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One-dimensional quasi-static continuum model of
muscle contraction as a distributed control system

By Michael Aigner AND Jean Heegaard

1. Motivation and objectives

Human muscles provide the mechanical energy necessary to set the body in mo-
tion. Some muscles, such as those in the lower limbs, provide large forces required
to walk or run while others, like those around the wrist, have the dexterity needed
to perform complex tasks. Understanding how these muscles function is an integral
component of comprehending skeletal motion. Models and simulations of muscles
are used not only to analyze human locomotion, but also to design robotic devices
or to treat orthopaedic abnormalities.

1.1 Background

Skeletal muscles consist of a dense three-dimensional array of sensors and actua-
tors that constitute a complex distributed control system. The schematic in Fig. 1
elucidates the major components of this important system. Long and thick mysosin
fibers packed together into a matrix form the substance of the muscle. Each of
these fibers is controlled, on a microscopic scale, by neural stimuli from the central
nervous system. Through active control by the brain, each muscle generates a de-
sired force output which, coordinated with the forces of other muscles, performs a
specific task.

Despite the apparent complexity, most authors in the literature only consider
one of two simplified models. The first, pioneered by A. V. Hill (1938), assumes a
muscle to be a combination of linear springs and a nonlinear contractile element.
The second approach, pioneered by A. F. Huxley (1957), views the muscle at the
microscopic level by considering the physical and chemical interactions in one mus-
cular unit called a sarcomere. Current muscle models are commonly limited by the
following two limitations. First, most authors assume that a muscle is inherently
one-dimensional, although physical intuition casts doubt on the validity of such
a hypothesis. Second, yet equally profound, is the lack of consideration for the
distributed nature of the neural control network (Zajac & Winters, 1990).

The long-term goal of this research is to develop a full three-dimensional contin-
uum model with distributed control to accurately understand the complexity and
dexterity of human muscles. As a basis for future work, the specific objective of
the present report is to describe a one-dimensional muscle model based on a quasi-
static nonlinear constitutive law. A distributed control field is introduced, but, at
this preliminary stage, it is specified a priori rather than being the unknown field
variable.
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Figure 1. As a person lifts an object in their hand, the biceps muscle flexes to
produce a resultant moment around the elbow. Zooming in on a microscopic level
distinguishes the structure of the myosin fibers and the attached neural network.

1.2 Rheological model

We first consider a simple one-dimensional rheological muscle model for a sar-
comere, as introduced by Huxley (1957). A sarcomere, depicted in Fig. 2a, consists
of four physical components: thick myosin fibers, thin actin filaments, cross-bridges
which link the actin to the myosin, and an external matrix to hold the muscle to-
gether. Although the myosin fibers provide the passive strength of the muscle, the
active control from the central nervous system occurs in the cross-bridges. The level
of neural activation in the muscle depends on the number of cross-bridges which
attach to pull the myosin and actin fibers together to cause a contraction. This
is why the model devised by Huxley is often referred to in the literature as the
cross-bridge theory (Zahalak, 1990).

The model of the sarcomere can be understood by considering two scenarios.
First, suppose the active components are completely inactive, meaning that none
of the cross-bridges are attached. As the sarcomere is subjected to an outside load,
only the external matrix prevents it from falling apart. Alternatively, when the
central nervous system provides a stimulus, the cross-bridges are active, causing
them to contract. Consequently, both the elastic myosin fibers and actin filaments
become stretched. In addition, as the myosin fibers are pulled together by the
cross-bridges, the elastic matrix contracts locally around the sarcomere.
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Figure 2. The physical model of the sarcomere (a) pioneered by Huxley depicts
the cross-bridges which link the thick myosin fibers to thinner actin filaments. Each
fiber has an intrinsic elasticity. This gives rise to a one-dimensional rheological
model (b) with linear springs and a nonlinear contractile element (CE).

From these observations, the one-dimensional rheological model of Fig. 2b sim-
ulates the mechanics of the sarcomere. The behavior of the cross-bridges is repre-
sented by a nonlinear contractile element (CE). This component generates a force
which depends on the sarcomere length, contractile velocity, and level of neural ac-
tivation. The myosin and actin fibers connect in series with the cross-bridges. Since
these are inherently passive elastic structures, they are depicted by linear springs.
The myosin fibers (Ethick) are significantly thicker than the actin filaments (Ethin)
meaning that the lumped stiffness is approximated by the stiffness of the myosin
alone. Finally, the matrix (Ematrix) lies in parallel with the rest of the sarcomere,
holding the entire system together. This parallel spring usually has a compara-
tively small stiffness, except for large strains (Winters, 1990). In order to model
the damping of the muscle, viscous elements (dashpots) may be placed in parallel
with each of the springs.

Consider again the two hypothetical scenarios above. In the case of no activation,
the contractile element generates zero force so that both the thick and thin passive
springs remain unstretched. Hence, all of the elastic characteristics of the muscle
are contained in the matrix. Whenever the cross-bridges are active the contractile
element generates a force. This same force is felt by both the myosin and the actin,
causing both to stretch in accordance with Hooke’s Law. The matrix, having only
a small stiffness in the physiological range, is neglected when the muscle is active
(Winters, 1990).

This one-dimensional rheological model is similar to the one devised by Hill
(1938). However, while Hill’s model is primarily used to represent the behavior
of an entire muscle, our model is designed to capture the local behavior of the mus-
cle in a continuum mechanics framework. By depicting the muscle as a series of
these rheological models, each representing a single sarcomere, we seek to obtain
a more accurate analysis of the effects of variations in muscle properties and acti-
vation. We therefore view the muscle as a continuum of sarcomeres excited by a
distributed field of neural activation.
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Figure 3. A simplified rheological model is used to derive the constitutive
relationship.

2. Accomplishments
In order to implement a one-dimensional muscle model, we first derived a con-

stitutive relationship using the rheological model in Fig. 3. We then used a simple
model problem to formulate a weak form and expressed the solution of the resulting
PDE using the Galerkin finite element method. The resulting nonlinear equations
were solved using an exact Newton-Raphson linearization. Our results illustrate
the relationship between displacement, stress, and activation along the length of
the muscle.

2.1 Constitutive model
The constitutive model requires only a mathematical analysis of the rheological

model of Fig. 3. The thick and thin springs have been lumped into one spring
with constant Kfibers. We denote the matrix spring constant with Kmatrix. In
the present model problem, we assumed the left end to be fixed and denoted the
displacement of the right end by x. Let y be the displacement of the spring repre-
senting the fibers. The displacement of the contractile element is then simply given
by x− y.

We next establish the mathematical relationship governing the contractile element
force generation. In this model, we approximate the force-length property of the
muscle by a parabola in x− y and neglect all dependence on velocity

Fce =
4
l2o
Fmax α [(x− y)− (

lo
2

)]2 (1)

The physical parameters are the nominal length lo of the contractile element, the
maximum isometric force Fmax it can generate, and the activation α. Figure 4 illus-
trates this relationship, with each curve representing a different level of activation.
A future analysis will also include a force-velocity relationship.

The problem is to determine the stress σ in the sarcomere given the displacement
x and activation α. This is equivalent to finding the force F generated at the right
end since F = σ/A, where A is the cross-sectional area of the sarcomere. The
rheological model of Fig. 3 implies the following force relationship

F = Ftop + Fbottom (2)
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Figure 4. The force in the contractile element (CE) is assumed to vary parabol-
ically with displacement and linearly with activation.

where

Ftop = Kfibers y = Fce (3)
Fbottom = Kmatrix x (4)

Substituting for Fce and expanding the equation for Ftop results in a quadratic
equation in the internal variable y

0 =
4
l2o
Fmax α y

2 − (
8
l2o
Fmax αx+Kfibers) y +

4
l2o
Fmax α [x2 − (

lo
2

)2] (5)

Finally, the desired stress can be calculated as

σ =
F

A
=
Kfibers y +Kmatrix x

A
(6)

Figure 5 shows a plot of the constitutive law for the problem of interest. Each
curve represents a different level of activation, with the maximum possible force
increasing proportional to activation. The lowest curve corresponds to the passive
linear stretching of the matrix at α = 0. The top curve shows the response of the
sarcomere at maximum activation, i.e., α = 1. At a displacement of 38% of nominal
sarcomere length, the muscle generates a peak force of 1.2 times the peak isometric
force Fmax.
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Figure 5. The constitutive law for the sarcomere combines the behavior of the
contractile element (Fig. 4) with the passive elasticity of the fibers and matrix.

Numerical values for the physical parameters of the model are based on Winters’
data (1990). The cross-sectional area of muscle is 20 cm2, and its nominal length is
30 cm. The maximum isometric contraction force generated by the muscle is Fmax
= 800 N (approximately half of body weight), corresponding to a peak stress of
σmax = 0.4 MPa. We used spring constants of Kfibers = 8900 N/m and Kmatrix =
1800 N/m.

2.2 Strong form
For the purposes of this analysis, we select a simple initial-boundary value prob-

lem with the unknown displacement field d(z). The muscle is assumed to be quasi-
static, thus neglecting acceleration terms. We then express conservation of linear
momentum as

∂σ

∂z
= 0 0 < z < L (7)

σ = σ(ε, α) ε =
∂d

∂z
α(z) given (8)

where z is a length coordinate measured along the axis of the one-dimensional
muscle and ε is the strain. The displacement d of the muscle is defined relative
to a zero reference configuration. Dirichlet and Neumann boundary conditions are
defined to be

d(0) = 0 σ(L) given (9)

Two alternative boundary conditions for the right end z = L are of interest: d(L)
given and σ(L) = Kend d(L) for a stiffness coefficient Kend.
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2.3 Weak form
Let S be the space of trial solutions and V be the correspondence space of weight-

ing functions. The weak form of the problem involves finding the solution d(z) in
S such that all weighting functions w(z) in V satisfy∫ L

0

∂w

∂z
σ dz − w(L)σ(L) = 0 (10)

For alternate boundary conditions (i.e., z(L) = 0), the weighting function must
satisfy w(L) = 0.

2.4 Galerkin finite element approximation
The Galerkin finite element approximation replaces the spaces S and V by ap-

proximate spaces Sh and Vh. We express weighting functions wh and trial solutions
dh as a linear combination of shape functions

wh(z) =
∑
A

NA(z)wA dh(z) =
∑
B

NB(z) dB (11)

where A and B represent nodal indexes. *** For the purposes of this analysis, we
use linear shape functions over each element. On the element [zA, zA+1], the two
shape functions are

NA(z) =
zA+1 − z

h
NA+1(z) =

z − zA
h

(12)

where the mesh size h = zA+1 − zA.

2.5 Matrix problem
Since the nonlinear constitutive law for the contractile element is embedded in the

evaluation of σ, we express the matrix problem as the vector equation Fint = Fext.
The internal force vector represents the stress state of the sarcomeres while the
external force vector arises from the boundary conditions

Fint A =
∫ L

0

∂NA
∂z

σ

(∑
B

∂NB
∂z

dB, α

)
dz (13)

Fext A = NA(L)σ(L) σ(L) given (14)

In the case of the Dirichlet boundary condition w(L) = 0, the external force vector
Fext = 0.

For numerical efficiency, we use the isoparametric coordinate ξ by mapping the
element [zA, zA+1] onto the interval [−1, 1]. We can now define and compute the
internal force vector for each element. The total internal force vector Fint is the as-
sembly of the contributions from each element. Since there are two shape functions
for each element, the element force vector has dimension 2x1 and is given as

Fint = Ae

[
Fint 1

Fint 2

]
(15)
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where Ae refers to the assembly of the contributions from each element to the
global system (see Hughes, 1987 for details). The components of Fint are

Fint i =
∫ 1

0

∂Ni
∂ξ

∂ξ

∂z
σ

(
∂N1

∂ξ

∂ξ

∂z
d1 +

∂N2

∂ξ

∂ξ

∂z
d2, α

)
∂z

∂ξ
dξ i ∈ {1, 2} (16)

The consistent tangent matrix J can be derived from the internal force vector

J = Ae

[ ∂Fint 1
∂d1

∂Fint 1
∂d2

∂Fint 2
∂d1

∂Fint 2
∂d2

]
(17)

where
∂Fint i
∂dj

=
∫ 1

0

∂Ni
∂ξ

∂Nj
∂ξ

(
∂ξ

∂z
)2 dσ

dz

(
∂N1

∂ξ

∂ξ

∂z
d1 +

∂N2

∂ξ

∂ξ

∂z
d2, α

)
∂z

∂ξ
dξ i, j ∈ {1, 2}

(18)
In order to evaluate the derivative of the stress σ with respect to the displacement

x of the right end of the sarcomere model, we compute dy
dx from the variational form

of Eq. (5)
8
l2o
Fmax α y dy −

8
l2o
Fmax α (x dy + y dx)−Kfibers dy +

8
l2o
Fmax αx dx = 0 (19)

dy

dx
=

8
l2o
Fmax α (y − x)

8
l2o
Fmax α (y − x)−Kfibers

(20)

dσ

dx
=
Kfibers

dy
dx +Kmatrix

A
(21)

To numerically solve these integrals, we assume that the activation is piecewise
constant in space so that α does not vary over an element. Since the explicit argu-
ments of the integrals vary only with the linear shape functions, we use two point
Gauss quadrature to evaluate them. However, the constitutive law for σ involves
solving a quadratic equation, thereby introducing square roots. Consequently, per-
fect integration cannot be expected with any Gauss quadrature rule. Still, the two
point rule is sufficiently accurate for the desired application.

2.6 Newton-Raphson iteration
As a result of the nonlinear nature of sarcomere constitutive law, the discretized

system of algebraic equations expressing momentum balance is nonlinear. We use
the Newton-Raphson method to solve for the unknown displacement vector d. The
objective is to minimize the Euclidean norm of the residual vector R defined by

R = Fext − Fint (22)

Starting from an initial guess, the algorithm solves for dk+1 using the tangent Jk

of the internal force vector. At iteration k an incremental displacement vector ∆dk

is computed, from which we obtain a new estimate dk+1 of the solution

Jk ∆dk = Rk (23)

dk+1 = dk + ∆dk (24)
where the force vectors Fint and Fext and the tangent matrix J are given by
Eqs. (14), (15), and (17) respectively.
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2.7 Boundary conditions
The boundary conditions defined in Eq. (9) for the model problem impose the

displacement of the muscle at z = 0 and the stress at z = L. The natural boundary
condition at the right end is explicitly contained in the formulation of the external
force vector Fext in Eq. (14). In order to ensure that the solution satisfies the es-
sential boundary condition at the left end, we condense the matrix system (Hughes,
1987).

2.8 Results
Using the finite element implementation with a Newton-Raphson solver, we solved

Eq. (10) for three different sets of boundary conditions. The left end boundary
condition d(0) = 0 remains the same in each case. To determine the model’s
effectiveness under a variety of loading situations, we analyzed a variety of right
end (z = L) boundary conditions: prescribed force (traction), fixed displacement,
and a spring-like relationship between force and displacement

σ(L) = 0.125 MPa (25)
d(L) = 0 (26)
σ(L) = 500 z(L) MPa (27)

Although the finite element method has only been derived with a traction boundary
condition, the other two cases are similar and the details are omitted here.

We have obtained plots of the displacement and stress fields along the length of
the muscle for various activation patterns using a 200 element mesh. We analyzed
the results for six different activation profiles: three constant along the muscle’s
length (100%, 50%, and 0%) and three which vary with position (ramp and two
parabolic shapes).

2.8.1 Prescribed force
The first boundary condition considered is a prescribed tensile force of 250 N

applied to the right end of the muscle. Since we consider a static muscle, force
equilibrium implies that the corresponding stress of 0.125 MPa is uniformly expe-
rienced along the entire muscle length. The plots of Fig. 6 display this uniform
stress distribution. While the stress remains invariant with position and activation,
the displacement profile depends on the activation pattern. All of the displacement
curves satisfy the fixed left end boundary condition. For uniform full muscle acti-
vation, the muscle contracts linearly along its length, with a maximum contraction
of 8 cm at the right end. Less activation corresponds to less contraction, until the
muscle is fully deactivated and the passive elastic properties cause it to stretch lin-
early to a peak displacement of 12 cm. The curves for variable activation fields on
the right suggest the existence of local contraction regimes of the muscle. In the
case of a ramp activation the muscle contracts more at the right end than at the left
one. The slope of the displacement curve is positive (local expansion) in the region
of low activation and negative (local contraction) where the activation is high. The
muscle expands near the deactivated left end in response to the local contraction
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Figure 6. Prescribed traction boundary condition with constant (left) and vari-
able (right) activation profiles. Left: , full activation; , half activation;

, zero activation. Right: , ramp activation; , edge activation;
, center activation.

regime at the fully activated right end. When the muscle is centrally activated,
the displacement slopes downward in the center of the muscle and slopes upward
at each end. The local contraction regime in the center pulls on both ends of the
muscle. In the case of edge activation, a local contraction regime exists on each end.
The resultant displacement at the right end of the model depends on the average
activation state of the muscle, which can be determined by the area integral under
the activation profile curves. A muscle with higher average activation is found to
have more contraction at the right end. Since the edge activation profile has the
least area integral of the three variable activation curves, this case corresponds to
the least contraction and, in fact, has a positive displacement of 4 cm at the end.
On the other hand, center activation results in the largest activation integral and
thus the largest contraction.

2.8.2 Fixed displacement

The displacement and stress profiles for an isometric contraction are given in
Fig. 7. All of the displacement curves pass through zero at both of the ends of
the muscle, corresponding to the Dirichlet boundary conditions. When the muscle
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Figure 7. Prescribed displacement boundary condition with constant (left)
and variable (right) activation profiles. Left: , full activation; , half
activation; , zero activation. Right: , ramp activation; , edge
activation; , center activation.

experiences uniform activation, there is no local contraction regime, and, conse-
quently, the displacement is zero throughout. However, a nonzero activation causes
stress to build up, with a maximum uniform stress of 0.32 MPa for a full (100%) iso-
metric contraction. For the three variable activation profiles, we observe the same
local contraction regimes from the slopes of the displacement plots as in Fig. 6,
while still satisfying the right end boundary condition. Due to equilibrium con-
siderations, the stress throughout the length of the muscle remains constant. As
in Fig. 6, this constant depends on the integral of the activation profile. Hence, a
maximum stress occurs for full uniform activation, with decreasing stress for half
uniform activation, ramp activation, and edge activation. The results for center ac-
tivation did not converge and serve as evidence of the numerical difficulties inherent
in the implementation of the constitutive model and the Newton-Raphson solving
scheme.

2.8.3 Spring-like boundary

A third important boundary condition has a spring of stiffness Kend = 500 N/m3

attached to the right end of the muscle. This corresponds to the elastic tendon which
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Figure 8. Elastic spring boundary condition with constant (left) and variable
(right) activation profiles. Left: , full activation; , half activation;

, zero activation. Right: , ramp activation; , edge activation;
, center activation.

attaches a muscle to the skeleton. The results in Fig. 8 show that all six activation
profiles satisfy the specified boundary condition since the stress at the right end
is proportional to the magnitude of the displacement through the constant Kend.
For the three constant activation cases, the displacement varies linearly along the
length of the muscle (as in Fig. 6) and the stress is a constant value dependent on
the activation level (as in Fig. 7). The displacement profiles for variable activation
patterns again exhibit the local contraction regimes of Figs. 6 and 7 but with the
right end displacement determined from the stress by the boundary condition. As
in Fig. 7, the stress profile is uniform with an amplitude proportional to the integral
of the activation curve.

2.9 Discussion

Three boundary conditions have been analyzed, each corresponding to a different
loading condition of the muscle. When a force is prescribed at the right end, we
determine the constant stress magnitude throughout the muscle’s length, but the
displacement profile depends on the type of activation. For isometric loading, the
displacement of the ends of the muscle remains fixed, but both displacement at
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interior points and stress varies with the activation pattern. The third type of
boundary, an elastic spring (tendon), combines the behavior of the first two by
requiring the displacement and stress at the right end to be proportional.

The stress distribution in every case remains constant along the length of the
muscle due to equilibrium. Unless it is specified a priori, this stress magnitude is
related to the level of activation: a state of higher average activation, as determined
by the integral of the activation, causes the muscle to experience greater stress. For
example, the stress in the uniform fully activated case always is the largest, followed
by the center activated profile.

The dependence of displacement on position obtained in the results underscores
the significance of using a continuum approach instead of one lumped parameter
element to represent the muscle. When the activation of the muscle is not uniform,
neither is the displacement profile. The muscle contracts more in regions of larger
activation, called local contraction regimes. In a local contraction regime, the slope
of the displacement curve is negative. Conversely, regions of low activation generally
have increasing displacement with position. For uniform muscle activation, the
displacement interpolates linearly between the displacements at the two boundaries.

In running these simulations, several numerical difficulties, believed to stem from
the constitutive model and the use of an exact Newton-Raphson solution scheme,
have been encountered (see the center activation case of Fig. 7). In particular, the
model only converges under specific choices of the physical parameters. For example,
we observed that the stability of the formulation increases with the stiffnessKmatrix.
Still, the issue of numerical convergence and stability remains unresolved.

3. Future plans
The results obtained with the one-dimensional quasi-static muscle model elucidate

several features that are captured by a continuum model but not by a one element
Hill model. Hill’s model assumes that both the muscle’s properties and its activation
are lumped parameters. In reality, a muscle is far from uniform, especially in
cross-sectional area and activation pattern. By employing an approach based on
continuum mechanics, the effects of these non-uniformities may be analyzed and
better understood.

We will continue work on the one-dimensional model to create a distributed con-
trol problem. Future implementations will include additional dynamic effects as
modern muscle theory establishes a relationship between muscle force, displacement,
and velocity. Since the muscle has mass, inertial effects are necessary. Finally, the
activation will vary in time to mimic the temporal control of the muscle by the
central nervous system. In order to provide a more physically relevant model prob-
lem, the muscle will be considered in context of a musculoskeletal unit such as the
elbow joint. In conjunction with implementing the constitutive model, numerical
convergence and stability will be addressed. Once we complete the physical model,
we will formulate the problem in the context of distributed control by assuming the
activation is unknown instead of arbitrarily specified. The ultimate objective is to
determine the optimal activation field in space and time that controls the muscle
so that it can perform a simple task.
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