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Large eddy simulation of
compressible turbulent jets

By B. J. Boersma & S. K. Lele

1. Motivation

Increasing noise regulation at urban airports force jet engine manufactures to
develop and build quieter engines. Over the last 10-15 years, a significant reduction
in fan and mechanical noise has been achieved. However, the reduction in jet noise
over the same time period is fairly small and a major reduction in acoustic emissions
of jet engines has to come from a reduction in jet noise.

Traditional jet mixing-noise predictions are based on a statistical description of
the jet turbulence; space-time correlations of the Lighthill quadruples (Lighthill
1952, Lighthill 1954) are specified in the jet. Further refinements are, however,
needed to obtain a reasonable prediction of the directivity and spectral distribu-
tion of the radiated noise (Goldstein 1976). Significant improvements are achieved
by modeling the effects of source-convection (Lighthill 1954, Ffowcs Williams &
Hawkins 1969) and mean-flow refraction (Mani 1976). Reynolds-averaged mean
flow calculations can be used to provide the source-strength distribution and the
length and time-scale estimates needed in the source models (Bechara et al. 1994).
The empirical input needed in such an approach places limits on the range of appli-
cability of this method. It is, therefore, desirable to develop methods which obtain
the unsteady flow data with much less empirical input.

Due to the inherently high Reynolds numbers of the jet formed by a jet engine,
LES seems to be the only feasible candidate to obtain the necessary unsteady data
for the jet. Some attempts for round jets have been made by Choi et al. (1999) and
Boersma & Lele (1999). For simpler geometries like plane mixing layers, various
simulations have also been performed by Vreman et al. (1996).

In this paper we will describe an LES method which uses the standard compress-
ible LES filtered variables (no Favre averaging). The LES equation are discretized
with accurate numerical schemes with very little artificial diffusion. So the LES
models have to supply all the damping of the non-linear terms. In LES models
which use low order numerics, damping can come from the LES subgrid model or
from the numerics, and it is often very difficult to separate those two effects. This
makes the physical interpretation of the results, especially those related to subgrid
motions, difficult.

2. Large eddy simulation

In most LES of compressible flows, the flow variables are Favre averaged or density
weighted
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f̃ =
ρf

ρ
(1)

where the bar denotes the standard LES filtering and ρ the density. Using the Favre
average and applying the standard LES filtering technique, we find the following
equation for conservation of mass

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0, (2)

in which ui is the fluid velocity vector. Conservation of momentum reads

∂ρũi
∂t

+
∂

∂xi
(ρũiũj) = − ∂p

∂xi
+

∂

∂xj
σ̃ij −

∂

∂xj
ρ(ũiuj − ũiũj) (3)

in which p is the pressure and σ̃ij is the viscous stress tensor, which is defined as

σ̃ij = µ

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δij
∂ũk
∂xk

)
(4)

where µ denotes the kinematic viscosity, and δij denotes the Kronecker delta func-
tion. For the energy equation several variants are possible. We follow Freund et al.
(1997) and use the following equation

∂E

∂t
+

∂

∂xi

(
ũi(E + p

)
= − ∂

∂xi
qi +

∂

∂xj
(σ̃ij ũi)−

∂

∂xi

(
Eui − Eũi + pui − pũi

)
(5)

qi = −κ ∂T̃
∂xi

(6)

where E = ρT/γ + ρuiui/2 is the total energy per unit volume, γ the specific heat
ratio, T the temperature, q the heat flux, and κ the thermal diffusivity. Formally,
the term ũi σ̃ij would also lead to an additional term; however, it is expected that
term will be small, and it is, therefore, neglected (see for instance Moin et al. 1991)

If we use the LES averaging but without density weighting, we find the following
equations for conservation of mass and momentum

∂ρ

∂t
+
∂ρ ui
∂xi

= − ∂

∂xi
(ρui − ρ ui) , (7)

∂ρ ui
∂t

+
∂ρ ui uj
∂xj

= − ∂p

∂xi
+
∂σij
∂xj

− ∂

∂xj
(ρuiuj − ρ ui uj)−

∂

∂t
(ρui − ρ ui) (8)

In which σij is the Newtonian stress tensor

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
(9)
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The LES filtered equation for the total energy reads

∂E

∂t
+

∂

∂xi
[E ui+ui p] = − ∂qi

∂xi
+

∂

∂xi
ui σij−

∂

∂xi

(
Eui − E ui + pui − p ui

)
. (10)

qi = −κ ∂T
∂xi

In both sets of equations the variables are made non-dimensional using the am-
bient speed of sound c∞ as reference velocity scale, the ambient density ρ∞ as
reference density, ρ∞c2∞ as reference pressure, and c2∞/Cp as reference tempera-
ture.

From the two sets of equations given above, it is clear that the Favre averaged set
is simpler. In the Favre averaged equations, no model is necessary in the continuity
equation. The unsteady subgrid term in the momentum equation does not require
a new model since it already appears in (7). On the other hand, by using Favre
averaging of the governing equation, some information is lost. For relatively low
Mach numbers this is not really a problem, see e.g. Freund et al. (1997), where the
differences between two types of averaging was found to be small for mixing layer
flows.

However, the Favre averaged continuity equation is still a non-linear equation
which can cause numerical instabilities. We indeed observed such instabilities lead-
ing to small grid point to grid point waves. These waves have to be removed from
the flow field. This can be done by adding an artificial diffusion term to the right-
hand side of the continuity equation. Another way to do this is by using the non
Favre averaged LES equations. In this set of equations a damping term is already
present in the continuity equation. We have chosen this latter approach because
we feel that it is closer to the physics of the problem. On the other hand, the
LES modeling of the non-Favre averaged equations is a little bit more complicated
due to the appearance of an additional unsteady term in the momentum equation.
The subgrid mass terms in the momentum and density equation will not lead to an
additional sound source because those terms vanish when one derives the Lighthill
equation from the non-Favre averaged density and momentum equations.

LES models
The new unknowns which arise due to the LES filtering of the governing equations

have to be modeled. In this section we will give some models for these unknowns.
The model parameters in these models are calculated with the dynamic procedure
(Germano 1991). With help of the Boussinesq hypothesis, we can write the following
simple model for the subgrid mass flux:

mi = ρui − ρ ui = −Cρ∆2|S| ∂ρ
∂xi

(11)

In which ∆ is the filter width of the LES filter, and Cρ a coefficient which is obtained
from the dynamic procedure (Germano 1991) and S is the strain rate tensor defined
as

Sij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (12)
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For the subgrid stresses we can use again a model based on the Boussinesq hypoth-
esis (see e.g. Moin et al. 1991)

ρuiuj − ρ ui uj = ρCs∆2|S|Sij = ρνtSij (13)

in which Cs is the well known Smagorinsky coefficient which is evaluated using the
dynamic procedure and νt the so-called eddy viscosity.

With the help of the equation of state

p = ρ
γ − 1
γ

T (14)

we can rewrite the subgrid term in the energy equation as

uiE + uip− ui E − ui p =
(
ρuiT − ρ ui T +

1
2
ρuiukuk −

1
2
ρ ui uk uk

)
(15)

It is assumed that the convection of the subgrid kinetic energy by the subgrid
velocity is small, so we can write for the right hand side of equation (15):(

ρuiT − ρ ui T +
1
2
ρuiukuk −

1
2
ρ ui uk uk

)
≈ ρuiT − ρ ui T (16)

This term is modeled with the following model (see e.g. Moin et al. 1991):

ρuiT − ρ ui T = −ρ νt
Prt

∂T

∂xi
(17)

In which Prt is the turbulent Prandtl number which can be calculated dynamically
and νt = Cs∆2|S| is the turbulent eddy viscosity of equation (13). Actually we
do not calculate Prt, but define a new parameter CT = Cs/Prt and calculate this
parameter dynamically.

The dynamic procedure
For completeness we will describe the dynamic procedure for the density equation

in this section. Dynamic procedures for momentum and energy can be found in Moin
et al. (1991). The basic assumption in the dynamic procedure is that the closure
model for the density equation is valid on the length scale of the LES filter but
also for a filter which has a larger filter length. We will call this larger filter the
test filter, and test filtered quantities will be denoted by a caret. The test filtered
subgrid mass flux is thus given by

Mi = ρ̂ui − ρ̂ ûi (18)

Now it follows from the definitions that

Mi − m̂i = ρ̂ ui − ρ̂ ûi (19)
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This term is computable from the resolved field. If we now use for Mi and mi the
model proposed previously, with the same constant on both filter widths we can
derive the following relation for Cρ

ρ̂ ui − ρ̂ ûi = −Cρ

(
∆̂2|Ŝ| ∂ρ̂

∂xi
−∆2

̂
|S| ∂ρ

∂xi

)
(20)

Both the left- and right-hand side of this equation can be computed from the re-
solved field and Cρ can be obtained.

For the momentum and energy equations, similar procedures are used by Moin
et al. (1991). Due to the averaging in the azimuthal direction of the jet, it is not
necessary to clip the model parameters Cρ, Cs, and CT .

3. Numerical method and boundary conditions

In this section we will give a short overview of the numerical method and boundary
conditions which have been used in the simulations.

In this study we use the Navier-Stokes equations rewritten in a cylindrical co-
ordinate system, with x, r, and θ as the axial, radial, and azimuthal coordinate
directions, respectively. The numerical scheme is very similar to the one used by
Freund et al. (1997). Spatial derivatives in axial and radial direction are taken with
6th order compact finite differences (Lele 1992). In the azimuthal direction a Fourier
method with approximate dealiasing has been used. To minimize the aliasing error
in the radial and axial directions, the non-linear terms have been rewritten in the
skew symmetric form, i.e.

∂ρuiuj
∂x

=
1
2

(
∂ρuiuj
∂x

+ ui
∂ρuj
∂x

+ ρuj
∂ui
∂x

)
(21)

The spatial discretization method given above has almost no artificial numerical
dissipation.

The time integration has been carried out with a fourth order Runge-Kutta
scheme. Normally, the small grid spacing near the centerline of the cylindrical sys-
tem would place a severe restriction on the time step of the Runge-Kutta scheme.
This problem is avoided by dropping Fourier modes close to the centerline (Freund
et al. 1997).

At the boundaries of the computational domain, the so-called sponge layers are
used to force the flow to a certain a priori specified target solution. In this study
we use as target solution the self-similarity solution for an incompressible jet.

A point of concern related to the high order numerical schemes such as the ones
used in this study is that the discretization does not numerically conserve kinetic
energy for an in viscid low Mach number flow. This means that the calculation
can become unstable when a flow scale is under-resolved, and there is not enough
viscosity (molecular or subgrid) to damp this instability. Because in a LES setting
the molecular viscosity is relatively low, all the damping has to come from the
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subgrid model. The calculation of the subgrid stresses is subject to numerical
errors to the point that 2∆xi error waves become apparent. These 2∆xi waves
in the subgrid stresses can generate instabilities in the resolved quantities. To
avoid numerical problems such errors waves are removed by filtering the strain rate
tensor Sij before the terms in the subgrid stress are calculated. For this we use the
following simple filter (Lele 1992)

fi :=
1
16

(−fi−2 + 4fi−1 + 10fi + 4fi+1 − fi+2) (22)

in all three coordinate directions. Note that the resolved variables ρ, ui and E are
not altered by this filtering procedure. Only the subgrid terms which appear after
LES-filtering are affected by this procedure. The chosen filter has a truncation
error of fourth order, which is much smaller than the error made by using the
gradient hypothesis to obtain the subgrid stresses. The code has been implemented
on parallel computers using the message passing interface (MPI) and is typically
run on 32-64 CPU’s.

Inflow conditions
Good inflow conditions for LES and DNS are in general very difficult because time

dependent data with appropriate length and time scales have to be supplied. Such
information can, for instance, be obtained from a temporal mixing layer calculation.
A field of such a calculation can be fed into the computational domain. In such
a case we additionally have to specify a convection velocity, and we also have to
apply some random forcing to “break” the periodicity of the temporal calculation.
Presently, we are mainly interested in getting the LES models working and getting
numerically smooth fields. Therefore, we use at the moment a much simpler forcing
which is described below.

In the jet inflow plane the following velocity profile is specified

ux(0, r, θ, t) = Ma

(
1
2
− 1

2
tanh

[
2.8
(
r

R0
− R0

r

)])
(1 + ε sin[St t]) (23)

In which the Strouhal number St = 2R0f/U is 0.45 and the amplitude ε is 0.0025.
To trigger three-dimensional instabilities, a very small random forcing is applied in
the circumferential direction in the initial shear layer

uθ(0, r, θ) = 0.025 exp[−3(1− r)2]ran (24)

where ran is random number generated uniformly between −0.5 and 0.5. The
velocity component in the radial direction is set to zero (ur = 0).

4. Results

In this section we will present some results of the LES of a compressible Mach
0.9 jet. Various runs at different Reynolds numbers have been carried out. We
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Table 1. Some parameters used in the simulations.

I II
Re 36, 000 100,000

Nx ×Nr ×Nθ 192× 128× 64 320× 150× 96
Lx 45R0 47.5R0

Lr 8R0 11R0

∆xmax 0.42R0 0.15R0

∆xmin 0.14R0 0.15R0

∆rmax 0.1R0 0.09R0

∆rmin 0.03R0 0.03R0

will present results of two runs, one with a moderate Reynolds number (36,000)
for which the statistics are more or less converged and one with a high Reynolds
number (100,000) but not yet converged statistics. The number of grid points in
the moderate Reynolds simulations is equal to 192 × 128 × 64 points in the axial,
radial, and circumferential direction respectively. In the high Reynolds number a
finer grid with 320× 150× 96 points is used (for more details see Table 1). First we
will show some statistics obtained from the moderate Reynolds simulations, mainly
to validate our LES model.

In Fig. 1 we show the centerline velocity obtained from the medium Reynolds
number calculation (Re = 36 · 103). In this figure we also show the centerline
velocity obtained from a DNS carried out by Freund (1999) and experimental data
reported by Stromberg et al. (1980). There are some small differences between the
data sets. These differences are probably due to differences in inlet conditions. In
general the agreement between the data sets is quite good.

In Fig. 2 the mean axial velocity profiles obtained from DNS (Re = 3, 600) and
LES (Re = 36, 000) are plotted. There are again some small differences between
the results of the DNS and LES, but the overall picture is quite good. For large
radii where the LES and DNS results show some differences, this is most likely due
to a difference in the size of the computational domain in the radial direction (the
DNS domain is considerably bigger than the LES domain).

In Fig. 3 we show a plot of the Reynolds shear stress u′ru′z as a function of the
radial coordinate at various downstream locations. Again, the agreement between
the results obtained from the DNS and LES is reasonable.

Next, some preliminary results obtained from the high Reynolds number (Re =
100.000) calculation will be presented. The statistics of this calculation are not yet
converged, and, therefore, we will not show mean profiles, but only instantaneous
snapshots and time series.

In Fig. 4 we show a contour plot of the density and total vorticity multiplied by
the axial distance x. Due to the relative low Mach number, the variation in density is
relatively small. The potential core of the jet breaks up quite far downstream of the



372 B. J. Boersma and S. K. Lele

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

U
c/

U
0

x/R0

DNS 3600
Stromberg et al

LES 36000

Figure 1. The mean centerline velocity as a function of the axial coordinate
x, obtained from the LES, DNS (Freund 1999), and experiment (Stromberg et al.
1980). DNS 3600: ; Stromberg et al. : + ; LES 36000: .
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Figure 2. The mean velocity as a function of the radial coordinate at various
different downstream positions. LES: x = 3.2Ro, ; x = 13.0Ro, ;
x = 19.5Ro, ; x = 25.9Ro, . DNS: x = 19.5Ro, smallplus; x = 25.9Ro,
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13.0Ro, ; x = 19.5Ro, ; x = 25.9Ro, . DNS: x = 19.5Ro,
smallplus; x = 25.9Ro, × .

orifice. This is due to the low amplitude of ε in equation (23). A higher amplitude
would lead to an earlier breakup but also to a generation of high amplitude pressure
waves at the jet orifice. These waves will contaminate the acoustic field. Therefore,
ε should be kept as small as possible.

The final goal of this research is to obtain the sound field of the jet. A good
measure for the sound waves emitted by a flow is the dilatation (or divergence of
the velocity). In Fig. 5 the dilatation is plotted. It is clear that in the region where
the potential core breaks up sound waves are produced. Furthermore, it is clear
that at the jet orifice also sound is produced. This is purely due to the perturbation
we use in the inflow velocity profile (Eq. 23) of the jet.

In Fig. 6 we show time series of the pressure at the points (r = 6.6R0, x = 11.2R0),
(6.6, 16.8), (6.6, 22.4), (6.6, 28.1), (6.6, 33.8). The pressure series taken close to the
jet inflow plane show much less fluctuations than the points further downstream of
the orifice. Close to the jet orifice, the perturbation defined by Eq. (23) is visible
in the pressure signals. In the signals farther downstream, the perturbation is no
longer visible.

In Fig. 7 we show the power spectra of three of the time series shown in Fig. 6.
In the signal close to the jet orifice, we observe a peak at a frequency of 0.45, which
is exactly the Strouhal number we used in Eq. (23). It seems that, in the far field
of the jet, frequencies around 1Uc/Ro are preferred and that pressure fluctuations
with a frequency above 2Uc/Ro are not present.
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Figure 4. Left: Contour plot of the density; Right: Contour plot of the total
vorticity multiplied by the axial coordinate x|ω|.
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Future work

In this paper we have described an LES model for compressible jet flows using high
order numerics. The results of a Mach 0.9 jet simulation have been compared with
experiments and also with results of direct numerical simulations (DNS). In general
the agreement between LES and DNS is reasonable. A high Reynolds number LES
simulation is under way. The first results of this simulation look very promising.

Future work will focus on: (1) A more extensive validation of the LES by compar-
ing it to high Reynolds number jet experiments which are currently being carried
out or will be carried out in the near future. (2) The calculation of the far field
noise using a Kirchoff surface. (3) Improvement of the inflow conditions.
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