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Decomposing high-order statistics for sensitivity
analysis

By G. Geraci, P.M. Congedo† AND G. Iaccarino

1. Motivation and objectives

Sensitivity analysis in the presence of uncertainties in operating conditions, material
properties, and manufacturing tolerances poses a tremendous challenge to the scientific
computing community. In particular, in realistic situations, the presence of a large number
of uncertain inputs complicates the task of propagation and assessment of output un-
certainties; many of the popular techniques, such as stochastic collocation or polynomial
chaos, lead to exponentially increasing costs, thus making these methodologies unfeasible
(Foo & Karniadakis 2010). Handling uncertain parameters becomes even more challeng-
ing when robust design optimization is of interest (Kim et al. 2006; Eldred 2009). One
of the alternative solutions for reducing the cost of the Uncertainty Quantification (UQ)
methods is based on approaches attempting to identify the relative importance of the in-
put uncertainties. In the literature, global sensitivity analysis (GSA) aims at quantifying
how uncertainties in the input parameters of a model contribute to the uncertainties in
its output (Borgonovo et al. 2003). Traditionally, GSA is performed using methods based
on the decomposition of the output variance (Sobol 2001), i.e., ANalysis Of VAriance,
ANOVA. The ANOVA approach involves splitting a multi-dimensional function into its
contributions from different groups of dependent variables. The ANOVA-based analysis
creates a hierarchy of dominant input parameters, for a given output, when variations
are computed in terms of variance. A limitation of this approach is the fact that it is
based on the variance since it might not be a sufficient indicator of the overall output
variations.
The main idea of this work is that the hierarchy of important parameters based on

second-order statistical moment (as in ANOVA analysis) is not the same if a different
statistic is considered (a first attempt in this direction can be found in Abgrall et al.

2012). Depending on the problem, the decomposition of the nth-order moment might
be more insightful. Our goal is to illustrate a systematic way of investigating the effect
of high-order interactions between variables to understand if they are dominant or not.
We introduce a general method to compute the decomposition of high-order statistics,
then formulate an approach similar to ANOVA but for skewness and kurtosis. This
is a fundamental step in order to also formulate innovative optimization methods for
obtaining robust designs that account for a complete description of the output statistics.
For instance, by knowing the relative importance of each variable (or subset of variables)
over the design spaces, reduced UQ propagation problems can be solved adaptively by
choosing only the influent variables. A similar approach (Congedo et al. 2013) using
variance-based sensitivity indices has been demonstrated to be effective in the overall
reduction of the numerical cost associated with a design optimization of a turbine blade
for Organic Rankine Cycle (ORC) application with a large number of uncertain inputs.
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The methodology proposed in this work illustrates how third- and fourth-order statis-
tic moments can be decomposed (in a way which mimics what has been done for the
variance). It is shown that this decomposition is correlated to a polynomial chaos (PC)
expansion, enabling us to compute each term and propose new sensitivity indices. The
new decomposition technique is illustrated by considering several test functions. In partic-
ular, a functional decomposition based on variance, skewness, and kurtosis is computed,
displaying how sensitivity indices vary according to the order of the statistical moment.
Moreover, the decomposition of high-order statistics is used to drive the model reduc-
tion of the metamodel. The effect of the high-order decomposition is also evaluated, for
several test cases, in terms of its impact on the probability density functions.

2. High-order statistics definition

Let us consider a real function f = f(ξ) with ξ a vector of independent and identically
distributed random inputs ξ ∈ Ξd = Ξ1 × · · · × Ξn (Ξ ⊂ R

d) and ξ ∈ Ξd 7−→ f(ξ) ∈

L4(Ξd, p(ξ)), where p(ξ) =
∏d

i=1 p(ξi) is the probability density function of ξ.

The central moments of order n can be defined as

µn(f) =

∫

Ξd

(f(ξ)− E(f))np(ξ)dξ, where E(f) =

∫

Ξd

f(ξ)p(ξ)dξ. (2.1)

In the following, we indicate with σ2 = µ2(f), s = µ3(f), and k = µ4(f) the variance
(second-order moment), the skewness (third-order), and the kurtosis (fourth-order), re-
spectively. We note here that according to standard definitions of the skewness and kur-
tosis, we should include a normalization factor, namely the third power of the standard
deviation and the square of the variance, respectively. However, in this context, interest
is only in the relative contribution of each term of the decomposition; thus, distorting
the nomenclature somewhat, we refer to skewness and kurtosis following the definitions
as in Eq. (2.1).

3. Functional ANOVA decomposition

Let us apply the definition of the Sobol functional decomposition (Sobol 2001) to the
function f as

f(ξ) =

N
∑

i=0

fmi
(ξ ·mi), (3.1)

where the multi-index m, of cardinality card(m) = d, can contain only elements equal
to 0 or 1. The total number of admissible multi-indices mi is N + 1 = 2d; this number
represents the total number of contributes up to the dth-order of the stochastic variables
ξ. The scalar product between the stochastic vector ξ and mi is employed to identify
the functional dependences of fmi

. In this framework, the multi-index m0 = (0, . . . , 0),
is associated with the mean term fm0

=
∫

Ξd f(ξ)p(ξ)dξ. As a consequence, fm0
is equal

to the expectancy of f , i.e., E(f). In the following, we assume the first d indices as the
multi-indices associated to the single variables, while the second-order interaction terms
follow, and so on.

The decomposition Eq. (3.1) is of ANOVA-type in the sense of Sobol (Sobol 2001) if
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all the members in Eq. (3.1) are orthogonal, i.e., as

∫

Ξd

fmi
(ξ ·mi)fmj

(ξ ·mj)p(ξ)dξ = 0 with mi 6= mj , (3.2)

and for all the terms fmi
, except f0, it holds

∫

Ξd

fmi
(ξ ·mi)p(ξj)dξj = 0 with ξj ∈ (ξ ·mi) . (3.3)

Each term fmi
of (3.1) can be expressed as

fmi
(ξ ·mi) =

∫

Ξd−card(m̂i)

fmi
(ξ ·mi)p(ξ̄i)dξ̄i −

∑

mj 6=mi

card(m̂j)<card(mi)

fmj
(ξ ·mj), (3.4)

where the symbol m̂i indicates a vector of cardinality equal to the number of non-null
elements in mi, i.e., card(mi) indicates the number of variables involved in mi, while
ξ̄i contains all the variables that satisfy (ξ ·mi) ∪ ξ̄i = ξ.

Hereafter, we refer, for brevity, to the probability measure: dµi = p(ξ ·mi)d(ξ ·mi).
Variance can be expressed as the summation of all the conditional contributions

σ2 =

N
∑

i=1

σ2
mi
, where σ2

mi
=

∫

Ξ̂i

f2
mi

(ξ ·mi)dµi. (3.5)

The notation is made more compact by means of Ξ̂i = Ξcard(m̂i). Because of the prop-
erties of the ANOVA terms, all the mixed contributions are zero due to orthogonality.
Analogously, the skewness, first by taking the third power of f(ξ)− f0 and by neglecting
the orthogonal contributions, is equal to

s =

∫

Ξ

(f(ξ)− f0)
3dµ=

N
∑

p=1

∫

Ξ̂p

f3
mp

dµp + 3
∑

mp

∑

mq⊂mp

∫

Ξ̂pq

f2
mp

fmq
dµpq

+ 6

N
∑

p=1

N
∑

q=p+1

N
∑

r=q+1
mpq=mr

∫

Ξ̂pq

fmp
fmq

fmr
dµpq.

(3.6)

In the previous expression, the multi-index mpq represents the union between mp and
mq, also indicated as mpq = mp ⊞ mq. After some manipulations, it is possible to

demonstrate the following (additive) form: s =
∑N

i=1 smi
. In particular, by considering

each multi-index mi associated with a set of 2|mi| − 1 sub-interactions and by denoting
this set as Pi (Pi, 6= is shorthand for Pi − {mi}), each contribution can be expressed as

smi
=

∫

Ξ̂i

f3
mi

dµi+3

∫

Ξ̂i

f2
mi

∑

mq∈Pi,6=

fmq
dµi+6

∑

mp∈Pi,6=

∑

mp 6=mq∈Pi,6=
mpq=mi

∫

Ξ̂i

fmi
fmp

fmq
dµi.

(3.7)

Similar considerations lead to the additive form of the kurtosis, where each conditional
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term is

kmi
=

∫

Ξ̂i

f4
mi

dµi + 4

∫

Ξ̂i

f3
mi

∑

mq∈Pi,6=

fmq
dµi + 6

∑

mp∈Pi

∑

mp 6=mq∈Pi
mpq=mi

∫

Ξ̂i

f2
mp

f2
mq

dµi

+ 12
∑

mp

∑

mp 6=mq∈Pi

∑

mr∈Pi,r>q
mp⊞∩qr=mi

∫

Ξ̂i

f2
mp

fmq
fmr

dµi

+ 24
∑

mp∈Pi

∑

mq∈Pi,q>p

∑

mr∈Pi,r>q

∑

t>r,mr∈Pi

mi⊆mpq⊞∩rt

mi⊆mrt⊞∩pq

∫

Ξ̂i

fmp
fmq

fmr
fmt

dµi.

(3.8)

Hereafter, the symbol ∩pq indicates the set of variables contained in both mp and mq.

4. Correlation with polynomial chaos framework

Variance, skewness, and kurtosis from the functional decomposition are correlated with
the terms contained within a polynomial chaos expansion. This correlation establishes a
rigorous numerical approach to compute the terms present in the functional (additive)
decomposition of the central moments. As usual in the PC framework, a truncated series
of P + 1 = (n0 + d)!/(n0!d!) terms of total degree n0 can be obtained as

f(ξ) ≈ f̃(ξ) =

P
∑

k=0

βkΨk(ξ), with Ψk(ξ ·m⋆,k) =

d
∏

i=1

ψαk
i
(ξi). (4.1)

Each polynomial Ψk(ξ) is a multivariate polynomial form which involves tensorization

of 1D polynomials by using a multi-index αk ∈ N
d, with

∑d

i=1 α
k
i ≤ n0. The multi-

index m⋆,k = m⋆,k(αk) ∈ N
d is a function of αk: m⋆,k = (m⋆,k

1 , . . . ,m⋆,k
d ), with m⋆,k

i =

αk
i /

∣

∣

∣

∣

∣

∣
αk
i

∣

∣

∣

∣

∣

∣

6=0
, where the function

∣

∣

∣

∣

∣

∣
·
∣

∣

∣

∣

∣

∣

6=0
is defined as

∣

∣

∣

∣

∣

∣
α
∣

∣

∣

∣

∣

∣

6=0
=

{

|α| if α 6= 0

1 if α = 0.
(4.2)

The polynomial basis is chosen according to the Wiener-Askey scheme in order to select
orthogonal polynomial terms with respect to the probability density function p(ξ) of the
input. Thanks to the orthogonality, the coefficients of the expansion in a non-intrusive
spectral projection framework are numerically evaluated as

βk =
〈f(ξ),Ψk(ξ)〉

〈Ψk(ξ),Ψk(ξ)〉
∀k, (4.3)

where 〈·〉 denotes the L2(Ξd, p(ξ)) inner product.
For variance decomposition, each conditional term can be computed as

σ2
mi

=
∑

k∈Kmi

β2
k〈Ψ

2
k(ξ)〉, (4.4)

where Kmi
represents the set of indices associated with the variables (ξ ·mi)

Kmi
=

{

k ∈ {1, . . . , P} |m⋆,k = m⋆,k(αk) = mi

}

. (4.5)
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Similar correlations, within PC framework, can also be found for skewness and kurtosis.
The final form for skewness is equal to

s =

P
∑

p=1

β3
p〈Ψ

3
p(ξ)〉+ 3

P
∑

p=1

β2
p

P
∑

q=1
q 6=p

βq〈Ψ
2
p(ξ),Ψq(ξ)〉∆

p
q

+ 6

P
∑

p=1

P
∑

q=p+1

P
∑

r=q+1

βpβqβr〈Ψp(ξ),Ψq(ξ)Ψr(ξ)〉∆pqr,

(4.6)

where two functions are introduced for the selection, namely

∆p
q =

{

0 if αp
j = 0 and mqj

= 1

1 otherwise
∆pqr =

{

0 if mpj
+mqj

+mrj = 1, 2

1 otherwise.

(4.7)

The previous expression reduces, for a fixed mi, to

smi
=

∑

p∈Kmi

β3
p〈Ψ

3
p(ξ)〉+ 3

∑

p∈Kmp

β2
p

∑

q∈Kmq
mpq=mi

βq〈Ψ
2
p(ξ),Ψq(ξ)〉∆

p
q

+ 6
∑

p∈Kmp

∑

q∈Kmq

q≥p+1

∑

r∈Kmr
mpqr=mi

βpβqβr〈Ψp(ξ),Ψq(ξ)Ψr(ξ)〉∆pqr .
(4.8)

In the case of kurtosis, the final expression reads

k =

P
∑

p=1

β4
p〈Ψ

4
p(ξ)〉+ 4

P
∑

p=1

β3
p

P
∑

q=1
q 6=p

βq〈Ψ
3
p,Ψq〉∆

p
q

+ 6

P
∑

p=1

β2
p

P
∑

q=p+1

β2
q 〈Ψ

2
p,Ψ

2
q〉+ 12

P
∑

p=1

β2
p

P
∑

q=1
q 6=p

βq

P
∑

r=q+1
r 6=p

βr〈Ψ
2
p,ΨqΨr〉∆

p
qr

+ 24

P
∑

p=1

P
∑

q=p+1

P
∑

r=q+1

P
∑

t=r+1

βpβqβrβt〈ΨpΨq,ΨrΨt〉∆pqrt,

(4.9)

where the function ∆p
q is already introduced in Eq. (4.7), while

∆p
qr =

{

0 if αp
j = 0 and mqj

+mrj = 1, 2

1 otherwise
(4.10)

∆pqrt =

{

0 if mpj
+mqj

+mrj +mtj = 1, 2

1 otherwise.
(4.11)
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The conditional contribution associated with mi is

kmi
=

∑

k∈Kmi

β4
k〈Ψ

4
k(ξ)〉+ 4

∑

p∈Kmp

β3
p

∑

q∈Kmq−{p}

mp⊞mq=mi

βq〈Ψ
3
p,Ψq〉∆

p
q

+ 6
∑

p∈Kmp

β2
p

∑

q∈Kmq−{p}

mp⊞mq=mi

β2
q 〈Ψ

2
p,Ψ

2
q〉

+ 12
∑

p∈Kmp

β2
p

∑

q∈Kmq−{p}

βq
∑

r∈Kmr

r≥q+1
mpqr=mi

βr〈Ψ
2
p,ΨqΨr〉∆

p
qr

+ 24
∑

p∈Kmp

∑

q∈Kmq

q≥p+1

∑

r∈Kmr

r≥q+1

∑

t∈Kmt

t≥r+1
mpqrt=mi

βpβqβrβt〈ΨpΨq,ΨrΨt〉∆pqrt.

(4.12)

As a final remark, with respect to the computational cost of this procedure, it is evident
that the number of terms (multidimensional integrals) to compute grows with both the
stochastic dimensions and the total polynomial degree. However, the procedure does
not require additional model evaluations and can be performed in the post-processing
phase just by using the coefficients associated with the polynomial expansion. Moreover,
parallel strategies could very easily be implemented, considering that each integral can
be computed independently.

4.1. Additional sensitivity indices and model reduction

Sensitivity indices (SI) for variance and for skewness and kurtosis can be defined as

σ2,SI
mi

=
σ2
mi

σ2
, sSImi

=
smi

s
kSImi

=
kmi

k
. (4.13)

The first d sensitivity indices are commonly referred as first-order indices because
they are associated with the single variables. On the contrary, the remaining terms are
associated with the high-order interactions between variables. The sensitivity indices can
be used not only to understand the role played by each single variable or groups of
variables, but also to guide the choice of a surrogate representation of the function f(ξ).
For instance, referring to the functional approximation Eq. (4.1), it is possible to obtain
a polynomial series which includes only terms of degree up to a fixed order of interaction,
namely t

f(ξ) =
∑

mi

fmi
≃

∑

card(m̂i)≤t

fmi
= f̂(ξ). (4.14)

Henceforth, we refer to the polynomial approximation f̂(ξ) as the metamodel of f(ξ)
with order t. Note that card(m̂i) defines the number of non-null elements in mi, i.e., it
measures the order of interaction between variables in the ANOVA sense. Obtaining a
metamodel which neglects the interaction terms of order greater than t is strictly related
to the idea of effective dimension in the superposition sense introduced in Caflisch et al.

(1997).

Another measure of sensitivity is the so-called Total Sensitivity Index (TSI) associated
with each variable. This measure of sensitivity is computed by including the overall
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influence of a single variable

TSIj =
∑

ξj∈(ξ·mi)

σ2,SI
mi

, TSIsj =
∑

ξj∈(ξ·mi)

sSImi
, TSIkj =

∑

ξj∈(ξ·mi)

kSImi
. (4.15)

The information associated with the TSI can also be exploited for reducing a model. If a
threshold is fixed, the dimensionality of the surrogate model can be reduced by neglecting
the variables whose TSI is lower than the threshold. In this case, the metamodel choice
relies on the definition of effective dimension in the truncation sense (Caflisch et al.

1997). In the following section, for brevity, we do not present results related to the
reduction of the model in the truncation sense, but rather we present several results
on the truncation in the superposition sense. The interested reader can refer to (Gao &
Hesthaven 2011; Congedo et al. 2013) for further discussions on the importance of the TSI
measure for model reduction in the uncertainty quantification and robust optimization
settings, respectively.

5. Numerical results

The numerical test cases are chosen to highlight high-order conditional contributions
including multiple sources of uncertainties.

5.1. Computing conditional statistics by means of PC

In this section, the problem of the computation of high-order conditional terms is ana-
lyzed by means of the PC expansion series. Consider the following function

f(ξ) =
d
∏

i=1

sin(πξi), (5.1)

where each variable ξi ∼ U(0, 1) with dimension d up to three. Sensitivity indices’ (rel-
ative) errors are systematically computed with respect to the analytical solution. Con-
ditional statistics can be computed using a PC approach using Eqs. (4.6) and (4.9). In
Figure 5.1, we consider the case d = 2, and we report the errors in first-order statistics
v1, s1, and k1 (where for symmetry σ2

1 = σ2
2 , s1 = s2, and k1 = k2) and interaction

terms (v12, s12, k12) computed with respect to the analytical solution. These statistics
are well converged at N = (n0 + 1)2 = 121. In Figures 3, 4, and 5, we consider the
case d = 3, and percentage errors for conditional statistics are reported. Convergence
for conditional statistics is attained at nearly N = 1500. The results show that, in this
case, all the moments converge in a reasonably consistent way; it is also clear that the
dimensionality of the problem has a strong impact on the convergence, especially when
high-order contributions are non-negligible.

In the following section, the high-order conditional statistics are employed to show the
importance of the high-order interactions between uncertain parameters for the reduction
of a numerical model.

5.2. On the advantages of high-order indices for global sensitivity analysis

The importance of including the computation of high-order conditional terms in the
statistical analysis is demonstrated in this section by means of several test functions.
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Figure 1. First order interactions for Eq. (5.1)
with d = 2. Variance, continuous line; skew-
ness, dashed line; and kurtosis, dash-dot line.
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Figure 2. Second order interactions for Eq.
(5.1) with d = 2. Variance, continuous line;
skewness, dashed line; and kurtosis, dash-dot
line.

Let us consider the classical Sobol function (with four stochastic dimensions)

f(ξ) =

4
∏

i=1

|4ξi − 2|+ ai
1 + ai

, (5.2)

where ξi ∼ U(0, 1). Two possible choices of the coefficients are considered here: (i) ai =
(i − 1)/2 the so called linear g-function fglin, or (ii) ai = i2 the so called quadratic
g-function fgquad.
In Figure 6, sensitivity indices for the linear g-function fglin are reported. Several

differences can be noticed between the sensitivity indices computed using the variance
or other high-order moments. The variance-based ranking illustrates that the first-order
sensitivity indices are higher than the second-order one, while these last are higher than
those of the third- and fourth-order. This is not the case for skewness and kurtosis, where
the second-order contributions are higher than the first-order and third-order ones. This
behavior indicates that a variance analysis is able to represent the absolute ranking of
the variables in terms of first-order contributions, but the importance associated with
higher-order interactions between the parameters is lost. From a practical point of view,
underestimating the importance of high-order interactions between variables can lead to
wrong decisions in a dimension reduction strategy. The variance based only on first-order
contributions exceeds 0.8, whereas skewness and kurtosis do not attain 0.1. This can be
demonstrated to be very influential if the probability distribution for reduced models is
considered. In Table 1, the total sensitivity indices for the four variables are reported.
The same functional form can lead to slightly different results if the quadratic function

coefficients are considered. In Figure 7, the sensitivity indices for the g-function with
a quadratic dependence of the coefficients are reported. In this case, the difference be-
tween the first order contributions and high-order terms is even more evident. For the
variance, first-order contributions exceed 0.98, while a value larger than 0.5 is computed
for high-order interactions, when considering skewness and kurtosis. For both skewness
and kurtosis, attaining a level equal to 0.8 is only possible including the second order
interaction between the first and second variable. In Table 2, total sensitivity indices are



Decomposing high-order statistics for sensitivity analysis 147

N

P
er

ce
nt

ag
e

er
ro

rs

0 500 1000

10-6

10-4

10-2

100

102

Figure 3. First order interactions for Eq. (5.1)
with d = 3. Variance, continuous line; skew-
ness, dashed line; and kurtosis, dash-dot line.
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Figure 4. Second order interactions for Eq.
(5.1) with d = 3. Variance, continuous line;
skewness, dashed line; and kurtosis, dash-dot
line.
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Figure 5. Third order interactions for Eq.
(5.1) with d = 3. Variance, continuous line;
skewness, dashed line; and kurtosis, dash-dot
line.

Variable TSI TSIs TSIk

ξ1 0.57 0.79 0.86
ξ2 0.29 0.56 0.64
ξ3 0.17 0.36 0.44
ξ4 0.11 0.24 0.31

Table 1. Total sensitivity indices for the linear g-function Eq. (5.2) based on a PC series with
total degree n0 = 5.

reported for the four variables. In this case, variance contributions for both the third and
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Figure 6. Sensitivity indices for the linear g-function fglin Eq. (5.2) obtained with a PC series
with total degree n0 = 5. Variance terms are indicated in white, skewness in black and kurtosis
in gray.
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Figure 7. Sensitivity indices for the quadratic g-function fgquad Eq. (5.2) obtained with a PC
series with total degree n0 = 5. Variance terms are indicated in white, skewness in black, and
kurtosis in gray.

fourth variables are below 0.05, while for both skewness and kurtosis, only the fourth
variable contribution takes a TSI value of 0.04, which can be considered non significant.
A low level of TSI for the variables ξ3 and ξ4 could suggest truncating the dimensionality
of the model to the first two variables or neglecting the contributions related to an order
higher than one.
Let us now consider the following functions

f1 = ξ1e
ξ2

ξ2
3
+1 + ξ1ξ2 and f2 =

3
∏

i=1

2ξi + 1

2
, (5.3)

where the parameters are ξi ∼ U(0, 1).
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Variable TSI TSIs TSIk

ξ1 0.82 0.95 0.97
ξ2 0.14 0.47 0.44
ξ3 0.04 0.13 0.12
ξ4 0.01 0.04 0.04

Table 2. Total sensitivity indices for the quadratic g-function fgquad Eq. (5.2) based on a PC
series with total degree n0 = 5.
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Figure 8. Sensitivity indices for the first function f1 Eq. (5.3) obtained with a PC series with
total degree n0 = 7. Variance terms are indicated in white, skewness in black, and kurtosis in
gray.

Sensitivity indices associated to the first function f1 are reported in Figure 8. For the
function f1, the most important variable is ξ1. For the variance, the first-order sensitivity
index relative to ξ1 is also the most important SI. By contrast, for both skewness and
kurtosis, the highest SI is associated to the second-order interaction between the first and
the second variable. In this case, inspection of the total sensitivity indices, reported in
Table 3, suggests that the third variable ξ3 does not contribute to the variance. However, if
this information is used together with the high-order total sensitivity indices’ information,
the choice of ignoring the third variable should be considered more carefully. This reflects
the importance of ξ3 in the actual form of the probability density function of f1, even if
its variance is not heavily influenced by it.

The last example, i.e., the function f2 Eq. (5.3), includes an equal contribution of
three variables. However, looking at Figure 9, note that the variance is concentrated
only on first-order contributions of the single variables and their sum exceeds 0.9. The
skewness and kurtosis contributions, on the other hand, are concentrated in second-order
interactions. For kurtosis, the third-order interaction is the highest contribution. Note
that even if the sum of the first-order variance contribution exceeds 0.9, a reduction of
the model that neglects the high orders of interaction could lead to wrong conclusions.
In this case, the skewness associated to the first-order metamodel does not include any
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Variable TSI TSIs TSIk

ξ1 0.79 0.96 0.97
ξ2 0.26 0.96 0.67
ξ3 0.02 0.10 0.10

Table 3. Total sensitivity indices for the first function f1 Eq. (5.3) based on a PC series with
total degree n0 = 7.
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Figure 9. Sensitivity indices for the function f2 Eq. (5.3) obtained with a PC series with total
degree n0 = 7. Variance terms are indicated in white, skewness in black, and kurtosis in gray.

Variable TSI TSIs TSIk

ξ1 0.36 0.70 0.71
ξ2 0.36 0.70 0.71
ξ3 0.36 0.70 0.71

Table 4. Total sensitivity indices for the first function f2 Eq. (5.3) based on a PC series with
total degree n0 = 7.

information associated to the non-symmetric behavior of the probability distribution of
the function f2.
Values for the total sensitivity indices for this case are reported in Table 4 . Note

that the sum of the total sensitivity indices over the three variables is much higher for
skewness and kurtosis with respect to the variance. Then, both of them refer, correctly,
to an intrinsically high-order (of interaction) function (see Eq. (5.3) for the definition of
f2).
From a practical point of view, the information related to the high-order interactions

can be exploited for driving a model reduction. With regard to the function fglin (see
Figure 6 and Table 1), the partial contribution on the variance of the first-order inter-
action, since it exceeds 0.8, could lead to the decision to build a metamodel including
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Figure 10. PDFs for the complete linear g-function fglin (bold line) and the reduced models:
first (dash-dot) and second order (dashed with symbols).

only the first order, i.e., four ANOVA terms. However, the high-order SI indicate the
importance of, at least, second-order interactions. The comparison, in term of probabil-
ity density function of fglin, is reported in Figure 10. It is evident that the first-order
model has zero skewness. The situation greatly improves by including contributions up
to second order.
A similar behavior can be observed by applying a model reduction to the function

fgquad. Even if the variance is almost fully captured by the first-order contributions of
the ANOVA expansions (see Figure 7), the information relative to the skewness is mostly
related to the second-order contributions. This is evident in terms of the probability
distributions, as is shown in Figure 11.
Moreover, the function f1 features a different behavior in terms of sensitivity indices.

The skewness is associated to the second-order interaction between the first and the
second variable. The effect of neglecting the second-order terms is evident in Figure 12
where the probability distributions are shown. The first-order metamodel completely
misrepresents the tails of the distribution, whereas a great improvement is associated to
the the second order terms. The right tail is well captured, but the model still fails to
capture correctly the left tail.
In Figure 13, the pdf for the complete model and the first and second orders are

reported. Even if more than 90% of the variance is included in the first-order model, its
pdf contains no information about the skewness, and the tails appear to be totally lost.
However, if the second-order interactions between variables are included, the quality of
the pdf improves consistently.
Numerical test cases presented in this section illustrate how information relative to

variance-based sensitivity indices seems to be incomplete if the true dependence of a
model from its variables is to be understood. In particular, variance gives more weight
to low-order interactions with respect to the sensitivity indices associated to skewness
and kurtosis. This factor could be even more important if the aim is to reduce the
dimensionality of the problem and to build an accurate metamodel.
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Figure 11. PDFs for the complete quadratic g-function fgquad (bold line) and the reduced
models: first (dash-dot) and second order (dashed with symbols).
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Figure 12. PDFs for the complete f1 (bold line) and the reduced models: first (dash-dot) and
second order (dashed with symbols).

6. Conclusions and future perspectives

This study is focused on analysis of the decomposition of high-order statistical mo-
ments of multi-variate stochastic functions, obtained as results of problems subject to
uncertainty in the inputs. A correlation was found between functional decomposition, as
depicted by Sobol, and polynomial chaos expansion. This allows each term in the de-
composition to be clearly defined and also provides a practical way to compute all these
terms. This procedure is assessed on several analytic test cases computing the conver-
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Figure 13. PDFs for the complete f2 (bold line) and the reduced models: first (dash-dot) and
second order (dashed with symbols).

gence curves obtained by using PC. Furthermore, sensitivity indices based on skewness
and kurtosis decomposition are introduced. The importance of ranking the predominant
uncertainties in terms not only of the variance but also of higher-order moments (then ex-
tending the ANOVA analysis also to higher-order statistic moments) was demonstrated.
Future plans will be directed towards the application of high-order sensitivity indices’

information, as already done for the variance, for adaptive dimensional reduction in the
context of robust design optimization. Moreover, efforts to estimate, a priori, the quality
of a polynomial metamodel, in which the high-order interactions cannot be accurately
assessed, are currently under investigation.
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