh. IVW indicates IVW interpola-
tion. Exact n̂ indicates PLIC-based interpolation using the exact n̂ for the sphere. PY indicates
PLIC-based interpolation using n̂ calculated from the PY method. Iter. 1−IVW, Iter. 2−EHF
indicates IVW interpolation followed by PLIC-based interpolation using n̂ calculated from the
EHF technique. Iter. 1−PY, Iter. 2−EHF indicates PLIC-based interpolation using n̂ calcu-
lated from the PY method followed by PLIC-based interpolation using n̂ calculated from the
EHF technique. Iter. 1−PY, Iters. (2 → 10)−EHF indicates PLIC-based interpolation using n̂

calculated from the PY method followed by 9 iterations of PLIC-based interpolation.

and (2.5), e is approximately amplified by 1/∆x in the calculation of n̂ and is approxi-
mately amplified by 1/∆x2 in the calculation of κ. The smoothing procedure attempts
to minimize the impact of e on n̂ and κ. For uniform cartesian meshes, e is mostly due to
misalignment of the HF direction from n̂, so smoothing based on θ is optimal. In EHF,
e is induced from misalignment of the HF direction with n̂ and from the interpolation
procedure. To address this added source of error, we compared the accuracy of various
values of γ to that of Eq. (3.2).

The results of the study are shown in Figure 6. From Figure 6(a), it is evident that
L1(n̂) is insensitive to the choice in γ; this insensitivity is due to the smaller amplification
of e in n̂, O(1/∆x). Although it is visually difficult to discern, γ 6= 0 slightly increases
the error in n̂, so we chose not to smooth the numerical derivates in the computation of n̂
from the EHF method. The n̂ from the EHF method is used for PLIC-based interpolation
during the second iteration, so errors in n̂ impact the accuracy of κ. The results in Figure
6(b) are constructed without smoothing the derivatives in the computation of n̂. From
Figure 6(b) it is evident that L1(κ) is sensitive to the choice of γ, due to the larger
amplification of e in κ, O(1/∆x2). Smoothing based on Eq. (3.2) reduced L1(κ) for
all Nno; however, the impact diminished at larger Nno. Smoothing with a constant γ
decreased L1(κ) for the largest Nno; however, for γ = 0.5, L1(κ) increased for smaller
Nno. L1(κ) for γ = 0.2 approximately followed that for γ = 0.0, only decreasing the error
for the largest Nno. Because a constant γ = 0.2 aided in the convergence of the EHF
method for a larger range of Nno, we chose to use it as the smoother for the remainder of
the tests (with γ = 0.0 for the calculation of n̂). A more intelligent smoothing procedure
that uses Eq. (3.2) for smaller Nno and a stronger constant γ for larger Nno could be
used; however, the transition Nno is dependent of the primal mesh, so we did not pursue
this approach.
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Figure 6. L1 errors in n̂ (a) and κ (b) for a sphere of radius 2 in a domain of size 83 using
different finite-difference smoothers on a tetrahedral primal mesh.

3.3. Impact of primal mesh

The EHF technique reduces to standard HF for a uniform hexahedral primal mesh. The
median dual of a uniform hexahedral primal mesh is hexahedral (and uniform internally),
so an HF stencil-unit bounding box aligns with a single node volume. Because an HF
stencil-unit and a node volume are equivalent, the F ’s match and no interpolation proce-
dure is necessary. We inspect the error induced by embedding stencils and interpolating
by comparing L1(n̂) and L1(κ) for a wedge and tetrahedral primal mesh to those of the
hexahedral primal mesh. The results of the study are shown in Figure 7. As shown in
Figure 7(a), L1(n̂) is at least second-order accurate for all primal meshes; however, there
is a loss in precision for the wedge and tetrahedral primal meshes, with the tetrahedral
mesh being the least accurate. The convergence behavior of L1(κ) in Figure 7(b) is im-
pacted more by the primal mesh. L1(κ) converges at a slightly lower rate for the wedge
and tetrahedral primal meshes than for the hexahedral primal mesh, converging at a rate
between first and second order. Furthermore, the precision of κ on the wedge primal mesh
begins to saturate at large Nno, suggesting that the error in κ from truncation begins
to balance the errors from e, which are amplified by O(1/∆x2). The increase in L1(κ)
for the hexahedral primal mesh between the two lowest resolutions is attributed to the
mesh-based symmetry of a sphere with the HF definition.

In the absence of misalignment of the HF direction with n̂, e is a second-order trunca-
tion error coming from the PLIC-based interpolation procedure (assuming n̂ is estimated
accurately enough), e ≈ c1∆x2, so

E(Hx) ≈ c1∆x+O(∆x2),

E(Hxx) ≈ 4c1 +O(∆x2),
(3.4)

where c1 is small. The actual magnitude of c1 depends on the PLIC reconstruction,
the primal mesh, and the construction of H from Eqs. (2.1)-(2.5), making it difficult to
estimate. The important point is that E(Hx) and E(Hxx) do not grow with Nno, so from
Eq. (2.4) we know that L1(n̂) and L1(κ) monotonically decrease with Nno.
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Figure 7. L1 errors in n̂ (a) and κ (b) for a sphere of radius 2 in a domain of size 83 on
different primal meshes.

3.4. Comparison with other methods

The calculation of n̂ and κ in PLIC-VOF methods on three-dimensional unstructured
non-convex polyhedral meshes is underdeveloped. The PY method, because of its sim-
plicity, remains a popular technique to estimate n̂, while estimations of κ are traditionally
performed with the CSF method or the RDF method. In the latter, a signed-distance
field is constructed from the PLIC plane, requiring an estimate of n̂ (assumed to come
from the PY method here). To have another method to estimate n̂, we use gradients of
the RDF to update the estimate of n̂ calculated from the PY method. The unstructured
gradient, divergence, and Laplacian operators of our collocated flow solver (Ham et al.

2006) are used for differentiating variables on the median dual. The RDF is generated
using the method described by Cummins et al. (2005), where the power of the weighting
function is taken as 10. Figure 8 plots L1 errors in n̂, computed using the EHF, PY,
and RDF methods, and plots L1 errors in κ, computed using the EHF, CSF, and RDF
methods, for hexahedral, wedge, and tetrahedral primal meshes.

Figure 8 plots L1 errors in n̂ and κ for a sphere of radius 2 in a domain of size 83. The
results for n̂ are shown in the left column of the figure. The PY method fails to produce
even first-order convergence. The RDF method fails to converge for the hexahedral primal
mesh, but provides greater than first-order accurate results for the wedge and tetrahedral
primal meshes. The RDF method is shown to be more accurate than PY for all meshes.
The EHF method produces normals that are at least second-order accurate. For low
resolutions, the precision of the EHF method is lower than that of the PY and RDF
methods. The results of the κ calculation are shown in the right column of the figure.
The CSF method produced errors that increased with resolution. The RDF method is
more accurate than the CSF method; however, at moderate-to-high Nno, its numerical
errors increased as well. The growth in L1(κ) for the CSF and the RDF methods has
been reported by previous researchers for two-dimensional structured (Cummins et al.

2005) and unstructured (Ito et al. 2014) meshes. The increase in L1(κ) for the hexahedral
primal mesh between the two lowest resolutions in the EHF technique is attributed to
the mesh-based symmetry of a sphere with the HF definition. Ignoring the first point
for the hexahedral primal mesh, the EHF method produced monotonically decreasing
errors, showing approximately second-order convergence on hexahedral primal meshes
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Figure 8. L1 errors in n̂ (a,c,e) and κ (b,d,f) for a sphere of radius 2 in a domain of size 83 on
hexahedral primal meshes (a,b), wedge primal meshes (c,d), and a tetrahedral primal meshes
(e,f).

and greater than first-order convergence on tetrahedral primal meshes. For the wedge
primal mesh, the precision of the EHF method saturates at the highest resolutions,
reducing the convergence rate. Except at low resolution on the tetrahedral mesh, the
EHF method produced more precise results than those of the CSF and RDF methods.
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While the CSF and RDF techniques employ second-order discretizations, the second
derivates of these functions are not bounded, due to an aliasing error, so their associated
estimates of κ lose accuracy at higher resolutions (Cummins et al. 2005).

4. Conclusions

We developed an accurate method to calculate interface normals and curvatures on a
three-dimensional unstructured mesh composed of non-convex polyhedra. The method
embeds traditional height-function stencils in the unstructured mesh and geometrically
interpolates the volume fraction information from the mesh to the stencil. Two methods
for interpolating the volume fraction information were developed, a first-order accurate
intersection volume-weighted method and a second-order accurate PLIC-based method.
To perform both PLIC-VOF on non-convex polyhedral meshes and the intersections

necessary for interpolation methods, we developed a series of geometric tools that utilize
the convex-decomposition description of a non-convex polyhedron.
To validate the embedded height-function method, the interface normal and curvature

for a sphere was calculated on the median duals of hexahedral, wedge, and tetrahedral
primal meshes. The tests demonstrated that the embedded height-function method cal-
culated interface normals and curvatures with at least second- and first-order accuracy,
respectively. At moderate-to-high resolutions, the method was nominally more accurate
than contemporary methods. To have an additional method to compare with, we pro-
posed using the reconstructed distance function, traditionally used for curvature, to es-
timate the normal. This method required an approximation of the normal to reconstruct
a planar interface from which the signed distances were constructed. The reconstructed
distance function provided a more accurate alternative to the Parker-Young’s method.
Note that the convergence of the method in curvature began to saturate on wedge

meshes of the highest resolution. The reduction of the convergence rate at high resolutions
is due to errors in the computed heights. As a first attempt at reducing the error, we
smoothed the finite-difference operators; however, the convergence rate still decreased at
the highest resolutions. A more thorough investigation of the errors induced by geometric
interpolation of discontinuous data may yield insight in increasing the range over which
the method converges. Further, the errors induced by misalignment of the height-function
direction with the surface normal could be addressed by this method by embedding a
second stencil that is rotated 45◦ in the xy and xz planes.
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