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Componentality-based wall-blocking
for RANS models

By M. Emory AND G. Iaccarino

1. Motivation and objectives

Although there has been increased adoption of large-eddy simulation (LES) in aca-
demic and industrial applications, the affordability of the Reynolds-averaged Navier-
Stokes (RANS) approach ensures it will continue to be one of the most popular methods
for solving these complex flows (O’Sullivan et al. 2012). There are still many shortcom-
ings with most common RANS closures (i.e., turbulence models), for example difficulties
due to both the physical assumptions and the numerical stiffness, or the inability to re-
produce turbulence near solid walls. Proper prediction of the near-wall region is critical
for accurately capturing many flow characteristics of engineering interest, e.g., friction,
heat transfer, or separation.

The presence of a solid wall influences turbulent flow primarily through two mecha-
nisms. The first is through viscous effects which require that the velocity in all directions
to be zero at the wall. The second mechanism, known as the blocking effect, is due to the
impermeability of the solid boundary. This effect suppresses fluctuations primarily in the
wall normal direction, creating highly anisotropic turbulence structures in the near-wall
region (Manceau & Hanjalić 2002). The blocking effect is sensitive to the topology of
the wall and is further complicated by the reflection of pressure fluctuations off the wall,
which can reduce the turbulence anisotropy. This anisotropy is often not captured or
only poorly represented by common turbulence models.

Incorporating the wall-blocking effect in RANS closures has been approached in several
ways, the most popular of which is through empirical damping functions, essentially a
correction to the eddy-viscosity, which fits the near-wall turbulence behavior to either
theory or direct numerical simulation (DNS). These corrections often suffer from a lack
of physical justification and poor performance in flows with complex geometry (Billard
2007).

A different approach was taken by Durbin (1991) where two additional equations are
added to a standard k−ε model. The first is a transport equation for v2, representative of
the wall-normal velocity fluctuations, a term which damps the eddy-viscosity near walls.
The second is an elliptic equation which describes the generation of v2 due to pressure
redistribution. While this approach has shown good results in several flows, there are
numerical stiffness issues related to the coupling of the additional elliptic and transport
equations.

This elliptic relaxation approach has also been adapted for complex RANS modeling
frameworks. The algebraic structure based model (ASBM) introduces a blockage tensor,
based on a similar parameter to v2, to include proper wall-blocking (O’Sullivan et al.
2012) while Durbin (1993) and Manceau & Hanjalić (2002) have extended the approach to
Reynolds-stress transport models. The complexity of these RANS approaches, however,
limits adoption of these models by industry.

Capturing wall-blocking effects is an important challenge at all levels of RANS model
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complexity. This work focuses on developing an alternative to damping functions which
introduces wall-blocking in two-equation RANS models. The approach is guided by two
objectives:

(a) to develop a methodology to cost-effectively introduce wall-blocking effects to eddy
viscosity models,

(b) to use an approach which is physically motivated and not an empirical fit to data.
The first objective is self-explanatory; when driven by short design cycles one does not
want to use a wall-blocking methodology which makes the RANS approach significantly
more expensive than standard RANS models. We focus in particular on eddy viscosity
models because of their prevalent use by industry; however, we will show that the pro-
posed methodology can be used in conjunction with other RANS modeling frameworks as
well. The second objective is designed to differentiate this work from the damping func-
tion approach. Damping functions are limited by their calibration to validation data; in
an arbitrary flow they are credible only if sufficient calibration data are available.

In Section 2 we present a new framework to introduce wall-blocking in RANS tur-
bulence models. In this section we also describe a specific implementation and perform
an a priori analysis of how one can expect this wall-blocking to influence a basic flow.
In Section 3 the proposed wall-blocking framework is applied to three test cases: devel-
oped turbulent channel flow, transonic flow over a bump geometry, and the flow past a
wing-body junction.

2. Wall-blocking methodology

2.1. Theoretical approach

2.1.1. The barycentric map

It is well known that even for simple flows RANS eddy-viscosity models poorly repro-
duce turbulence anisotropy, defined as

aij =
Rij
2k
− δij

3
, (2.1)

where Rij = u′iu
′
j is the Reynolds stress and k = Rnn/2 the turbulence kinetic energy.

To visualize this discrepancy we leverage the barycentric map of Banerjee et al. (2007),
a non-linear anisotropy invariant map. This mapping relies on the observation that any
state of turbulence anisotropy aij is a convex combination of the three limiting states of
one-component (1C), axisymmetric two-component (2C), and isotropic (3C) turbulence.
These states classify turbulence based on the relative magnitudes of the Reynolds stress
eigenvalues ϕi, i.e., the magnitudes of the principal normal stresses. We first describe
these states and their manifestation within the barycentric map† which is shown in
Figure 1:

(a) one-component: describes turbulence where only a single ϕi is non-zero, indicating
that turbulent fluctuations only exist along one direction. This state is also referred
to as rod-like’ or cigar-shaped turbulence, a visual description which evokes the one-
dimensional nature of this state. This state is the bottom right corner of the barycentric
map x1C = (1, 0);

(b) axisymmetric two-component: describes turbulence where two ϕi are non-zero and
of equal magnitude, also referred to as pancake-like turbulence. This state is the lower

† Although the location of these points can be chosen arbitrarily, we follow the equilateral
triangle convention described by Banerjee et al. (2007).
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Figure 1. Barycentric map of Banerjee et al.
(2007), highlighting the two-component limit
(bottom boundary) and the plane strain limit
(dashed line).

Figure 2. Channel flow (Reτ = 2003) pro-
files of turbulence anisotropy plotted within the
barycentric map. Results from direct numerical
simulation (Hoyas & Jimenez 2006) are repre-
sented by circles; from RANS, the SST k−ω
model of Menter (1994), by a solid line.

left corner of the barycentric map x2C = (0, 0). Note that this is a limiting state of the
more general two-component turbulence (the lower boundary of the barycentric map),
defined where the two non-zero ϕi are not necessarily of equal magnitude;

(c) isotropic: describes turbulence where all three ϕi are non-zero and of equal magni-
tude, also referred to as spherical turbulence. This state is the top corner of the barycen-
tric map x3C = (0.5,

√
3/2). This is a limiting state of the more general three-component

turbulence, defined when there are three non-zero ϕi, i.e., anywhere within the bound-
aries of the triangle.

A final state worth mentioning is plane strain turbulence, defined when at least one
ϕi/2k = 1/3 (or equivalently at least one anisotropy eigenvalue equal to zero). The
turbulence along the principal axis corresponding to a ϕi/2k = 1/3 eigenvalue is due
only to isotropic stress. This implies that the turbulence is statistically stationary in this
direction, and thus anisotropy only influences the solution in the plane perpendicular to
this direction.

For an arbitrary state of turbulence anisotropy, the location within the map (xB , yB)
is defined as

xB = x1CC1C + x2CC2C + x3CC3C = C1c + 0.5C3C , (2.2a)

yB = y1CC1C + y2CC2C + y3CC3C =
√

3/2C3C , (2.2b)

where the convex coefficients are linear functions of the anisotropy eigenvalues λi

C1C = λ1 − λ2 , (2.3a)

C2C = 2 (λ2 − λ3) , (2.3b)

C3C = 3λ3 + 1 . (2.3c)

2.1.2. RANS prediction of anisotropy

We illustrate the poor anisotropy representation of an eddy-viscosity model by com-
paring barycentric map profiles from DNS (Hoyas & Jimenez 2006) and RANS (using
the SST k−ω) for fully developed channel flow, shown in Figure 2. The DNS trajectory
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within the map† starts near the isotropic corner (at y/h = 1) and snakes towards the
two-component limit (y/h = 0) as the wall is approached. Importantly, the trajectory
bends first towards the 1C corner, then towards the 2C corner for points very close to
the wall. As y/h decreases, the wall-normal velocity fluctuations are suppressed and the
fluctuations parallel to the wall dominate. Because the flow has a predominant direction
(ūx � ūy), the wall-parallel fluctuations are not of equal magnitude, thus inducing the
bend towards 1C. Very close to the wall, however, viscous effects damp the velocity in
all directions such that the wall-parallel fluctuations are of similar magnitude, hence the
profiles trend towards the 2C corner.

In stark contrast is the perfectly linear trajectory of the RANS model, which simply
moves along the plane strain limit. Hidden by this particular visualization technique is
the fact that the RANS model predicts 3C turbulence at both y/h = 1 and 0. In the
RANS context‡ the flow is statistically stationary in the spanwise dimension, causing
the observed plane strain behavior. A more detailed discussion of the observed RANS
behavior can be found in Emory (2014, Chapter 3).

2.2. Implementation

We leverage the barycentric map and the observed DNS trajectory to develop a new
wall-blocking approach. Working within the context of the barycentric map, for any
fluid element deemed near-wall we perturb the barycentric location towards the two-
component limit (bottom of the map). While Figure 2 indicates a trajectory towards
first 1C then 2C is appropriate, we cannot assume the same trajectory in an arbitrary
flow configuration with complex geometry. With so little knowledge about the flow, we
conservatively assume that the anisotropy becomes more two-component (not necessarily
2C) as the wall is approached. We refer to this approach as componentality-based wall-
blocking.

Using an arbitrarily selected RANS model, referred to hereafter as the baseline model,
there are two additional computational steps required by this approach. From the per-
spective of a single control volume (c.v.) they are: (a) to determine whether the current
c.v. is close enough to a wall boundary to be considered near-wall, and (b) if the c.v.
is near-wall, to perturb the barycentric map location towards the two-component limit.
The first step is fairly straightforward depending on the selected baseline model, since
many already include computation of wall distance in their formulation. A raw measure
of distance is not particularly informative; a more useful indicator would convey distance
in terms of the local boundary layer thickness.

Whatever metric is used, its purpose is to determine whether anisotropy within the
current c.v. should be perturbed. In this sense the metric is marking cells for additional
manipulation, similar to the marker concept proposed by Gorlé et al. (2014) and Emory
et al. (2013). To perform well, the marker, generically represented by χ, should ∈ [0, 1]
where a magnitude of zero implies the current c.v. is not near-wall while a magnitude of
one is near-wall.

The second step requires a modification of the Reynolds stress anisotropy close to the
wall, which is better understood graphically by plotting the baseline Reynolds stress in
the barycentric map. We define this initial location¶ as xB,0 = (xB,0, yB,0). We move this
location towards the two-component limit (down in the map) by scaling the y-coordinate

† This result and other DNS databases have motivated several wall-blocking approaches, all
of which attempt to model the observed trajectory.
‡ Solved using a 2D mesh with symmetry boundary conditions in the spanwise direction.

¶ Note that this location will be different for each c.v.



Componentality-based wall-blocking 197

x2c x1c

x3c

xB,0

(a)

x2c x1c

x3c

xB,0

(b)

x2c x1c

x3c

xB,0�B

(c)

x2c x1c

x3c

xB,0

x⇤
B,f

(d)

1

Figure 3. Anisotropy eigenvalue perturbation methodology. First the baseline anisotropy xB,0
is computed (a). A line is drawn towards the two-component boundary (b), and a distance ∆B is
traversed along this line (c). The resulting location xB,f corresponds to a new set of eigenvalues
(d) which are used to reconstruct the Reynolds stress.

such that

yB,f = (1− χ∆B) yB,0 , (2.4)

where ∆B ∈ [0, 1] is a free parameter (constant for all c.v.s throughout the simulation)
related to the strength of perturbation. When the current c.v. is far from walls (χ = 0),
the barycentric map location is unchanged. Conversely, when the c.v. is considered near-
wall (χ ≈ 1), the distance translated within the barycentric map is linearly related to
∆B . This procedure is described visually in Figure 3.

To understand how the perturbed barycentric map location corresponds to the Reynolds
stress, we represent the baseline Reynolds stress as

Rij = 2k

(
1

3
δij + vinΛnlvjl

)
, (2.5)

where we have decomposed the stress into turbulence kinetic energy k and the turbulence
anisotropy eigenvalues Λnl and eigenvectors vin†. The new location (xB,0, yB,f ) uniquely
maps to a new set of anisotropy eigenvalues Λ∗, which are used to construct the perturbed
Reynolds stress

R∗ij = 2k

(
1

3
δij + vinΛ∗nlvjl

)
. (2.6)

The perturbed Reynolds stress field R∗ij is used in the RANS momentum equations
instead of Rij . The effect of the perturbation on the solution depends on the choice of
∆B and the spatial distribution of χ. For numerical stability it is important that the
spatial distribution of R∗ij , and relatedly χ, be smooth. In future work the value of ∆B

should be calibrated, however in this work we do not attempt to select an optimal value.

The results presented in this brief all use the RANS solver JOE, which performs parallel
calculations on a collocated unstructured mesh using a finite volume formulation and
implicit time-integration. This code has been developed at the Center for Turbulence
Research, and is described in detail in Pečnik et al. (2012) and Emory (2014, Appendix
A).

† Λnl is the traceless diagonal matrix of anisotropy eigenvalues λl. The tensors v and Λ are
ordered such that λ1 ≥ λ2 ≥ λ3; all subsequent references to these tensors assume this ordering
has taken place.



198 Emory & Iaccarino

2.3. A priori analysis

We perform an analysis of the proposed wall-blocking perturbations for a single c.v.,
assuming that locally χ = 1. We represent the new y-coordinate within the barycentric
map as yB,f = (1−∆B)yB,0. Recall that y1C = y2C = 0, thus from Eq. (2.2) any change
in yB is linearly related to the coefficient C3C . Combined with the requirement that∑
CiC = 1, we can construct a set of perturbed coefficients

C∗1C = C1C +
∆B

2
C3C , (2.7a)

C∗2C = C2C +
∆B

2
C3C , (2.7b)

C∗3C = C3C −∆BC3C . (2.7c)

that correspond to the new location (xB,0, yB,f ) in the barycentric map. Not surprisingly,
the change in magnitude for all three coefficients is determined by the initial value of
C3C , a reflection of the perturbation strategy which only modifies yB . Incorporating Eqs.
(2.3)-(2.7) we represent the change in magnitude of the anisotropy eigenvalues λi after
perturbation as

λ∗1 = λ1 +
∆B

12
(15λ3 + 5) , (2.8a)

λ∗2 = λ2 +
∆B

12
(−3λ3 − 1) , (2.8b)

λ∗3 = λ3 +
∆B

12
(−12λ3 − 4) . (2.8c)

Note that (a) the condition that
∑
λl = 0 is maintained, (b) for ∆B = 0 the baseline

eigenvalues are recovered, and (c) the change in magnitude is uniquely related to the
baseline λ3. Thus for λ3 = −1/3 (along the two-component boundary) there is no change
in the eigenvalue magnitudes. This ensures realizability (the boundaries of the barycentric
map are not exceeded). For −1/3 < λ3 ≤ 0 the magnitude of λ1 always increases, while λ2
and λ3 decrease. Importantly, λ3 decreases much more rapidly relative to λ2, promoting
two-component behavior (λ1 > λ2 � λ3).

Let us apply this perturbation to an example of a problem by considering a locally
plane shear flow where ∂2ũ1 = S is the only non-zero component of the velocity gradient
tensor. An eddy-viscosity RANS model would generate the anisotropy tensor a12 = a21 =
−νtS/k with all other components equal to zero. The eigenvectors for this case would be
directed ±45◦ from the horizontal axis, and along the span-wise direction.

If a more general (non-eddy-viscosity model) is used, then we can only say that a13 =
a23 = a31 = a32 = 0. For this case it is easy to show that vi2 = (0, 0, 1)T is still an
eigenvector, and that the remaining two eigenvectors, associated with the largest and
smallest eigenvalues, respectively, are vi1 = (cos θ,− sin θ, 0)T and vi3 = (sin θ, cos θ, 0)T ,
where θ is an angle from the horizontal axis.

For a plane shear flow, only the R12 component of the Reynolds stress has a direct
effect on the mean momentum equation. From Eq. (2.6) we know

a12 = (λ3 − λ1) sin(2θ)/2 , (2.9)

and by substituting the eigenvalues from Eq. (2.8), we can represent the perturbed
anisotropy as

a∗12 = a12 −
sin(2θ)

2

∆B

4
(9λ3 + 3) . (2.10)
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For −1/3 < λ3 ≤ 0 the ∆a12 will be negative, thus increasing the magnitude |a12| and
increasing the influence of the turbulent stress locally within the c.v., demonstrating that
the perturbation strategy promotes anisotropy in this flow.

2.4. The DI:TAP model

We present results using the shear-stress transport (SST) k−ω model of Menter (1994) as
the baseline. One of the most popular two-equation models in industry, the SST leverages
the desirable behavior of (a) the standard k−ω model in the near-wall region and (b)
the k−ε model in the freestream. This combination allows for a turbulence model which
can be applied through the viscous sublayer but does not suffer from boundary condition
sensitivity, a known deficiency of the standard k−ω. A blending function F1 is defined
so that k−ω is applied near walls (F1 = 1) and k−ε is used in the free-stream (F1 = 0).

This description of F1 is identical to the ideal near-wall marker χ described in Section
2.2. Because the SST model has been used widely in a variety of applications, we do not
validate F1 in terms of its ability to properly identify near-wall regions. An additional
benefit to selecting the SST model is that no additional computational cost is incurred
for computing the marker χ = F1. A detailed description of the eigenvalue perturbation
implementation within JOE is provided in Emory (2014, Appendix A).

We call the combination of the baseline model and the proposed wall-blocking method-
ology the DI:TAP model. DI is shorthand for decreased isotropy, describing the direction
of perturbation (moving down in the map is equivalent to moving away from x3C). TAP
is shorthand for turbulence anisotropy perturbation, describing the implementation ap-
proach.

3. Results

Results are presented for three cases: developed channel flow, transonic separated flow,
and the complex 3D flow around a wing-body junction. For the sake of brevity, the
numerical setup (e.g., grid resolution, solver settings) and other details regarding the
simulations will not be described. In this work we focus on how the solution is influenced
by the wall-blocking methodology.

For all cases we will compare experimental data or high fidelity simulation to the
baseline solution and results from DI:TAP. To understand the sensitivity of the solution
to the free parameter ∆B , we run four simulations (for each case) of DI:TAP where
∆B={0.25, 0.50, 0.75, 1.00} using F1 as the near-wall marker.

3.1. Channel flow

Turbulent channel flow describes the flow between infinite-span parallel flat plates and
has been investigated frequently in the turbulence modeling community. There exists a
wealth of knowledge, through both experiments and DNS, of channel flow at a variety
of Reynolds numbers (Moser et al. 1999; Kim et al. 1987; Moin & Kim 1982). The
availability of these data is one reason the channel is a common starting point in the
development and validation of turbulence models. The primary physics in this flow is
turbulent boundary layer growth. After a certain distance downstream of the channel
inlet both top and bottom wall boundary layers meet. The flow downstream of this point
is statistically stationary.

We simulate the channel conditions specified by the DNS of Hoyas & Jimenez (2006), a
flow where Reτ = 2003. For detailed information regarding the numerical and geometric
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Figure 4. Reτ = 2003 channel flow profiles of (a) u+ and (b) R12/u
2
τ versus y+. The DI:TAP

results are shown by solid lines; darker shades indicate increasing ∆B = {0.25, 0.50, 0.75, 1.00}.
The baseline (dashed black line) and DNS (Hoyas & Jimenez 2006) results (circles) are provided
for reference.

setup of this case refer to Emory (2014, Chapter 4.2). From the developed region wall-
normal profiles of mean velocity u+ = u/uτ and shear stress u′v′/u2τ are compared with
the DNS results, shown in Figure 4. The mean velocity is a typical quantity of interest in
applications, while in turbulence modeling the shear stress is typically observed. This is
because in 2D developed boundary layers (when ∂/∂x = ∂/∂z = 0) the only Reynolds-
stress term which influences the mean momentum equation is R12/u

2
τ . Note that because

the flow is fully developed, the magnitude of F1 ≈= 1 uniformly throughout the profile.
What is clear from both images in Figure 4 is that the DI:TAP wall-blocking does

have an influence on both the mean velocity and shear stress. As the strength of the
wall-blocking ∆B increases, the deviation from the baseline becomes more dramatic. For
the mean velocity the correlation to ∆B seems asymptotic†, while for the shear stress
this correlation is nearly linear. The wall-blocking has little influence on either quantity
for y+ ≤ 20, which is appropriate because in this region viscous forces dominate and
changes in turbulent stress are negligible.

In the a priori analysis in Section 2.3, we explained why the shear stress profiles
increase in magnitude, i.e., become more negative, as ∆B is increased. This correlates to
reducing the magnitude of u+ through the momentum equation, where the turbulence
source term is related to −∂/∂y R12. By increasing the magnitude of this source term,
which is negative, the flow is retarded: a representation of the wall blocking the flow.

What we have not discussed yet is the fact that the wall-blocking is making the RANS
prediction worse in both of these quantities. While true, this is a misleading or at least
unfair conclusion to draw for two reasons:

(a) the baseline model has been calibrated to perform exceptionally on flows such
as the turbulent channel. There is very little to improve upon for this particular flow;
naturally modifications to the turbulent stress make the prediction worse.

(b) the baseline model, in many ways, already has a way to account for near-wall
behavior. The reason the blending function F1 exists is to use a better RANS closure
near walls, so the addition of wall-blocking in this case is simply an illustration of the
process rather than an attempt at improving the accuracy.

What these channel flow results have demonstrated is the DI:TAP’s ability to modify
the influence of turbulence when F1 � 0 (the entire profile in this case). We observe a

† The deviation from the baseline is nearly identical for ∆B = 0.75 and 1.0.
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Figure 5. (a) Density contours for the baseline solution highlighting the presence of a lamb-
da-shock structure downstream of the bump geometry. A large separation bubble, starting after
the shock-boundary layer interaction with the oblique leg of the lambda-shock, exists along the
bottom wall. (b) Contours of the the blending function F1 demonstrate how this scalar identifies
regions of the flow which are near solid boundaries.

systematic response to the magnitude of ∆B which strongly corroborates the analysis in
Section 2.3.

3.2. Délery Case C

We investigates the steady transonic flow over the Délery Case C bump geometry (Délery
1981), in essence a converging-diverging nozzle. Like the channel, this case is frequently
used to evaluate the performance of turbulence models (Loyau et al. 1998; Lien & Kalitzin
2001); unlike the channel, this flow has streamline curvature, strong pressure gradients,
and flow separation - physics which many RANS closures struggle to capture. The flow
enters the nozzle at Mach ' 0.63 and accelerates over the bump reaching Mach '
1.36. A normal shock emanates from the upper wall, whereas at the lower wall the
shock splits into an oblique and normal leg, forming a λ-shock structure. Straining due
to streamline curvature over the bump (lower wall) causes boundary layer separation
(Hadjadj & Kudryatsev 2005), inducing a long thin recirculation region downstream
of the shock-boundary layer interaction (SBLI). The geometry and shock structure are
depicted by density contours from the baseline solution in Figure 5(a).

We simulate the conditions investigated experimentally by Délery (1981). For detailed
information regarding the numerical and geometric setup of this case refer to Emory
(2014, Chapter 4.4). In this flow the marker F1 varies spatially, and contours from the
baseline solution are shown in Figure 5(b). An interesting feature upstream of the SBLI
is an apparent double layer, a zone within the near-wall region where F1 briefly becomes
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Figure 6. Profiles of (a) wall pressure and (b) shear stress from the bottom wall. The DI:TAP
results are shown by solid lines; darker shades indicate increasing ∆B = {0.25, 0.50, 0.75, 1.00}.
The baseline (dashed black line) and experimental pressure results (circles) from Hadjadj &
Kudryatsev (2005) are provided for reference.

zero. In the separated flow downstream of the SBLI, this double layer does not persist;
a continuous single layer of F1 = 1 penetrates towards the channel centerline from both
top and bottom walls. In general, it appears as though F1 is reasonably effective at
identifying regions of the flow adjacent to walls.

We compare profiles of wall pressure and shear stress at the bottom wall, shown in
Figure 6. We are interested in how the wall-blocking influences prediction of the separa-
tion bubble adjacent to this wall; the length of the bubble is determined by the distance
between the τwall = 0 crossing points. It is well known that the baseline model overpre-
dicts the length of the separation bubble by as much as 30% (Emory 2014, Chapter 4.4),
due to premature boundary layer separation. Correct prediction of separation size is of
interest in a variety of applications. We show both pressure and shear stress profiles to
demonstrate how different quantities may be more or less sensitive to the wall-blocking.

Looking first at pressure, we see that the wall-blocking only influences the solution
between 0.25 < x < 0.42; everywhere else the profiles collapse. As Figure 5(b) shows,
F1 is active throughout the domain, so the collapse of the profiles is related to the
insensitivity of the pressure distribution to the wall-blocking. The separation location
moves slightly downstream with increasing ∆B , a slight improvement over the baseline
model. The pressure recovers much faster as ∆B increases, the wrong trend relative to
the experimental data.

Looking now at shear stress, there are several interesting observations: first is that the
DI:TAP profiles are sensitive to ∆B uniformly throughout the domain. As ∆B increases
the shear stress at the wall increases, an intuitive consequence of the wall impeding
the flow more strongly. A second observation is that the separation bubble decreases
in length as ∆B increases. Though no experimental data are available for shear stress,
the separation and reattachment locations listed in Table 1 show a marked improvement
in the prediction of the separation bubble length relative to the baseline. Most of this
improvement comes from an improved prediction of the reattachment location while the
predicted separation is relatively stationary.

These results have shown that this wall-blocking implementation can improve the char-
acterization of separation by the baseline model (one of its weaknesses). The introduction
of anisotropy in the near-wall region has improved the baseline model iresult, which was
not evident in the channel. In contrast to the channel results, the marker F1 plays an
important role in spatially restricting the anisotropy eigenvalue perturbation and has
performed appropriately and robustly. A final lesson learned from Figure 6 is that dif-
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Case ∆B xs/h Ls/h

experiment 22.08 5.00
SST 21.07 6.50

DI:TAP 0.25 21.21 4.99
DI:TAP 0.50 21.35 4.22
DI:TAP 0.75 21.47 3.66
DI:TAP 1.00 21.58 3.23

Table 1. Comparison of separation location xs and separation bubble length Ls (difference
between separation and reattachment locations) between experiment (Hadjadj & Kudryatsev
2005) and simulated results. All distances are normalized by the bump height h = 12mm.

Figure 7. Diagram of the flow around a wing-body junction, reproduced from Ryu (2014,
Figure 4.1).

ferent quantities of interest are not equally influenced by the wall-blocking. Though this
case incorporated more physical complexity, it is still considered a unit level flow relative
to most engineering applications. In the next case we investigate a complex 3D flow which
is more representative of the complex flows of interest to industry.

3.3. Wing-body junction

Corner flows around wall-mounted airfoils are encountered in a variety of industrial
applications, the most recognizable being wing-fuselage junctions in aircraft or blade-
hub junctions within jet engines. As the flow encounters the wall-mounted objects it is
subject to a strong adverse pressure gradient, and complex three-dimensional turbulent
structures are formed. In this case we investigate the flow around a symmetric airfoil
mounted on a flat plate, first studied experimentally by Devenport & Simpson (1990).
This geometry, shown in Figure 7, is dominated by a large horseshoe vortex (HSV) which
originates at the leading edge of the wing and wraps around the sides. Additionally, there
are several separated flow regions, the two largest of which are upstream of the wing
leading edge and at the tail of the wing. Accurate representation of these phenomena is
important in predicting the aerodynamic forces or the wall heat transfer.

In this brief we restrict our discussion to demonstrations of the influence of the wall-
blocking. Quantitatively we look at profiles of mean streamwise velocity from seven sta-
tions upstream of the wing leading edge, as well as contours of R13 in the symmetry
plane in the same region. The interaction of the incoming boundary layer and the wing
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Figure 8. Contours of (a) Cp and (b) an isosurface of F1 = 0.99 for the wing body junction,

computed using the baseline model.

creates a vortex oriented in the spanwise direction, which then wraps around the airfoil
due to convection.

In Figure 8 we show CP contours along the solid surfaces (wing and flat plate) where
the flow moves parallel to the airfoil chord at an angle-of-attack of zero degrees. The
second image show an isosurface of the marker F1 = 0.99, as well as contours of F1 for
the symmetry plane (along the airfoil chord) and one plane downstream of the wing. The
isosurface show that the near-wall region along the flat plate is much thicker than along
the airfoil. For most of the domain the isosurface is planar, but it is influenced by the
presence of the horseshoe vortex, which results in several trough-like structures which
travel downstream. The region between the F1 = 0.99 isosurface and the solid walls is
where the wall-blocking is active.

In Figure 9 we see that the wall-blocking is introducing a modified prediction of the
mean velocity profile, in particular for the three measurement stations furthest away
from the wing leading edge. For these stations the baseline overpredicts the size of re-
circulation, e.g., the mean velocity is more negative than that observed in experiments.
The leftmost (seventh) station of the experiment shows the velocity profile is all positive
(no recirculation), whereas the baseline here still predicts large negative velocity. By in-
troducing anisotropic wall-blocking the prediction for stations 5-7 are improved, and for
large ∆B the upstream recirculation can be reduced significantly (shorter even than the
experimental results).

The influence of the wall-blocking is almost negligible for the three stations closest to
the wing; the little deviation (relative to the baseline) that does exist is an improvement
over the baseline prediction. It appears that the marker F1 adequately marks the near-
wall region; however, to better reproduce the experimental results a different marker
should be designed to penetrate further away from the wall. Another observation is that
in most of these results a ∆B ≤ 0.50 is appropriate, whereas anything larger tends
to overcompensate. This is not surprising, since forcing the entire near-wall region to
be perfectly two-component is an unreasonable imposition on the flow. Interestingly,
we again observe a trend that the influence of the wall-blocking is asymptotic as ∆B

increases.
The influence on the vortex formed upstream of the leading edge is more visible in Fig-

ure 10, which shows contours of R13 (the in-plane shear stress at the symmetry plane).
By introducing the anisotropic wall-blocking, the vortex location moves closer towards
the experimental location and the magnitude of the shear stress increases towards the ex-
perimental value. We are only showing DI:TAP results for ∆B = 0.50 to better illustrate
the influence on the upstream vortex formation.
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Figure 9. Profiles of normalized streamwise velocity from seven stations upstream of the wing
leading edge (which would be to the right of the figure). These locations correspond to the
first seven experimental measurement stations of Devenport & Simpson (1990), located at
x/T = {−0.05,−0.10,−0.15,−0.20,−0.25,−0.30,−0.35}, respectively. The DI:TAP results are
shown by solid lines; darker shades indicate increasing ∆B = {0.25, 0.50, 0.75, 1.00}. The baseline
(dashed black line) and experimental results (circles) are provided for reference.

Figure 10. Contours of u′w′ in the symmetry plane upstream of the wing leading edge. Results
from the experiment of Devenport & Simpson (1990) (top right), the baseline (top left), and
DI:TAP with ∆B = 0.50 (bottom) are compared.

We examine the qualitative influence on the dynamics of the horseshoe vortex and size
of the separated flow regions in the left and right columns of Figure 11, respectively. We
compare only the baseline solution and DI:TAP results where ∆B = 1.00 to highlight the
influence of the wall-blocking; however, the same trends are observed for smaller mag-
nitudes of ∆B . Looking first at contours of strain magnitude, which illustrates locations
with high vorticity, we see that the HSV is drawn much closer to the surface of the wing.
The DI:TAP HSV shape correlates very well with the shape produced by large-eddy sim-
ulation of this flow (Ryu 2014, Figure 4.5). The stand-off distance relative to the leading
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Figure 11. Contours of strain magnitude (left column) and negative streamwise velocity (right
column) for the wing body junction flow. The results in (a) and (b) are obtained using the
baseline model, while (c) and (d) are obtained using the DI:TAP with ∆B = 1.00.

edge is much shorter, resulting in less spanwise penetration. This discrepancy impacts the
wake and flow structures downstream of the wing-body junction, of particular relevance
in jet engines where there are successive cascades of turbine or compressor blades. The
influence can also be visualized in terms of separated flow regions, depicted by negative
streamwise velocity along the walls. Both the stagnation point and wing-tail separated
flow regions are reduced in size by the introduction of wall-blocking, a similar result to
that observed in the Délery bump.

Though much of the discussion about the wing-body junction has been qualitative,
this case has demonstrated again that the anisotropic wall-blocking can improve the
performance of the baseline model. It has also demonstrated F1 as a reasonable marker
even in complex flows. Ongoing work involves a more quantitative understanding of how
and why introducing anisotropy in these regions is improving the predictive capabilities.

4. Conclusion and future work

We have motivated and implemented a wall-blocking framework for RANS turbulence
models based on introducing two-component anisotropic behavior in the near-wall re-
gion. Specifically, the turbulence anisotropy eigenvalues are modified such that within
the barycentric map they correspond to a location closer to the bottom boundary (the
two-component limit). Using the common SST model as the baseline, results were demon-
strated for a developed turbulent channel, a transonic separated flow, and the flow around
a wing-body junction. For each of these cases, the solution’s sensitivity to the strength
of the wall-blocking, i.e., the parameter ∆B , was discussed.

While the approach showed no improvement in the channel, a case in which the SST
model is well calibrated, it showed promising results in both the Délery bump and wing-
body junction. Of note is that improvement was observed for a baseline which already
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has a near-wall correction, i.e., using the k−ω model. By correlating the anisotropy
perturbations to F1, the blending term which activates k−ω near walls, our approach
produces an SST-like formulation using a different near-wall turbulence model.

The proposed wall-blocking implementation is not unique to the SST, it can be used
with any RANS model as the baseline. One of the challenges associated with using a
different baseline RANS model is to define an appropriate marker. With the SST we
showed that F1 was not a perfect marker. Ongoing work includes defining a generalized
marker which can be used in conjunction with an arbitrary RANS model. Though no
additional marker formulations were tested in the present work, there is ongoing research
in the use of markers to indicate regions where RANS models are potentially inaccurate
(Gorlé et al. 2014).

We discussed results using a large range of ∆B , but only for computations with one
baseline model and one direction of perturbation within the barycentric map. It is likely
that the optimal value of ∆B is correlated to the choice of baseline model as well as the
direction of perturbation; uncovering this correlation motivates two primary paths of fur-
ther work. The first is applying the DI:TAP model to additional flows. This effort not only
demonstrates the applicability of componentality-based wall-blocking but may provide
guidance regarding calibration of ∆B . The second path is to determine whether moving
towards the two-component limit (straight down) in the barycentric map is the best ap-
proach. We can easily define alternative directions or trajectories within the barycentric
map, potentially discovering an optimal method of introducing anisotropy. Additional
work includes evaluating different markers and exploring the solution’s robustness rela-
tive to the smoothness of the marker.
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