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Space-time characteristics of wall-pressure
fluctuations in wall-modeled large eddy simulation

By G. I. Park AND P. Moin

1. Motivation and objectives

Pressure and shear stress fluctuations at the wall are of great importance in external
hydro- and aerodynamics, since they are directly related to the structural vibration and
noise generation from immersed bodies. Often the space-time characteristics of wall-
pressure fluctuations are required for low-frequency sound propagation and vibration
models.
In this brief, we focus on the prediction of fluctuating wall pressure and shear stress

from wall-modeled large-eddy simulation (WMLES). WMLES is a technique to circum-
vent the prohibitive grid-resolution requirement in LES of high Reynolds number wall-
bounded flows. In WMLES, the dynamically important but very small near-wall eddies
are not directly resolved by the LES grid, but their effect is modeled by a wall model. In
such an approach, one aims to compute the outer-layer using a coarse LES, while modeling
the effect of momentum and heat transfer from the inner layer to the outer layer. Assess-
ment of WMLES has always been based on the predictive quality of the mean velocity
and Reynolds stresses. Secondary quantities from WMLES such as wall-pressure fluctu-
ations and their spectra have received little attention, and are not reported. Here, the
r.m.s. and wavenumber-frequency spectra of wall-pressure fluctuations are documented
and analyzed. These supplementary data will elucidate to what extent the near-wall pres-
sure field from WMLES can be utilized for modeling sound propagation and vibrations.
A high Reynolds number turbulent channel flow is considered for this purpose.

2. Computational details

WMLES of a compressible channel flow is performed at Reτ = 2000, the Reynolds
number based on the channel half-height δ, the friction velocity uτ , and the kinematic
viscosity ν = µ/ρ. The Mach number at the channel centerline is fixed at 0.2 for com-
parison to the incompressible reference data. The size of the computational domain is
Lx = 25δ, Ly = 2δ, and Lz = 10δ in the streamwise (x), wall-normal (y), and span-
wise (z) directions, respectively. Incompressible DNS of Hoyas & Jiménez (2006) is used
here as reference. In the baseline WMLES calculation, the grid spacings in wall units
uniform in each direction are (∆x+, ∆y+, ∆z+) = (200, 40, 125). The number of grid
points in the LES totals 4 million with (Nx, Ny, Nz) = (250, 100, 160). In the fine
WMLES calculation, the LES grid is refined only in the wall-parallel directions. Peri-
odic boundary conditions are applied in the streamwise and spanwise directions, and the
wall temperature is kept constant to balance the energy input from the source term by
the wall-heat transfer. Since the coarse grid used in the LES cannot support the sharp
velocity/temperature gradients at the wall, the usual no-slip/thermal wall-boundary con-
ditions in the LES are replaced with approximate boundary conditions in terms of the
wall stress/heat flux computed by the wall model. A non-equilibrium wall model which
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solves unsteady 3-D Navier-Stokes equations on an embedded near-wall mesh with a
RANS-type closure is used (see Park & Moin 2014; Park 2014 for details). The kinematic
no-penetration condition is maintained. The non-equilibrium wall model was added to
Charles, a cell-centered unstructured finite volume compressible LES solver provided by
Cascade Technologies, Inc.
The space-time characteristics of wall-pressure fluctuations in the channel flow are

analyzed in terms of wavenumber-frequency spectra, space/time two-point correlations,
and convection velocity. The wavenumber spectra from WMLES are compared directly
to the reference DNS data. The frequency spectrum of the DNS was obtained using the
Taylor’s hypothesis and the deduced convection velocity in the present study, because the
DNS provides the power spectral density only in the wavenumber space. We follow the
standard technique for computation of power spectra illustrated in Choi & Moin (1990).
Pressure fluctuation signal at the wall p(x, z, t) is collected over a non-dimensional time
T+ = tuτ/δ = 9.6. The simulations time steps ∆t′ are 1.25×10−4δ/uτ and 1.0×10−4δ/uτ

for the coarse and the fine calculations, respectively. The sampling resolution is the same
in both calculations, fixed at ∆t = 4×10−3δ/uτ . The signal is then divided into M
overlapping intervals in the time domain with 50% overlap. Here we take M = 12. The
Hanning window is applied to the signal within each interval to minimize spectral leakage
in the frequency spectrum. Let pm(x, z, t) and p̂m(k1, k3, ω) be the pressure fluctuation
signal in the mth interval and its discrete Fourier transform. Here k1, k3, and ω are
discrete wavenumbers and (angular) frequencies, which have both positive and negative
components. First, the three-dimensional power spectral density φ(k1, k3, ω) is calculated
by

φ(k1, k3, ω) =
1

M

M∑
m=1

|p̂m(k1, k3, ω)|
2. (2.1)

φ is then rescaled to satisfy the discrete Parseval’s theorem,

p′2 =
∑

k1,k3,ω

φ(k1, k3, ω). (2.2)

In order to mimic an important property of the power spectrum in continuous space

p′2 =

∫ +∞

−∞

E(k1, k3, ω)dk1dk3dω, (2.3)

the discrete three-dimensional power spectrum is defined as

Ẽ(k1, k3, ω) =
φ(k1, k3, ω)

∆k1∆k3∆ω
. (2.4)

Two-dimensional power spectra are then obtained by integrating Ẽ(k1, k3, ω) over the
remaining dimension

Ẽ(k1, k3) =
∑
ω

Ẽ(k1, k3, ω)∆ω, Ẽ(k1, ω) =
∑
k3

Ẽ(k1, k3, ω)∆k3. (2.5)

One-dimensional power spectra are obtained similarly

Ẽ(k1) =
∑
k3,ω

Ẽ(k1, k3, ω)∆ω∆k3, Ẽ(ω) =
∑
k1,k3

Ẽ(k1, k3, ω)∆k1∆k3. (2.6)

Two-dimensional two-point auto-correlations R(rx, rz) and R(rx, rt) are calculated by
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Figure 1. Power spectra of pressure (solid line) and streamwise velocity (dashed line) fluctua-
tions from the present Reτ = 2003 WMLES (baseline mesh). Each spectrum is normalized such
that the total energy is equal to 1.

taking the inverse Fourier transform of the corresponding two-dimensional power spectra
Ẽ(k1, k3) and Ẽ(k1, ω), and normalizing them with their respective maxima at zero sepa-
ration. The one-dimensional spectra are often presented in the space of positive wavenum-
bers/frequencies, since they are symmetric about the zero wavenumber/frequency axes.
For this purpose, single-sided one-dimensional spectra are defined by

E(k1) = 2Ẽ(k1), E(k3) = 2Ẽ(k3), E(ω) = 2Ẽ(ω). (2.7)

3. Results

3.1. R.m.s. fluctuation of wall pressure and shear stress

Before presenting the results and comparing them to the incompressible DNS data, a
few remarks are in order regarding an unexpected pressure behavior in the present com-
pressible channel flow calculations. Strong 2-∆ waves in the streamwise direction were
found from the pressure and density signals in the channel calculation (they were not
present in the velocity fields, see Figure 1). The 2-∆ waves were also present in calcula-
tions without using a wall model (no-slip wall). These waves manifested themselves in the
pile-up of energy at high wavenumbers (0.91 ≤ k1/k

max
1 ≤ 1, where k1 is the streamwise

wavenumber), possessing the highest energy and accounting for 19% of the total energy.
The length scale associated with this energy pile-up was between 2∆x and 2.2∆x. The
spurious waves were not found in the initially laminar state, but they emerged through
transition to turbulence and were trapped within the periodic channel. The amplitudes
of the waves were highest at the wall and lowest near the channel centerline. The 2-∆
wave did not appear in the boundary layer and airfoil calculations presented in Park &
Moin (2014), which had inlets and outlets. All these observations suggest that the 2-∆
wave is likely induced by poorly resolved acoustic waves trapped in the doubly periodic
domain. Presumably, once generated, it persists for a long time owing to stiff flow con-
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Case ∆x+/∆z+ p′+w,rms τ ′+
w,rms

Present WMLES (baseline) 200/125 3.98(3.22) 0.24
Present WMLES (xz-refined) 100/62.5 3.05(2.90) 0.25

Incomp. DNS (Hoyas & Jiménez 2006) 8.2/4.1 2.82 0.43

Table 1. Fluctuating wall pressure and shear stress in Reτ = 2003 turbulent channel flow. Num-
bers in parentheses are p′+w,rms obtained by excluding the 2-∆ wave contributions. τ ′

w = ∂u′/∂y
is the wall-normal gradient of the streamwise velocity fluctuation at the wall.

ditions (high Reynolds number and low Mach number) and conservative/non-dissipative
schemes used for nonlinear advection terms. Some dissipative ad hoc remedies, such as
filtering the pressure signal every 10 time steps and adding 0.2% upwinding, helped re-
duce the amplitude of the 2-∆ wave, but they were not pursued owing to their negative
effects on the mean flow.

The problem was mitigated when the baseline channel mesh was refined in the wall-
parallel directions (x and z). The pile-up of energy still occurred in the range of 0.92 ≤
k1/k

max
1 ≤ 1, but it possessed significantly lower energy than that in the coarse calcula-

tion, and accounted for only 5% of the total energy. In fact, it is shown in the subsequent
section that, in the baseline mesh, the pressure fluctuations producing eddies were re-
solved with less than 2 and 5 cells in the streamwise and spanwise directions, respectively.
Further mesh refinement to remove the energy pile-up at high wavenumbers was not per-
formed, since it would approach the limit of resolved LES which does not require the
wall model.

Table 1 shows the fluctuating wall pressure and shear stress (p′+w,rms and τ ′+w,rms) from
the turbulent channel flow. Note that the current wall model does not model the wall
pressure, and provides only the wall-shear stress to the LES. Therefore, τ ′+w,rms is calcu-
lated from the wall model solution, whereas p′+w,rms comes from the LES solution. p′+w,rms

in the channel flow is overpredicted by a factor of 1.4 with the baseline mesh, and by a
factor of 1.08 with the LES mesh refined in the wall-parallel directions. However, when
the contribution from the 2-∆ wave is excluded, p′+w,rms is overpredicted only by a factor
of 1.14 and 1.03 with the baseline and refined meshes, respectively. It is anticipated that,
with finer grids, p′+w,rms will eventually converge to the DNS value and the spurious wave
will be suppressed.

On the contrary, τ ′+w,rms is insensitive to the LES mesh resolution and remains to
be significantly underpredicted (∼50% of the DNS value). It is suspected that the wall
model, with a highly diffusive RANS-type turbulence parameterization and an upwinding
advection scheme, damps out the footprint of fluctuating LES signals imposed on the top
boundary. In fact, a RANS based wall model is responsible only for producing the correct
mean wall-shear stress. Therefore, the resolved fluctuation of the wall-shear stress is not
represented adequately in the wall model, and it is insensitive to the mesh refinement in
the outer layer.
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Figure 2. Contour plot of two-dimensional streamwise/spanwise wavenumber power spectrum
of wall-pressure fluctuations (E(k1, k3)/τ

2
wδ

2) . Top, DNS of Hoyas & Jiménez (2006); middle,
present WMLES (baseline mesh); bottom, present WMLES (xz-refined mesh).

10−1 100 101 102 103

k1δ

10−6

10−5

10−4

10−3

10−2

10−1

100

101

E
(k

1
)/
τ w

2
δ

Figure 3. Streamwise wavenumber spectrum of wall-pressure fluctuations. Blue dashed line,
present WMLES (baseline mesh); red solid line, present WMLES (xz-refined mesh); black solid
line (with the longest tail), DNS of Hoyas & Jiménez (2006); dashed-dotted lines, -1 and -5 slope
lines.
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Figure 4. Spanwise wavenumber spectrum of wall-pressure fluctuations. Blue dashed line,
present WMLES (baseline mesh); red solid line, present WMLES (xz-refined mesh); black solid
line (with the longest tail), DNS of Hoyas & Jiménez (2006); dashed-dotted line, -1 slope.

−1500 −1000 −500 0 500 1000 1500

r+
x

−1500

−1000

−500

0

500

1000

1500

r+ z

Figure 5. Contours of two-point auto-correlation of wall-pressure fluctuations R(rx, rz) as a
function of streamwise and spanwise separations. Contour levels from 0.1 with 0.1 increment.
Blue dashed line, present WMLES (baseline mesh); red solid line, present WMLES (xz-refined
mesh). black dash-dotted line, DNS of Hoyas & Jiménez (2006) reported in Sillero et al. (2014).
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Figure 6. Contours of two-dimensional streamwise wavenumber-frequency power spectrum of
wall-pressure fluctuations (E(k1, ω)uτ/τ

2
wδ

2). Contour levels from 0.002 to 0.004 with 0.0002
increment. Blue dashed line, present WMLES (baseline mesh); red solid line, present WMLES
(xz-refined mesh).

3.2. Space-time characteristics of wall-pressure fluctuations

Figure 2 shows the contour plots of the streamwise/spanwise wavenumber spectrum
E(k1, k3). In the coarse WMLES, a high energy density associated with the 2-∆ wave
is visible in the lower right corner. Since the one-dimensional spectra are obtained by
reducing (summing) E(k1, k3) in the remaining direction, it is evident that the 2-∆ wave
contaminates E(k1) in high k1 and E(k3) in low k3. This is reflected in the plots of
E(k1) and E(k3) shown below. Additionally, the total energy (p′2) is overpredicted, and
the energy distribution is biased towards the high wavenumber region compared to the
incompressible DNS. In the fine WMLES, the influence of the 2-∆ wave is much weaker
and a better agreement with the DNS is observed.

Figure 3 shows the streamwise wavenumber spectrum E(k1). The 2-∆ wave is clearly
visible in both the coarse and fine calculations, while it is less severe in the latter. As
mentioned earlier, 19% (coarse mesh) and 5% (fine mesh) of the total (pressure) energy
are contained in the rising tails of the spectra. Note that the low-wavenumber spectrum
from the fine calculation is in good agreement with the reference DNS. A -1 slope and a -5
slope in the spectrum are known to be related to turbulence in the logarithmic layer and
the buffer layer, respectively (Bradshaw 1967). The power spectra from both WMLES
and DNS exhibit a short -1 slope region, and a relatively well-developed -5 slope in
the high-wavenumber region. Figure 4 shows the spanwise wavenumber spectrum E(k3).
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Figure 7. Contours of two-point auto-correlation of wall-pressure fluctuations R(rx, rt) as a
function of streamwise and temporal separations. Contour levels from 0.2 to 0.9 with 0.1 in-
crement. Blue dashed line, present WMLES (baseline mesh); red solid line, present WMLES
(xz-refined mesh); black dashed line, denotes Uc = 13.6uτ = 0.56U0 ; black dashed-dotted line,

denotes Uc = 17uτ = 0.7U0; uτ =
√

τw/ρ is the friction velocity, and U0 is the channel center-line
velocity.
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Figure 8. Frequency spectrum of wall-pressure fluctuations. Blue dashed line, present WMLES
(baseline mesh); red solid line, present WMLES (xz-refined mesh); black solid line (with the
longest tail), DNS of Hoyas & Jiménez (2006). We deduced the frequency spectrum of the DNS
from E(k1)

DNS using the Taylor’s hypothesis with Uc = 0.7U0; dashed-dotted lines, -1 and -5
slope lines; green circles; cut-off frequency ωc based on the streamwise grid spacing (4∆x) in
WMLES and the convection velocity 0.7U0.
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The spectrum from the fine calculation is in better agreement with the DNS in the
low-wavenumber region.
Figure 5 shows the two-point spatial auto-correlation of wall-pressure fluctuations as

a function of streamwise and spanwise separations. It can be deduced that the integral
length scales of the pressure-producing near-wall eddies are about 250 and 1000 wall units
in the streamwise and spanwise directions, respectively. In the outer layer scaling, they are
0.125δ and 0.5δ in the streamwise and spanwise directions, respectively. Obviously, these
eddies are not resolved at all in the coarse WMLES, and they are resolved marginally
in the fine WMLES (see Table 1). The contours in the DNS and the fine WMLES have
circular shapes at small separations and oval shapes elongated in the spanwise direction
at large separations. This is consistent with the findings from previous studies (Willmarth
1975; Choi & Moin 1990).
Figures 6 and 7 show the contours of the two-dimensional streamwise wavenumber-

frequency power spectrum E(k1, ω), and the contours of the two-point auto-correlation
R(rx, rt). The strong convective nature of wall-pressure fluctuations is reflected on the
contours clustered in a thin band. The slope of this narrow band is interpreted as the
convection velocity Uc of wall-pressure fluctuations. While it is possible to obtain Uc

as a function of k1 and ω, we define Uc simply to be the slope of the best line fit to
the contours of R(rx, rt) in the range of [0.3, 0.9]. The convection velocities obtained
in this manner are Uc=0.56U0 and Uc=0.7U0 in the coarse and the fine calculations,
respectively, where U0 is the channel centerline velocity. Uc in the finer calculation is in
good agreement with the overall convection velocity of the most energetic structures in
low Reynolds number channel flows reported by Kim (1989), Choi & Moin (1990), and
Jeon et al. (1999) (Uc ≈ 0.72U0).
Lastly, Figure 8 shows the frequency power spectrum E(ω). Both the coarse and the fine

calculations exhibit wiggles in the spectra in the frequency range of ω > ωc, where ωc =
πUc/4∆x is the frequency of a streamwise wave with a 4-∆x wavelength, convected with
velocity Uc=0.7U0. The effect of the spurious 2-∆x wave described earlier is dominant in
this frequency range, and the frequency spectrum is contaminated. Note that the wiggles
are much weaker in the fine calculation. In this figure, the frequency spectrum of the
DNS that is deduced from E(k1)

DNS is also plotted. Using Taylor’s frozen turbulence
hypothesis, a streamwise wave with a wavenumber k1 is assumed to be convected with
the convection velocity Uc. The dispersion relation is then given as ω = k1Uc, from which
the frequency spectrum can be deduced as

p′2 =

∫
∞

0

E(k1)
DNSdk1 =

∫
∞

0

E(ω/Uc)
DNS

Uc

dω. (3.1)

The integrand of the last term in the above equation is the frequency spectrum deduced
using the Taylor’s hypothesis. Here we take Uc = 0.7U0 from the fine WMLES calcula-
tion. The spectrum from the fine WMLES calculation in the low-frequency band is in a
reasonable agreement with the deduced DNS spectrum. Both the fine WMLES and the
DNS have a short -1 slope region, and a relatively well-developed -5 slope high-frequency
region.

4. Conclusion

In summary, the space-time characteristics of wall-pressure fluctuations obtained from
WMLES of a channel flow agree reasonably well with the DNS data, provided that the
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pressure-producing structures are resolved by the LES grid. Based on comparison of spa-
tial spectra with DNS, it appears that at least 4 cells per integral length scale are required
in the streamwise direction, and about 10 cells per integral length scale in the spanwise
direction. This corresponds to δ/∆x ≥ 20 and δ/∆z ≥ 32 in terms of the grid spacings in
the outer scaling. Otherwise the pressure statistics are overpredicted, and can potentially
be contaminated by the spurious 2-∆ waves. When these conditions were met, the spectra
in the low-wavenumber/low-frequency region were predicted reasonably well. However,
wall-stress fluctuations modeled entirely through a RANS-based wall model are largely
underpredicted and insensitive to the LES grid refinement. Based on this observation,
we suspect that pressure fluctuations in wall-bounded flows are mostly outer-layer phe-
nomena and therefore their prediction improves with the grid refinement in outer-layer
scales. On the other hand, proper representation of short-time scale, small near-wall ed-
dies seems to be important for correct prediction of wall shear stress fluctuations, and
hence the present RANS-based wall model does not predict them accurately.
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