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Large eddy simulation of a forced round
turbulent buoyant plume in neutral surroundings

By A. J. Basu AND N. N. Mansour

1. Motivation and objectives
Buoyant flows play an important role in various technological and environmental

issues. For example, dispersal of pollutants, smoke, or volcano exhaust in the
atmosphere, vertical motion of air, formation of clouds and other weather systems,
and flows in cooling towers and fires are all determined primarily by buoyancy
effects. The buoyancy force in such flows can originate from either a heat source or
due to different densities between a fluid and its surroundings. Whatever the cause,
the flow can be understood by studying the effects of the tight coupling between
the thermal and the velocity fields since density differences can be characterized as
temperature differences.

Heat addition to turbulent flows always leads to very complicated behavior,
greatly affecting their structure and entrainment characteristics. Heat can be added
in many different ways into a flow; for example: at the source, or off-source. These
two methods of heat addition can have very different effects on the development
of the flow. Basu & Narasimha (1999) studied the effects of off-source volumetric
heating (similar to that due to latent heat release in a cloud, for example) using
direct numerical simulation (DNS) of a circular jet-like flow and found that the
large-scale structures break down and entrainment is inhibited. Here we look at a
round turbulent plume with both momentum and buoyancy added at the source,
using the tools of large eddy simulation (LES).

Similarity solutions of turbulent circular plumes have been proposed in the past
by Zeldovich (1937) and Batchelor (1954) based on the Boussinesq hypothesis, which
assumes that the density changes in the flow are small compared to the ambient
density, an assumption that is valid in regions away from the plume source. In a
neutral environment (no change in ambient density with height), the mean vertical
velocity and buoyancy acceleration are given respectively by:

W = F 1/3
o z−1/3AW e

−BW η2
, (1)

g
∆ρ
ρa

= F 2/3
o z−5/3AT e

−BT η2
, (2)

where W is the mean vertical velocity along the axis of the plume, Fo is the rate
of addition of buoyancy, z is the height (from the buoyancy source), g is acceler-
ation due to gravity, ∆ρ is the density difference at a point with respect to the
ambient density ρa, and AW , BW are the parameters which quantify the Gaussian
fit to the mean velocity profile, while AT , BT are the corresponding ones for the
density (or, equivalently, temperature) profile; η represents the similarity variable
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η = r/z, where r is the radial distance at any z. For a flow involving sources of
both momentum and buoyancy such as the one studied here, it is known that the
buoyancy effects overwhelm the momentum added at the source, typically after an
axial distance z/LM > 5, where

LM = M3/4
o /F 1/2

o (3)

is the so-called Morton lengthscale. The source momentum flux Mo and buoyancy
flux Fo are defined as:

Mo = 2π
∫ Ro

0

W 2rdr, (4)

Fo = 2π
∫ Ro

0

Wg
∆ρ
ρa
rdr, (5)

where Ro is the source radius.
The forced buoyant plume has been the object of many experimental investi-

gations in the past (see List 1982, Rodi 1986 for reviews). Most notable among
the reported experiments are the ones by Rouse et al. (1952), Nakagome & Hi-
rata (1977), Papanicolaou & List (1988), and Shabbir & George (1994) in that
they report widely different results. The primary disagreements among the vari-
ous experimental results are regarding the centerline values of mean velocity and
buoyancy profiles as well as the plume spreading rate. For example, the spread
of reported experimental values (as compiled in Shabbir & George) are given here
inside brackets for the different parameters for Gaussian fit of profiles described
above: AW = (3.4 − 4.7), BW = (55 − 96), AT = (9.1 − 14.28), BT = (48 − 71).
Clearly the scatter is quite large.

The discrepancies between different experimental data are likely to be due to var-
ious factors, some of which are detailed below: (i) boundary effects of the solid wall
lateral boundaries and presence of reverse or co-flow can influence the entrainment,
(ii) measurements may not have been carried out in fully developed turbulent region
in some cases, (iii) hot-wire anemometer measurements are known to be insensitive
to direction, and therefore the measurements made outside the half-width of the
plume may not be reliable in such cases. Since Fo is used to scale for self-similarity,
a lot crucially depends on the accurate determination of Fo, the measurement of
which, unfortunately, can be influenced by the experimental errors. As will be seen
later, the above mentioned problems with the available experimental data somewhat
constrain the validation of numerical predictions made in this study.

2. Accomplishments

2.1 Governing equations
In the present study, we aim to compute the evolution of a circular plume in neu-

tral surroundings with momentum and buoyancy added only at the source. Since
the density differences away from the source of a plume are known to be small
compared to ambient density, the Boussinesq approximation is assumed to be valid,
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whereby the effects of density variations are modeled by a source term in the mo-
mentum equations. The resulting equations in the non-dimensional form are given
by:

∇ · u = 0, (6)

∂u
∂t

+∇ · (uu) = −∇p+
1
Re
∇2u +

Gr

Re2
Θẑ, (7)

∂Θ
∂t

+ (u · ∇)Θ =
1

RePr
∇2Θ, (8)

where u is the velocity vector, p is pressure, Θ = (T − Ta)/(To − Ta) is the tem-
perature difference (where T, Ta, To are the absolute temperatures, respectively at
a given point, the ambient and the plume source). The non-dimensional governing
parameters are:
Re = UoDo/ν = Reynolds number,
Pr = ν/κ = Prandtl number,
Gr = αg(To − Ta)D3

o/ν
2 = Grashoff number,

where Uo and Do are respectively the velocity at and diameter of the source, ν
is the kinematic viscosity of the fluid, κ the thermal diffusivity, α the coefficient
of thermal expansion, and g the acceleration due to gravity. The last term in the
momentum equation (7) above is the buoyancy source term and acts only along the
vertical z direction.

2.2 Numerical technique

Following the standard approach for LES, the above equations are passed through
a spatial filter, and the resulting effects of the subgrid scales are modeled. In
the present study, we have used the well-known dynamic model for this purpose
(Germano et al. 1990, Lilly 1992).

The spherical polar coordinate system (r, θ, φ, along the radial vector, lateral, and
azimuthal directions respectively) is used here since, for the present flow with its
conical mean growth, a spherical system allows for a well-balanced resolution of the
flow field with a reasonable number of grid points. The present computer code is a
modified version of that developed by Boersma et al. (1998) for cold jets. The basic
numerical formulation being similar, the reader is referred to the above-mentioned
paper for various implementation details. We will only describe some fundamental
features of the numerical scheme and also the extensions made in the present study.

Second order accurate finite volume technique is used to approximate the equa-
tions of motion in space, along with a second order explicit Adams-Bashforth scheme
for time-integration. Pressure correction technique is employed after each Adams-
Bashforth step in order to ensure that the velocity field remains divergence-free at
all times. The resultant Poisson equation is solved using fast Fourier transform
along the periodic (φ) direction and cyclic reduction along the other two directions.
The convective term in the temperature equation is treated using a TVD scheme
(see, e.g., Vreugdenhill & Koren 1993) in order to keep Θ between the bounds 0
and 1.
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2.3 Boundary conditions
The flow considered, as mentioned earlier, is a forced circular buoyant plume

issuing from an orifice in a wall at the bottom end of the computational domain;
we assume a tophat velocity profile. The boundary conditions at the inflow are
therefore:
ur = Wocosθ in the orifice and ur = 0 elsewhere,
uθ = −Wosinθ in the orifice and uθ = 0 elsewhere,
uφ = 0,
Θ = 1 in the orifice and Θ = 0 elsewhere,

where Wo = 1 is the non-dimensional axial velocity in the orifice (diameter Do = 1).
Note that ur, uθ, uφ here represent velocity components along the r, θ, φ directions
respectively.

At the lateral boundary, the so-called traction-free boundary conditions are used
(Gresho 1991):

σij · nj = 0, (9)

where σij is the stress tensor, and nj the unit normal to the boundary. The ad-
vantage of this boundary condition is that entrainment is allowed (Boersma et al.
1998). For temperature, the normal derivative is set to zero at the lateral boundary:

∂Θ
∂n

= 0. (10)

At the outflow boundary, we use the so-called advective boundary condition, as
in Boersma et al. . Thus, for any velocity component u, we have

∂u

∂t
= −WA

∂u

∂r
, (11)

where the advective velocity WA is a function of θ and is obtained at each step
by averaging the streamwise velocity along φ near the outflow domain and setting
negative values of WA to zero. As mentioned in Boersma et al. , this outflow
boundary condition is not entirely satisfactory for the present flow. Therefore,
we also add a so-called “buffer zone” near the outflow region where terms similar
to −λ(u − utarget) are added to the momentum equation in order to damp the
turbulence in this region; here λ is a space-varying positive parameter (λ = 1 at the
outflow boundary and decays to 0 outside the buffer zone), and utarget is a desired
velocity field. Typically, an analytically or experimentally derived mean velocity
field near the outflow domain is used as utarget.

2.4 Results
The parameters defining the flow in the present computation are chosen so as

to closely correspond to the experimental situation for the round turbulent buoy-
ant plume reported in Shabbir & George (1994). Therefore, we use the following
non-dimensional numbers that completely determine the flow: Re = 3500, P r =
0.7, Gr = 8.575×106. White noise with a peak amplitude of 0.02 has been added at
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all times at the source in order to mimic the disturbances in the exit profile reported
in the experiment.

The computations are carried out in a domain that extends to 50 diameters down-
stream of the source. The domain encompasses a conical volume of lateral angle
π/15, with a virtual origin that is 15 diameters upstream of the orifice. This volume
is discretized using a grid of size (Nr = 128, Nθ = 40, Nφ = 32), where Nr, Nθ, Nφ
are the number of finite-volume cells along the (r, θ, φ) directions respectively. The
grid spacing along r increases linearly from 0.1122 near the source to 0.669 near the
outflow boundary. Grid spacing is constant along θ and φ.

The computations are carried on for 70,000 time-steps in the present study. The
time taken on a 8-processor SGI Origin 2000 is of the order of 1 second per step.

In the results presented below, the data from the last 10 diameters are not shown
since the effects of outflow boundary conditions and buffer zone are likely to be
significant there.

2.4.1 Temperature distribution

The distribution of non-dimensional temperature difference Θ in a buoyant plume
is an important parameter since it represents the driving force behind the flow, espe-
cially after a few diameters downstream of the orifice where the effect of initial mo-
mentum becomes insignificant in comparison with the buoyancy force. In Fig. 1(a),
we present a contour plot of the typical instantaneous distribution of Θ over a ver-
tical section passing through the axis of the plume. The contour levels go from 0.1
to 1 in steps of 0.1. Very clearly, high values of Θ are limited to the region close
to the orifice. Temperature differences higher than 0.2 (the non-dimensionalized
temperature difference at the source being Θ = 1) exist only within the first 10
diameters or so. After about 20 diameters from the source, peak Θ anywhere in the
plume has fallen to 0.1 or below, indicating that the Boussinesq approximation is
valid over the self-similar region of the flow, the region of our primary interest.

The lower levels of Θ (those between 0.01 and 0.1) at the same time are high-
lighted in Fig. 1(b) in order to complete this instantaneous picture of temperature
distribution. The important point to note is that there does not appear to be any
“holes” in the temperature distribution, unlike those reported for passive scalar
(Papantoniou & List 1989). Visual analysis of data indicated similar qualitative
nature of distribution at other times.

2.4.2 Streamwise variation of momentum and buoyancy fluxes

The similarity solution for plumes (e.g., Batchelor 1954) suggests that, for an ideal
gas plume in a neutral environment, the buoyancy flux is conserved. The momentum
flux, in comparison, grows with streamwise distance due to entrainment. Figures
2(a), for momentum flux, and 2(b), for buoyancy flux, show that this predicted
behavior is observed in the presently computed results. Note that the quantity F
in the figure represents

F = 2π
∫ Ro

0

αg(W∆T+ < wt >)rdr, (12)
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Figure 1. Distribution of computed temperature difference Θ in the buoyant
plume at a non-dimensional time of 150: (a) contour levels from 0.1 to 1 in steps of
0.1, (b) contour levels from 0.01 to 0.1 in steps of 0.01. The computational domain
boundaries along the lateral direction are also shown.

where < wt > represents the turbulent contribution to the total buoyancy flux, w
and t being the fluctuations in the streamwise velocity and temperature respectively.

The buoyancy flux shows a fall of about 15% in its value (with respect to that
at the source) over the first 5 diameters as we go downstream from the source but
remains quite constant afterwards. This indicates that the present computation
quite faithfully represents the integral behavior of a buoyant plume in the self-
similar region downstream, where the Boussinesq approximation is valid. The order
of change in F over z predicted here is similar to that reported in the various
experiments.

2.4.3 Mean flow

The results for streamwise variation of centerline mean velocity Wc and tempera-
ture difference ∆Tc are shown using the usual non-dimensional form (see, e.g., Shab-
bir & George 1994) in Fig. 3 using a log-log plot. As can be seen very clearly, the
temperature distribution takes longer to achieve self-similarity when compared to
the streamwise velocity; thus Wc achieves self-similarity around z/LM = 6, whereas
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Figure 2. Streamwise variation of radially and azimuthally integrated (a) mo-
mentum and (b) buoyancy fluxes.

∆Tc does so by z/LM = 15. The scatter in the various reported experimental data
is quite large, and the present results fall towards the high end of this scatter. The
computed streamwise growth rates, however, are remarkably consistent with that
predicted by the theory and experiments.

Next we look at the mean radial profiles of < W > and < ∆T > at some
streamwise stations in order to establish the self-similarity of the present computed
results. Figure 4 shows the computed results along with Gaussian fits of available
experimental data as compiled by Shabbir & George. The computed velocity profile
closely matches that given by Rouse et al. (1952), is similar in width compared to
the ones in Papanicolaou & List (1988), but is different from those reported by
Shabbir & George (1994) and Nakagome & Hirata (1977) both in terms of the
width of the profile and the maximum value at the centerline.

The computed temperature profiles differ from all the experimental ones in that
the present ones are narrower. The centerline values, however, are close to that
reported by Papanicolaou & List.

2.4.4 Turbulence properties

In Fig. 5, we present the computed results for the second order moments of
fluctuating quantities using solid curves, along with the experimental data from
Shabbir & George (1994) using symbols. The radial profiles of turbulence stresses
at different streamwise stations converge quite well in the time over which they
are averaged and show reasonable collapse when plotted using similarity variables.
The present results for < w2 > and < uw > are comparable to those obtained by
Shabbir & George except for the width of the profiles. For the fluctuating stresses
involving temperature, however, it is the magnitude which shows large differences,
consistent with similar relative differences seen for radial mean profiles in Fig. 4
above. However, a few words of caution are in order: such comparisons between
filtered stresses (as in the present case) with experimental results may not be very
meaningful unless it can be shown that the subgrid stresses are small in comparison.
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Figure 3. Normalized mean (a) buoyancy and (b) vertical velocity along the
plume centerline plotted against the normalized distance z/LM from the source.
The bold lines represent the present computation. Fits to various experimental
results are shown using lines with symbols ( : Shabbir & George 1994, 4 : Papan-
icolaou & List 1988, ∇ : Rouse et al. 1952, ◦ : Nakagome & Hirata 1977).
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Figure 4. Radial profiles of (a) mean streamwise velocity and (b) mean temper-
ature difference plotted in similarity form. The computed results at z/D = 15 to
40 at interval of 5 are shown using bold lines. The lines with symbols represent the
experimental data as described in Fig. 3.

3. Conclusions and future plans

In the present preliminary study, we have shown that reasonable predictions of
the evolution of a turbulent round buoyant plume can be obtained by means of LES
with the dynamic subgrid model. The large scatter between available experimental
data makes definitive comparison difficult. However, the present results fall within
the scatter region of the experimental data.

Judging from the scatter in various experimental results, the boundary condi-
tions are likely to play a significant role in this flow. The present computations
also bring up various issues regarding the imposed conditions along the lateral and



LES of a buoyant plume 247

r / z

<
w

t>
F

0-1
z2

g

0 0.05 0.1 0.15 0.2 0.25
0

1

2

3

4
(d)

α

r / z

<
t2

>
F

0-4
/3

z1
0/

3
2

g2

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25
(c)

α

r / z

<
u

w
>

F
0-2

/3
z2

/3

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5
(b)

r / z

<
w

2 >
F

0-2
/3

z2
/3

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5 (a)

Figure 5. Second order moments plotted in terms of similarity variables. (a)
the vertical velocity fluctuations, (b) the turbulent shear stress, (c) temperature
fluctuations, (d) the vertical turbulent heat flux. The lines represent the computed
results at z/D = 20, 25, 30, 35 and 40; the experimental data from Shabbir & George
(1994) are shown superposed using symbols.

outflow boundaries. The traction-free condition along the lateral boundary can in-
fluence entrainment, and so can the advective condition and buffer zone along the
outflow boundary. What should be the nature of the physically correct boundary
conditions along such boundaries still remains an open question (see Gresho 1991
in this regard). We plan to probe further into this aspect, and study the effect of
different boundary conditions. The effect of grid resolution and position of lateral
boundaries will also be investigated.

Long term plans include LES of plumes in stratified environments and inclusion
of cloud models in such flows.

Acknowledgments

The authors wish to thank Dr. Bendiks J. Boersma for making available his jet
code, which has been modified for the present computations.



248 A. J. Basu & N. N. Mansour

REFERENCES

Basu, A. J. & Narasimha, R. 1999 Direct numerical simulation of turbulent
flows with cloud-like off-source heating. J. Fluid Mech. 385, 199-228.

Batchelor, G. K. 1954 Heat convection and buoyancy effects on fluids. Q. J. R.
Met. Soc. 80, 339-358.

Boersma, B. J., Brethouwer, G. & Nieuwstadt, F. T. M. 1998 A numerical
investigation on the effect of the inflow conditions on the self-similar region of
a round jet. Phys. Fluids. 10, 899-909.

Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic
subgrid-scale eddy viscosity model. Phys. Fluids A. 3, 1760-1765.

Gresho, P. M. 1991 Incompressible fluid dynamics: some fundamental formula-
tion issues. Ann. Rev. Fluid Mech. 23, 413-454.

Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure
method. Phys. Fluids A. 4, 633-635.

List, E. J. 1982 Turbulent jets and plumes. Ann. Rev. Fluid Mech. 114, 189-212.
Nakagome, H. & Hirata, M. 1977 The structure of turbulent diffusion in an

axisymmetrical thermal plume. Proceedings 1976 ICHMT Seminar on Turbulent
Buoyant Convection. 361-372.

Papanicolaou, P. N. & List, E. J. 1988 Investigation of round vertical turbulent
buoyant jets. J. Fluid Mech. 195, 341-391.

Papantoniou, D. & List, E. J. 1989 Large scale structure in the far field of
buoyant jets. J. Fluid Mech. 209, 151-190.

Rodi, W. 1986 Vertical turbulent buoyant jets: experimental findings and pre-
diction methods. Proc. Intl. Symp. on Buoyant Flows, Athens, Greece, Sept
1-5.

Rouse, J., Yih, C. S. & Humphrey, H. W. 1952 Gravitational convection from
a boundary source. Tellus. 4, 201.

Shabbir, A. & George, W. 1994 Experiments on a turbulent buoyant plume. J.
Fluid Mech. 275, 1-32.

Vreugdenhill, C. B. & Koren, B. 1993 Numerical methods for advection-
diffusion problems. Notes on Num. Fluid Mech. 45, Vieweg, Braunschweig.

Zeldovich, Y. B. 1937 Limiting laws for turbulent flows in free convection. Zh.
Eksp. Theoret. Fiz. 7, 1463.


