
Center for Turbulence Research
Annual Research Briefs 2014

109

Taming nonlinear instability for discontinuous
Galerkin scheme with artificial viscosity

By Y. Lv AND M. Ihme

1. Motivation and objectives

Over recent years, the advantages of discontinuous Galerkin (DG) scheme has been
demonstrated in applications to smooth problems. For conservation laws, the interaction
among different physical invariants can lead to discontinuous solutions. In those cases,
strong numerical oscillations are triggered in the numerical solution through the DG
discretization. To address the issue that arises due to nonlinearities of the problem, certain
stabilization mechanisms must be imposed. Popular examples include limiting techniques
and artificial viscosity (AV). Over the past few years, several limiters have been proposed,
for example, Cockburn & Shu (1998), Qiu & Shu (2005), and Krivodonova (2007). The
main idea of suppressing oscillation is to modify the local solution by considering the
information about solutions in neighboring cells. The main shortcomings of limiting are
(i) poor adaptability to elements with complex shapes; (ii) accuracy reduction in regions
of smooth solutions; and (iii) lack of support to the order higher than DGP2 (quadratic
polynomial representation).

Realization of these shortcomings has made the design artificial viscosity method for
DG a central focus of recent research activities. Hartmann (2006) used an AV formula
based on a scaled residual for steady-state problems. Persson & Peraire (2006) proposed
a non-smoothness sensor for estimating artificial viscosity. The sensor uses information of
higher-order moments and results in a viscosity quantity scaled with h/p, where h is the
element size and p is the order of the polynomial. The success of this formulation has been
demonstrated in implicit RANS simulations by Nguyen et al. (2007). Because of numerical
issues associated with piecewise constant artificial viscosity, Barter & Darmofal (2010)
suggested imposing viscosity continuity across adjacent elements using a PDE-based
approach. Another modification was recently proposed by Casoni et al. (2013). In contrast
to the h/p-scaling, they used an artificial viscosity that scales with hp, and demonstrated
improved performance on coarse grids up to DGP11 in a 1D setting. As artificial viscosity
methods have become more popular, other interesting formulations have also appeared
in the literatures. For example, Yu & Yan (2013) implemented a viscosity formulation
for DG scheme, which originated from the finite-difference community (Kawai & Lele
2008). With this formulation, fine scales in Rayleigh-Taylor instability were successfully
captured with orders up to DGP3. Zingan et al. (2013) implemented the entropy-viscosity
formulation for DG scheme, which was initially proposed by Guermond & Pasquetti
(2008) for finite volume methods. This idea leads to the estimation of artificial viscosity
based on the local residual of the entropy equation of the nonlinear conservation system.

In the present study, we propose a new AV-approach for the DG scheme, specifically
tailored for explicit time stepping. Technically this scheme consists of the following steps:
(i) re-examine the AV formulation of Persson & Peraire (2006); (ii) identify and amend
the shortcomings of this method by conducting stability analysis and developing a new
detector; and (iii) demonstrate the performance through numerical tests.
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2. Methodology

2.1. Governing equations

We consider the solution of the conservation equations in the most general form

∂tU +∇ · F = 0 , (2.1)

which might contain discontinuities in the solution. To stabilize the solution procedure,
we introduce a linear Laplacian regularization on the right side,

∂tU +∇ · F = ∇ · (µ̂e∇U) , (2.2)

in which µ̂e quantifies the amount of artificial viscosity that is added locally for suppress-
ing nonlinear instabilities.

2.2. Discretization and AV formulation

The DG discretization follows the standard conventions and readers are referred to our
previous work (Lv & Ihme 2013a,b, 2014) for more details. In a DG cell Ωe, the solution
is approximated as

U e
h(t,x) =

Np∑
l=1

Ũ
e

l (t)φ
e
l (x) , (2.3)

where Np is the number of bases. In the present study, an orthogonal basis is used, Np =
(p+ 1)(p+ 2)/2, where p is the order of the polynomial representation. In the following
derivation, we assume that the basis indices are ordered with increasing polynomial order.
A Rusanov flux (Rusanov 1961) is used as a Riemann solver, and the BR2 scheme (Bassi
& Repay 2000) is used for discretization of the diffusion operator.

Here we briefly summarize the AV formulation of Persson & Peraire (2006). This
formulation is based on a non-smoothness indicator and a mapping function to evaluate
the element-wise viscosity. The non-smoothness indicator is defined as follows:

Se =

(
U e
h − Û

e

h,U
e
h − Û

e

h

)
e

(U e
h,U

e
h)e

, (2.4)

in which Û
e

h represents the truncated solution up to order p− 1, and is written as

Û
e

h(x, t) =

Np−(p+1)∑
l=1

Ũ
e

l (t)φ
e
l (x) . (2.5)

After evaluating Se, the following mapping is applied to determine the amount of artificial
viscosity required for the target element,

µ̂e =


0, if Se < S0 − κ
µ0

2

(
1 + sin π(Se−S0)

2κ

)
, if S0 − κ ≤ Se ≤ S0 + κ

µ0, if Se > S0 + κ,

(2.6)

where several parameters have been introduced. These parameters can be estimated using
the arguments S0 ∼ log(1/p4), µ0 ∼ h/p, and κ is an empirical parameter that is suffi-
ciently large. This AV formula was originally proposed for an implicit simulation. Based
on numerical tests, we found that the original version of this formula has shortcomings
for application to explicit time integration. More specifically, there are two problems that
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need to be addressed: (1) difficulty in determining µ0. Although a scaling argument is
given, a rigorous guideline to determining µ0 is required. Otherwise, either the disconti-
nuity will be excessively smeared out, or not enough diffusion will be added to suppress
the oscillations. In addition, the large value of µ0 can lead to substantial numerical stiff-
ness of the discretized system. If µ0 is naively set to h/p, for most cases, the time-step
size has to be significantly reduced to guarantee stability. For implicit aerodynamic com-
putations, µ0 can be fine-tuned around steady-state solutions to produce optimal shock
profiles. But for unsteady simulations, having a solid approach for evaluating µ0 and
using it during the entire simulation is desirable. A guideline for determining µ0 will
be proposed based on the eigenmode argument and stability analysis; (2) difficulty in
determining κ. In Eq. (2.6), the role of κ is to control the selectivity; in other words, κ
determines candidate elements to which artificial dissipation should be added. However,
it is difficult to apply because there is no physical interpretation associated with κ. If κ
is too small, the artificial diffusion tends to be added on smooth solutions. To overcome
this drawback, a novel algorithm is required to account for the selectivity of trouble cells
and κ is fixed to 10S0.

2.3. Improvement 1: the AV magnitude for explicit time stepping

In order to facilitate explicit time stepping, we require that the amount of artificial vis-
cosity is not so large that it significantly influences the time-step size that should be
determined by convection. The rationale for this argument is that the nature of the hy-
perbolic equation determines the problem to be dominated by convective modes. The
artificial viscosity is purposely added to suppress the nonlinear interaction between dif-
ferent modes (or nonlinear instability). Otherwise, both the accuracy and consistency
are questionable. Based on this argument, we are able to find µ0 in Eq. (2.6) from the
following analysis.

We characterize the convection mode in the discretized system using the smallest
eigenvalue along the real axis, R(λadv)min (< 0). The addition of AV transforms the
eigenvalue structure and leads to the change of R(λadv)min to R(λadv+AV )min, which
can be approximated as

R(λadv+AV )min ≈ R(λadv)min + R(λAV )min = βR(λadv)min , (2.7)

in which β is the key parameter determining both the amount of AV and the time-step
size of the explicit DG-scheme. Based on the above argument, a suitable choice for β is
1 < β < 2. If β ≥ 2, the diffusion exceeds convection and locally dominates the flow
field. Therefore, the range of the parameter, β, that is introduced here is significantly
constrained. From numerical experiments, we found a rather robust selection of β, which
is β = 1.15 for linear cases and β = 1.5 for nonlinear cases. In order to utilize this scaling
argument for finding µ0, we conducted a stability analysis in which AV is added locally
into one element on a 1D domain. Based on this analysis, the following estimations can
be obtained:

R(λadv)min ≈ −C1(p)
a

h
, (2.8)

R(λAV )min ≈ −C2(p)
µ0

h2
, (2.9)

in which a denotes the maximum characteristic speed over the computational domain;
and h is the element size; the constants C1 and C2 are both functions of p and can be
determined numerically, as shown in Figure 1 and in Table 1. Combining these relations
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Figure 1. Eigen-structure reformation by AV and the scaling of R(λadv)min and R(λAV )min
with respect to element size h ((a) ∗ pure advection ◦ advection with AV ).

Order C1 C2

DGP0 2.0 2.0
DGP1 6.0 20.5
DGP2 11.8 74.0
DGP3 19.1 173.0
DGP4 27.8 362.3

Table 1. Constants derived from the stability analysis for different orders of polynomial bases.

with Eq. (2.7) yields the following expression,

µ0 = (β − 1)
C1(p)

C2(p)
ah . (2.10)

a/h can be expressed as time step under the well-known RKDG CFL constraint (Cock-
burn & Shu 2001),

a∆t

h
≤ 1

β(2p+ 1)
, (2.11)

where β is added to account for the eigenvalue amplification by AV. With this, we can
relate µ0 to the time-step size,

µ0 =
β − 1

β(2p+ 1)

C1(p)

C2(p)

h2

∆t
. (2.12)

Since ∆t ∼ O(h) for the convection-dominated problem, the scaling of µ0, µ0 ∼ O(h) is
consistent with that proposed by Persson and Peraire. However, the advantage of this new
formulation is that a rigorous expression is given for different orders of bases, instead of
a simple scaling argument. Moreover, this new formulation balances the AV performance
(see Section 3 for details) and time-stepping efficiency for explicit DG schemes.

2.4. Improvement 2: trouble-cell selectivity

Instead of using κ for trouble-cell selectivity, we propose the following detection proce-
dure, which is based on monitoring the entropy variation in each DG-cell. The idea is
illustrated in Figure 2. Let us suppose we are able to record the maximum and minimum
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smin 

Ue(t=tn) Ue(t=tn+1) 

smax 

s 

Figure 2. (Color online) Illustration of an entropy-based instability detector.

entropy of the solution U e
h in a DG cell at t = tn. After one time step, the entropy profile

of this cell will vary. If we find that the entropy overshot and undershot in the interior
part of the cell, it is likely that the cell is troubled by nonlinear instability. Now the
issue is how to implement this physical observation in DG-cells. To numerically search
the entropy minimum and maximum in Ωe can be very costly and might fail. Therefore,
we have to implement this idea in a discrete setting as an approximation to its contin-
uous counterpart. For this, we first define the set of quadrature points that are used to
evaluate the integral in the governing equation to be D. D includes quadrature points
on Ωe ∪ ∂Ω−e , in which superscript ‘−’ denotes the exterior. Let us define another set of
quadrature point Dchk, which only includes the quadrature points on the interior part of
Ωe, Ωe \ ∂Ω+

e . The detecting procedure is given as follows:

First, estimate the minimum and maximum of a set of entropy values that are evaluated
on D at t = tn using

smin ≈ s̃min = min
x∈D

s(U(x)) + C3sref
h

p+ 1
, (2.13)

smax ≈ s̃max = max
x∈D

s(U(x)) + C4sref
h

p+ 1
, (2.14)

in which sref accounts for the normalization, and C3 and C4 are constant parameters (set
to 0.1).

Second, after the time advances from tn to tn+1, check the entropy values for the set
of points in Dchk and determine if Ωe is a troubled cell using the metric:

if ∃x ∈ Dchk, s(U(x)) > smax || s(U(x)) < smin, then Ωe is a troubled cell. (2.15)

In the case where Ωe is a trouble cell, µ0 will be evaluated thought the approach presented
in Section 2.3 and µ̂e will be determined though Eq. (2.6), and added to the discretization.

Finally, repeat the first step for the present time level tn+1.

3. Numerical tests

For the following tests, the standard Runge-Kutta time-stepping scheme is used.
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3.1. Burgers’ equation

For the first case, we consider the nonlinear scalar equation, also known as Burgers’
equation, with F = U2/2. The initial condition is given as

U(x, 0) = 1 + sin(2πx) , (3.1)

on a one-dimensional periodical domain x ∈ [0.0, 1.0). The experiment stops at t = 1.0
when the discontinuity is located at the center of the domain. Solution snapshots are
given in Figure 3, confirming the effectiveness of the trouble-cell sensor. It can be seen
that the detected trouble cells alway follow the discontinuity, so that shock-capturing
errors can be localized. The simulation result without AV is also given in Figure 3(d)
for comparison. It can been seen that big oscillations are triggered in the vicinity of
the discontinuity, which directly leads to the blow-up right after t = 0.3. Results from
refinement are shown in Figure 4. It can be seen that the resolution of the discontinuity
is improved with p- or h-refinements.

3.2. Euler equation

In this section, we test our AV formulation by considering that Euler equations,

U = (ρ, ρu, ρE)T , (3.2)

F = (ρu, ρu⊗ u+ Ip, u(ρE + p))T , (3.3)

in which ρ, u, p and E refer to density, velocity, pressure, and total energy. The closure
for this conservation law is the ideal gas assumption:

p = (γ − 1)

(
ρE − ρ|u|2

2

)
, (3.4)

and γ, the ratio of heat capacities, is set to 1.4.

3.2.1. Sod shock tube

The initial conditions are defined as

(ρ, u, p)
T

=

{
(1.0, 0.0, 1.0)T for x ≤ 0.5 ,

(0.125, 0.0, 0.1)T for x > 0.5 ,
(3.5)

on a 1D domain x ∈ [0.0, 1.0]. The convergence study is conducted on this problem,
and the simulation runs until t = 0.25. The performance of the detector is assessed in
Figure 5. As we can see, the detector precisely flagged the trouble cells in the vicinity
of the shock, with which the shock-capturing error can be highly localized, as shown in
Figure 5(d). For the local error assessment, the exact solution is obtained with an exact
refinement and the error is evaluated point-wise in L1-norm. A refinement study is also
conducted and the results are summarized in Figure 6. The observation is similar to that
of the above test case.

3.2.2. Double Mach reflection

This test case studies a moving shock that reflects at a wall. The setting is consistent
with that described by Woodward & Colella (1984). We consider a two-dimensional
domain x(1) × x(2) ∈ [0.0, 4.0] × [0.0, 1.0]. A Mach 10 shock is initially aligned with a
60o angle with respect to the horizontal axis. The pre- and post-shock states take the
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(d) t = 0.3 without AV

Figure 3. Numerical test on the trouble cell sensing for Burger’s equation (DGP4 with 120
elements).

following forms

Upre = (1.4, 0.0, 0.0, 2.5)T , (3.6)

Upost = (8.0, 57.16, 33.0 , 563.50)T , (3.7)

and the initial condition can be prescribed as

U(x, 0) =

{
Upre x(1) < 1

6 + x(2)
√
3
,

Upost x(1) ≥ 1
6 + x(2)

√
3
.

(3.8)

In order to enforce the shock-wall interaction, the left boundary and the [0.0, 1/6)
part of the bottom boundary are prescribed by a supersonic inflow with the state given
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Figure 4. Numerical test for h- and p- refinements for Burgers’ equation.

by Upost, while the region [1/6, 4.0] of the bottom boundary is prescribed using slip
wall conditions. The right boundary is prescribed by a supersonic outflow, where the
Neumann condition can be safely used. Furthermore, the top boundary is a free boundary
imposed analytically to describe the moving discontinuity as a function of time. At the

top boundary, the jump is a function of time x
(1)
s = 1

6 + 1+20t√
3

. The simulation stops at t

= 2.5. The refinement studies are summarized in Figure 7. The important feature of the
flow field is the formulation of a wall jet along the slip line, which is very sensitive to the
numerical dissipation. With h-refinement, we can clearly observe finer vortex structures
induced by the Kelvin-Helmholtz instability. In the results generated by DGP4, a faster
growth of the wall jet is observed compared to the results for DGP2, by which the jet
front merges earlier with part of the Mach stem. This feature was not captured by most
of the previous case studies on such a coarse mesh.

3.2.3. Forward facing step

This test case studies a Mach 3 flow passing through a wind tunnel, [0, 3]× [0, 1]. A
step of 0.2 unit is located at 0.6 units away from the left boundary. The left boundary
is a supersonic inflow with the conditions (ρ, u(1), u(2) p)T = (1.4, 3.0, 0.0, 1.0)T ,
and the right boundary is specified by the Neumann conditions. The top and bottom
boundaries are prescribed by slip walls. At the beginning, the computational domain
is initialized uniformly with the inflow condition, which can be expressed in terms of
solution variables:

U(x, 0) = (1.4, 4.2, 0.0, 8.8)T . (3.9)

The flow evolves until t = 4.0. The numerical study for this case with high-order poly-
nomial bases is still quite rare. In order to demonstrate the potential of our method, we
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Figure 5. Numerical test on the sensor performance and the error locality for the 1D shock
tube case (DGP4, 120 elements).

conducted the test with DGP2 (third-order) and DGP4 (fifth-order). Mesh refinement
is also considered and two Cartesian meshes with h = 0.02 and h = 0.01 are used for
this test. The simulation results are illustrated in Figure 8. We can clearly see the im-
provement by p- or h- refinement in terms of the sharpness of the wave fronts and the
resolution of the top slip line from which Kelvin-Helmholtz instability is triggered. On
the fine mesh, the simulation results with different bases become very close to each other.
However, if we focus on the vortex structures that are resolved at the slip line, DGP4
gives finer structures than DGP2 due to the reduced numerical dissipation.

3.2.4. Kelvin-Helmholtz instability

The above two classic test cases are both shock-dominated flows, and it has been
shown that under certain conditions hydrodynamic instabilities can be triggered. In this
case, we would like to isolate the instability and assess the capability of high-order
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Figure 6. Numerical test on the refinement consistency for the 1D shock tube case.

DG schemes in resolving small scales. Hence, a classic two-dimensional simulation of
the Kelven-Helmholtz instability is considered. The computational domain is a periodic
square, [−0.5, 0.5]2. The initial condition is specified as(
ρ, u(1), u(2), p

)T
=

{
(1.0, 0.5 + 0.01 sin(2πx), 0.01 sin(2πx), 2.5)T for |x| ≥ 0.25 ,

(2.0, − 0.5 + 0.01 sin(2πx), 0.01 sin(2πx), 2.5)T for |x| < 0.25 ,

(3.10)
in which a single moded sin-wave is superimposed on the shear flow as a small initial
perturbation. The test is conducted with the polynomial bases of different orders but the
same degree of freedom for fair comparison. For DGP1, DGP2, DGP3, and DGP4, the
element sizes are h = 1/300, 1/200, 1/150, and 1/120, respectively. The CFL numbers
are set according to Eq. (2.11), and the resultant time-step sizes are almost the same for
different cases. The simulation runs to t = 5. Due to singularities and nonlinearities of
Euler equations, there are no exact solutions for this case. Therefore, the benefits of using
high-order bases continue to be in resolving smaller scale vortices and in preserving the
sharp density interface, which is illustrated in Figure 9(a) and (b). The reduced numerical
dissipation of the high-order scheme is also more capable of retaining the small initial
perturbation and hence earlier growth of the kinetic energy. This numerical characteristics
is shown in Figure 9(c).

4. Conclusion and outlook

In the present study, we extended the AV formulation by Persson & Peraire (2006)
and propose a new AV formulation for DG, suitable specifically from explicit time in-
tegration. The proposed AV formulation is built on stability analysis for determining
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(a) DGP2, h = 0.02

(b) DGP2, h = 0.01

(c) DGP4, h = 0.02

(d) DGP4, h = 0.01

Figure 7. Simulation results of the double-Mach-reflection case with different polynomial
orders and mesh sizes.

the viscosity magnitude and the development of a detecting procedure for identifying
trouble cells. The performance of this AV formulation was examined in the context of
shock-dominated flows and was shown to be capable of supporting the order up to DGP4
(the highest we considered in this study). Artificial viscosity is activated only in the vicin-
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(a) DGP2, h = 0.02

(b) DGP2, h = 0.01

(c) DGP4, h = 0.02

(d) DGP4, h = 0.01

Figure 8. Simulation results of the forward-facing-step case with different polynomial orders
and mesh sizes.
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(a) DGP1 solution at t = 5 (b) DGP3 solution at t = 5
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Figure 9. Simulation results of Kelvin-Helmholtz instability.

ity of discontinuities, which helps maximize the scheme’s resolution for smooth solutions
while localizing the shock-capturing errors.

In a future study, we will use this AV formulation for compressible turbulence simula-
tions and extend DG’s capability towards more complex flow physics.
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