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On LES of low-speed flows by high-order
shock-capturing schemes with flow sensors

By D. Kotov, H.C. Yee †, A. Wray † AND B. Sjögreen ‡

1. Introduction

For the last decade, high-order shock-capturing methods with numerical dissipation
controls have been the state-of-the-art numerical approach for direct numerical simulation
(DNS) and large eddy simulation (LES) of turbulent flows with shocks. See, for example
Yee & Sjögreen (2010, 2007); Sjögreen & Yee (2004); Yee et al. (1999, 2012); Kotov et al.
(2013, 2014); Lombardini et al. (2011); Johnsen et al. (2010); Touber & Sandham (2011);
Lo et al. (2010). The majority of these methods involve flow sensors with parameter
tuning applied depending on the flow type. Some of the flow sensors were designed for
certain flow types and might not preserve their high accuracy when used to simulate a
flow of a different type. In a study presented in Johnsen et al. (2010), all of the shock-
capturing schemes involve tuning of the parameters. It appears that the Yee & Sjogreen
filter scheme is not as accurate as the hybrid scheme presented in Johnsen et al. (2010)
because the key parameter κ responsible for minimizing the numerical dissipation in the
scheme of Yee & Sjögreen (2007) was set to a constant based on the initial flow Mach
number. See (Yee & Sjögreen 2010; Kotov et al. 2013) for a description of better control
of numerical dissipation using a local κ. The hybrid scheme presented in Johnsen et al.
(2010) which employed the flow sensor of Ducros et al. (1999) also consists of a key tuning
parameter δ. From our study presented below of the same Taylor-Green vortex problem
considered in Johnsen et al. (2010), the cut-off parameter δ is set 1 to achieve the best
accurate result. On the other hand, for the isotropic turbulence with shocklets test case,
the Ducros et al. flow sensor δ parameter has to be greatly reduced, mostly by trial and
error. Yet in another study (Kotov et al. 2014) for turbulence interacting with a high
speed stationary shock, depending on the Mach number and turbulent Mach number,
different values of δ are required for each case.

In recognizing the different requirements on numerical dissipation control for DNS and
LES of a variety of compressible flow types, Yee & Sjögreen (2010) presented a general
framework for a local κ, and the accompanying variety of flow sensors were introduced
into their high-order nonlinear filter scheme. Aside from suggesting different local κ
formulation, Yee & Sjogreen also proposed the use of a combination of different flow
sensors. Their proposed scheme with numerical dissipation control has not been studied
extensively. A subset to the sequel to Yee & Sjögreen (2010) was presented in Yee et al.
(2011); Kotov et al. (2013). This is yet another sequel to Yee & Sjogreen. The goal of
this work is to examine the different combinations of flow sensors for DNS and LES of
low-speed turbulent flows. For the LES numerical experiments, two low-speed flows are
considered: (a) The 3D compressible viscous counterpart of the very low-speed shock-free
turbulence Taylor-Green vortex problem considered in Johnsen et al. (2010) and (b) the
same isotropic turbulence with shocklets as in Johnsen et al. (2010).
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2. Governing equations and SGS models

We consider the governing equations written as

∂tρ̄+ ∂j(ρ̄ũj) = 0, (2.1)

∂t(ρ̄ũi) + ∂j(ρ̄ũiũj + p̄δij − τ̌ij + τSij) = 0, (2.2)

∂t(ρ̄Ẽ) + ∂j(ρ̄Ẽũj + p̄ũj − τ̌ij ũi + q̌j + qSj ) = 0, (2.3)

where ρ is density, ui is ith velocity component, p is the pressure, T is the temperature,
E is the total Energy, and t is the time. For given f , LES filtering operation is denoted
as f̄ . Favre filtering operation is denoted as f̃ = ρf/ρ̄, and f̌ stands for the function of
the Favre-filtered variables introduces as

τ̌ij = 2µ(T̃ )(S̃ij −
1

3
δij∂kũk), S̃ij = (∂j ũi + ∂iũj)/2, q̌j = −λ(T̃ )∂j T̃ , (2.4)

where dynamic viscosity is given by µ(T ) = µ0(T/T0)3/4 and thermal conductivity is
expressed through a constant Prandtl number Pr and heat capacity at constant pressure
cp (λ(T ) = cpµ(T )/Pr). The equation of state is p̄ = Rρ̄T̃ , where R is the gas-specific
constant. The subgrid-scale (SGS) terms, SGS stress tensor τSij and SGS heat flux qSj ,
are modeled as

τSij −
1

3
τSkkδij = −2µt(S̃ij −

1

3
S̃kkδij), τSkk = 2CI ρ̄∆2|S̃|2, qSj =

µtγcv
Prt

∂j T̃ , (2.5)

where µt = ρ̄Cs∆
2|S̃|, |S̃| =

√
2S̃ijS̃ij and ∆ is the filter width. Note that for the current

study we use implicit filtering in Eqs. (2.1-2.3), with the filter width determined by the
grid spacing. LES with explicit filtering will be considered in future studies.

In the Smagorinsky model, Cs is defined as a problem-specific constant. In this study
we use Cs = 0.0085 (Erlebacher et al. 1992). Simulations using this model are denoted
as LES1.

In the dynamic SGS model, the Smagorinsky constant Cs and the constant for the
isotropic part of the SGS stress CI are obtained through the Germano-Lilly (Germano
et al. 1991; Lilly 1992) procedure, which can be written as

Cs =

〈
LCs
ij M

Cs
ij

〉
H〈

MCs
ij M

Cs
ij

〉
H

, CI =
〈Lll〉H〈
MCI

ll

〉
H

, (2.6)

where

LCs
ij = Lij −

1

3
Lllδij , Lij =

(
¯̂ρũiũi

)
− ̂̄ρũi ̂̄ρũi/ ˆ̄ρ, (2.7)

MCs
ij = −2ˆ̄ρ∆̂2| ˆ̃S|2

̂(
S̃ij −

1

3
S̃llδij

)
+ 2∆2

[ ̂(
ρ̄|S̃|S̃ij

)
− 1

3

̂(
ρ̄|S̃|S̃llδij

)]
, (2.8)

MCI

ll = 2ˆ̄ρ∆̂2| ˆ̃S|2 − 2∆2 ̂(
ρ̄|S̃|2

)
, (2.9)

and < f >H stands for averaging in homogeneous directions. The Germano procedure
requires an explicit filtering operation, denoted here with the top hat symbol. For this
filtering operation we use a 3D operator based on 1D trapezoidal filter discretized as

f̂i =
1

4
fi−1 +

1

2
fi +

1

4
fi+1. (2.10)
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Simulations using this dynamic SGS model are denoted as LES2.

For the cases with low turbulent Mach number Mt < 0.4, it is shown (Erlebacher et al.
1992) that the isotropic part of the SGS stress can be neglected (CI = 0). Early numerical
experiments comparing the case of setting CI = 0 vs. the non-zero case produced a similar
result by the LES1 model for a 3D isotropic turbulence test case using a Mt,0 = 0.6
(Johnsen et al. 2010). There is, however, a slightly different result from the LES2 on some
of the computed flow quantities by using the non-zero CI . Only results using CI = 0 will
be presented for the same isotropic turbulence test case in the later section.

3. Test cases

This section illustrates the performance of our high-order filter scheme for DNS and
LES of two 3D low-speed turbulence flows considered in Johnsen et al. (2010). The first
test case is the nearly incompressible (inviscid) Taylor-Green vortex problem and its
viscous counterpart. The second test case is the decay of an isotropic turbulence with
shocklets for an initial turbulent Mach number Mt,0 = 0.6. For both test cases grid
convergence studies are performed using uniform 2563, 1283 and 643 grids for the DNS
simulations. Grid convergence studies also are performed using uniform 1283, 643 and
323 grids for LES computations. Studies found that for an accurate numerical dissipation
control scheme, a coarse grid DNS using a uniform 643 grid compared well with the filtered
DNS using a fine grid of 2563 grid points (spectrally filtered to a 643 grid). For the LES
computations, the 323 grid is too coarse for obtaining an accurate solution, whereas the
1283 grid solutions are almost on top of the filtered DNS computation on the 2563 grid.
Here, only the results using the 643 are shown.

3.1. Taylor-Green vortex

The first test case is the 3D Taylor-Green vortex (Taylor & Green 1937) inviscid flow.
The 3D Euler equations are solved with gas constant γ = 5/3. The computational domain
is a 2π square cube using a uniform 643 grid. Boundary conditions are periodic in all
directions.

The initial conditions are

ρ = 1, p = 100 + ([cos(2z) + 2][cos(2x) + cos(2y)]− 2)/16,
ux = sinx cos y cos z, uy = − cosx sin y cos z, uz = 0.

(3.1)

The initial turbulent Mach number is Mt,0 = 0.042 and the final time is t = 10. We also
consider the viscous counterpart of the Taylor-Green vortex problem. In the viscous case
the physical viscosity is assumed to follow a power law written as

µ/µref = (T/Tref )
3/4

. (3.2)

Here we use µref = 0.005 and Tref = 1 in non-dimensional units. The initial Reynolds
number is Re0 = 2040. For this low-Mach number flow without high shear regime, the
simulation actually does not require any numerical dissipation. However, we use the
same shock-capturing scheme with adaptive numerical dissipation control to demonstrate
its accurate performance for such low-Mach number cases. The key study involves the
assessment of accuracy of the computed solution using different forms of κlj+1/2 and
different values of δ mentioned above.
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Figure 1. Coarse grid DNS scheme comparison for the inviscid Taylor-Green vortex problem
using a 643 grid: Temporal evolution of the kinetic energy (left) and enstrophy (right).

3.1.1. Inviscid case – DNS scheme comparison

In the inviscid case the kinetic energy should be constant. It can be used as a criterion to
judge the accuracy of the four considered filter numerical fluxes. The coarse grid DNS (643

grid – no SGS model) comparison among different methods is shown in Figure 1. Figure
1 shows the temporal evolution of the mean kinetic energy and enstrophy compared
to the 2563 grid filtered DNS reference solution. The preservation of kinetic energy is
achieved with C10-split, WENO9fi-Dsplit-WavD and WENO9fi-Dsplit-Wav κ = 10−5,
while WENO9fi-Dsplit-Wav κ(i) obtains a small loss in energy after t ≈ 6. All four
methods presented on the enstrophy plot demonstrate good agreement with the semi-
analytical solution of Brachet et al. (1983), which is defined on the interval 0 ≤ t ≤ 3.5.
The enstrophy values obtained using WENO9fi-Dsplit-Wav κ(i) are slightly smaller than
those obtained using the other three methods.

3.1.2. Viscous case – DNS and LES scheme comparison

The temporal evolution of the mean-square velocity and enstrophy of the coarse grid
DNS (no SGS model) results on a 643 grid by different methods are shown in Figure 2.
The reference solution is the DNS simulation using a 2563 grid and spectral filtering to
the 643 grid. For this viscous case the most accurate cut-off parameter δ in WENO9fi-
Esplit-WavD and WENO9fi-Dsplit-Ducr is when δ = 1. The kinetic energy computed
solutions by all considered methods matches the reference solution. The difference be-
tween methods is only visible on the enstrophy comparison, though all the results are
very close to the reference solution. The methods using Ducros et al. split C10-Dsplit
and WENO9fi-Dsplit-Wav κ = 10−5 as well as WENO9fi-Esplit-Wav κ(i) obtain slightly
more accurate results than C10-Esplit and WENO9fi-Esplit-WavD.

The results obtained using the two LES models are shown in Figures 3 and 4. As
observed also in the isotropic turbulence simulations (to be shown later), the results
obtained in LES1 are closer to the reference solution than the results obtained using
the dynamic model LES2. All LES methods underestimate both the kinetic energy and
the enstrophy. WENO9fi-Esplit-Wav κ(i) is slightly less accurate than C10-Dsplit and
WENO9fi-Esplit-WavD. The accuracy by C10-Esplit and C10-Dsplit are almost the same.

3.2. Compressible isotropic turbulence

The second test case is the decaying compressible isotropic turbulence with eddy shock-
lets (Lee et al. 1991; Johnsen et al. 2010). For high enough turbulent Mach number, Mt

weak shock waves (shocklets) develop spontaneously from the turbulent motions. For the
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Figure 2. Coarse grid DNS scheme comparison for the viscous Taylor-Green vortex problem
using a 643 grid: Temporal evolution of the kinetic energy (left) and enstrophy (right). The
reference solution is the DNS computation on a 2563 grid and spectrally filtered to a 643 grid.
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Figure 3. LES1 scheme comparison for the viscous Taylor-Green vortex problem using a 643

grid: Same as Figure 2 with the results obtained using the Smagorinsky SGS model (LES1).
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Figure 4. LES2 scheme comparison for the viscous Taylor-Green vortex problem using a 643

grid: Same as Figure 2 with the results obtained using the Germano-Lilly SGS model (LES2).

current numerical experiment we set the initial Mt,0 = 0.6. The Navier-Stokes govern-
ing equations and the filtered governing equations (2.1-2.3) are solved using γ = 1.4.
The computational domain is on the 2π3 cube with periodic boundary conditions in all
directions. The physical viscosity is assumed to follow a power law (3.2).

The initial condition consists of a random solenoidal velocity field ui,0 that satisfies

E(k) ∼ k4 exp(−2(k/k0)2),
3

2
u2rms,0 =

〈ui,0ui,0〉
2

=

∫ ∞
0

E(k)dk. (3.3)
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The brackets here denote averaging over the entire computational domain. For this study
we put urms,0 = 1 and k0 = 4. The density and pressure fields are initially constant with
initial turbulent Mach number Mt,0 = 0.6 and Taylor-scale Reynolds Reλ,0 = 100. These
parameters are defined as follows:

Mt =

√
〈uiui〉
〈c〉

, Reλ =
〈ρ〉urmsλ
〈µ〉

, urms =

√
〈uiui〉

3
, λ =

√
〈u2x〉

〈(∂xux)2〉
. (3.4)

The time scale is τ = λ0/urms,0 and the final time is t/τ = 4. The final turbulent Mach
number is Mt = 0.29.

Similar to the Taylor-Green vortex problem, different values of κ and δ parameters are
examined. Unlike the Taylor-Green vortex case, the most accurate solutions are obtained
using a smaller κ and for values of δ between 0.7 and 1.

Comparisons of the temporal evolutions of the mean-square velocity, enstrophy, tem-
perature variance and dilatation using the various filter numerical fluxes on a 643 coarse
grid DNS (no SGS model) are shown in Figure 5. The reference solution was obtained
from the DNS simulation using a 2563 grid and spectral filtering to a 643 grid (digitized
from Johnsen et al. (2010)). The best results are obtained with C10-AV12, WENO9fi-
Dsplit-Wav κ(i) and WENO9fi-Esplit-Ducr. The cut-off parameter of the Ducros et al.
sensor in WENO9fi-Esplit-WavD is δ = 0.7. However, the results remain almost the same
when δ increases slightly beyond 0.7. For the dilatation, the best match with the refer-
ence solution is obtained by method C10-AV12. However, this scheme underestimates
the enstrophy, while the rest of the methods either match or slightly overestimate the
enstrophy.

The results obtained using the two LES models are shown in Figures 6 and 7. The
LES1 computations are closer to the reference solution than the dynamic model LES2.
The best results in both cases are obtained with C10-Esplit, WENO9fi-Esplit-Ducr and
WENO9fi-Esplit-WavD. All presented methods in LES1 and LES2 underestimate the
enstrophy and kinetic energy. The spectra of this isotropic decaying turbulence test case
were examined, the computed spectra by these schemes are as expected, and results are
not shown due to a space limitation.

4. Conclusions

The performance of the filter scheme with different flow sensors was demonstrated
in LES and DNS of low-speed flows. Forms (1) - (4) for the filter numerical flux were
chosen to demonstrate that for low-speed turbulence flows without strong shear waves,
the constant κ vs. the local κlj+1/2 behave similarly. The main difference when using the
constant κ parameter is that one has to know the flow structure of the entire evolution
a priori in order to select the proper constant κ parameter. Contrary to the considered
low-speed flow test cases, our previous investigations (Yee et al. 1999; Sandham et al.
2002; Sjögreen & Yee 2004; Yee & Sjögreen 2007; Yee et al. 2012; Hadjadj et al. 2012;
Yee & Sjögreen 2010; Kotov et al. 2013) for various complex high speed shock-turbulence
interaction flows, employing the local κlj+1/2 would provide an automatic selection of the
amount of numerical dissipation needed at each flow location, thus leading to a more
accurate DNS and LES simulation with less tuning of parameters.

Overall, the LES1 (Smagorinsky) results are closer to the filtered DNS reference so-
lution than the LES2 (dynamic Germano) results. For the isotropic turbulence with
shocklets test case using the LES1 model, the results using non-zero CI formula indi-
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Figure 5. Coarse grid DNS scheme comparison for the isotropic turbulence problem using a
643 grid: Temporal evolution of kinetic energy (top left), enstrophy (top right), temperature
variance (bottom left) and dilatation, θi = ∂iui (bottom right). The reference is the digitized
solution from Johnsen et al. (2010) on a 2563 grid spectrally filtered to a 643 grid.
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Figure 6. LES1 scheme comparison for the isotropic turbulence problem using a 643 grid:
Same as Figure 5 with the results obtained using the Smagorinsky SGS model (LES1).
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Figure 7. LES2 scheme comparison for the isotropic turbulence problem using a 643 grid:
Same as Figure 5 with the results obtained using the Germano-Lilly SGS model (LES2).

cated in (9) vs. setting CI = 0 are similar. This behavior might be due to the fact that
the final turbulent Mach number for the considered time integration is Mt = 0.29. There
is, however, a slightly different result by the LES2 on some of the computed flow quan-
tities by using the non-zero CI . Only results using CI = 0 have been presented in this
work. Further investigations are needed on the reason why the computed result by LES1
perform better than by the LES2 model, and on the simulation behavior depending on
the choice of CI .

Acknowledgments

The support of the DOE/SciDAC SAP grant DE-AI02-06ER25796 is acknowledged.
Financial support from the NASA Aerosciences/RCA program for the second author is
gratefully acknowledged. Work by the fourth author was performed under the auspices
of the U.S. Department of Energy at Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.

REFERENCES

Brachet, M., Meiron, D., Orszag, S., Nickel, B., Morf, R. & Frisch, U. 1983
Small-scale structure of the taylorgreen vortex. J. Fluid Mech. 130, 411–452.

Ciment, M. & Leventhal 1975 Higher order compact implicit sehemes for the wave
equation. Math. Comput. 29, 985–994.

Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C.
& Poinsot, T. 1999 Large-eddy simulation of the shock/turbulence interaction. J.
Comput. Phys. 152, 517–549.



LES of low-speed flows 107

Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P. & Caruelle, B.
2000 High-order fluxes for conservative skew-symmetric-like schemes in structured
meshes: Application to compressible flows. J. Comp. Phys. 161, 114–139.

Erlebacher, G., Hussaini, M. Y., Speziale, C. G. & Zang, T. A. 1992 Toward the
large eddy simulation of compressible turbulent flows. J. Fluid Mech. 238, 155–185.

Germano, M., Piomelli, U., Moin, P. & Cabot, W. 1991 A dynamic subgrid-scale
eddy viscosity model. Phys. Fluids 3, 1760–1765.
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