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A velocity-pressure Navier-Stokes solver
using a B-spline collocation method

By O. Botella

1. Motivation and objectives

B-spline functions are bases for piecewise polynomials that possess attractive
properties for turbulent flow simulations; they have compact support and yield nu-
merical schemes with a high resolving power, with an order of accuracy k that is a
mere input parameter. In a sense, a B-spline basis can be viewed as a finite-element
basis of arbitrary order k. Its main restriction is that multidimensional approxima-
tions are constructed as tensor products of one-dimensional B-splines, which limits
approximations to structured meshes. Recently however, Shariff & Moser (1998)
circumvented the tensor product limitation by constructing B-spline bases on zonal
embedded grids, allowing a treatment of the zonal interfaces consistent with the
high continuity of the B-splines.

The approximation of differential problems with B-splines is obtained by the
method of weighted residual, of which the Galerkin and collocation methods are
particular cases. The Galerkin method is the most widely used method for B-spline
approximations. Not only does this method provide an optimal order of accuracy,
but it also guarantees the conservation of quadratic invariants such as kinetic energy.
Galerkin B-spline schemes have been developed in Kravchenko et al. (1996, 1999)
and Kim (1998) for solving the Navier-Stokes equations. However, a high order
Galerkin method is burdened by the cost of evaluating nonlinear terms; as observed
by Kravchenko et al. (1999), 50% of computational time is spent on their evaluation.
A collocation method, on the other hand, represents an economical alternative since
it only requires the evaluation of these terms at grid points. This method has been
most successfully applied in the past to orthogonal polynomial approximations (see
e.g. Quarteroni & Valli, 1994), and applications to B-spline approximations for
solving fluid flow problems are still in an early stage (Fairweather & Meade, 1989).

The aim of this study is to develop an efficient collocation scheme for solving
the incompressible Navier-Stokes equations with a fractional step method. To our
knowledge, this work represents the first attempt in developing such a B-spline
scheme and, in particular, in dealing with compatible B-spline bases for the ap-
proximation of the velocity and the pressure. For this purpose, the geometry is
restricted to a rectangular domain, and the dependent variables are represented
by tensor-product B-splines. The extension to complex geometries and the han-
dling of embedded meshes are left for future work. The first part of this report is
devoted to the evaluation of B-spline collocation methods for one-dimensional prob-
lems. In the second part, the collocation scheme using “staggered” spline bases for
preventing pressure oscillations is introduced. Finally, some results for benchmark
Navier-Stokes problems are presented.
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2. A comparison of some B-spline approximation methods

2.1 Construction of B-spline bases
A spline function is a piecewise polynomial of order k (the polynomial degree is

k−1 at most) defined on the interval Λ =]a, b[, whose high order derivatives possess
jump-discontinuities at some breakpoints ξξξ = {ξi, i = 1, . . . , l + 1} defined by

a = ξ1 < ξ2 < . . . < ξi < . . . < ξl < ξl+1 = b. (1)

In the following, we will restrict our characterization to splines having jump-disconti-
nuities at their m + 1 derivative at each ξi ∈ Λ, i.e. splines belonging to the space
Cm(Λ).

The spline u(x) is commonly described in its B-representation

u(x) =
N∑
i=1

αiB
k
i (x), (2)

where Bk
i (x) is a special spline function of order k called a B-spline which has, in

particular, the property of having compact support. The number N of the B-splines,
depending on the order k and the index of regularity m, will be defined later. Most
properties of B-splines can be found in de Boor (1978), and Fortran software for
efficient computations with B-splines is presented in de Boor (1977).

The B-splines of order 1 are step functions defined by

B1
i (x) =

{
1 if x ∈ [ξi, ξi+1],
0 otherwise, (3)

and an efficient construction of the B-splines of order k > 1 is given by the recurrence
relation of Curry and Schoenberg (see e.g. de Boor (1978)):

Bk
i (x) =

x− ti
ti+k−1 − ti

Bk−1
i (x) +

ti+k − x

ti+k − ti+1
Bk−1
i+1 (x). (4)

This formula introduces the knots {ti, i = 1, · · · , N + k}, where the number N of
the B-splines is

N = l (k −m− 1) + m + 1. (5)

The regularity of the B-spline basis is imposed through the definition of the knots
by requiring

tk+(i−2)(k−m−1)+1 = · · · = tk+(i−1)(k−m−1) = ξi for i = 2, · · · , l. (6)

The construction of the basis given by Eqs. (3)-(6) leaves freedom in the first k and
last k of the knots. A convenient choice for the approximation of boundary value
problems is to set

t1 = · · · = tk = a, tN+1 = · · · = tN+k = b. (7)
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In that case, by using the properties that Bk
i (x) have compact support in [ti, ti+k]

(de Boor, 1978), the spline function (2) verifies

u(a) = α1 and u(b) = αN ,

so that Dirichlet boundary conditions are imposed strongly. This choice of the
remaining knots is to be used throughout this report. Note that a choice analogous
to (7) for the first k and last k knots that is suitable for imposing periodic boundary
conditions is discussed in e.g. de Boor (1978) and Kravchenko et al. (1996).

Finally, we mention that the B-splines bases considered in this report are charac-
terized by the triplet (k, m, ξξξ), i.e. the polynomial order k, the index of continuity
m, and the distribution of breakpoints ξξξ. The bases are then constructed by appli-
cation of relations (3)-(7).

2.2 Approximation of differential problems
In this part, we give a brief overview of the properties of B-spline approximation

methods that lead to the development of the collocation scheme described in the
subsequent sections. The efficiency of a B-spline method for solving differential
problems depends crucially on the choice of:
• The approximation methods (i.e. Galerkin or Collocation),
• The B-spline basis.

The Galerkin method, which satisfies the equations in an average sense, has
been the preferred method for spline approximations of fluid flow problems (see
e.g. Kravchenko et al. 1996, Kim 1998). Not only does this method provide an
optimal order of accuracy, namely O(N−k) with B-splines of order k, but also
guarantees the conservation of quadratic invariant such as the kinetic energy. In
spite of the compact support of the B-splines, when the order k is raised this high
quality method requires enormous work in term of storage cost of the matrices and
calculation of nonlinear terms.

On the other hand, the collocation method consists in simply satisfying the equa-
tions at a discrete set of points {xj , j = 1, . . . , N}, the collocation points. The
mathematical properties of this method are less well established for the main rea-
son that the order of accuracy depends on the properties of the B-spline bases.
Moreover, the choice of the collocation points may appear arbitrary in some cases.

Two collocation methods have been compared. The first one uses the “smoothest”
splines (k, m = k − 2, ξξξ), i.e. splines of order k of maximum continuity k − 2. The
collocation points are in this work chosen as the maximum of the B-splines. It is
important to note that the order of accuracy obtained is suboptimal, typically in
O(Nd−k) for a differential problem of order d (Prenter, 1975). For this reason, this
method has been overlooked in favor of the Gauss-collocation method of de Boor
and Swartz (1973). This method belongs to the class of orthogonal collocation
methods (Prenter, 1975) meaning that, when the collocation grid is defined as the
quadrature points of the Legrendre-Gauss rule, the optimal O(N−k) accuracy of
the Galerkin method is recovered. However, note that this method uses B-splines
defined by (k, m = d−1, ξξξ) with k ≥ 3 so that the continuity of the basis is imposed
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only by the order d of the problem to be solved, irrespective of k. As an example,
a second-order problem would only be solved by using C1 splines.

A comparison of these methods is now performed on the boundary value problem

Lu(x) = f(x), x ∈ Λ (8a)
u(a) = g0, u(b) = g1, (8b)

where L is a second order elliptic operator. This problem is to be solved with
the different spline methods on a uniform distribution of breakpoints whose main
properties are given in Table 1. In this Table, the methods using smooth splines
are designated SCo and SCe for the collocation method using k odd and even
respectively, and SG for the Galerkin method; GC refers to the Gauss-collocation
method. The average bandwidth of a scheme refers to the ratio of the non-zero
entries of the associated linear system divided by its size; this quantity gives a
rough quantification of the amount of work required for solving this system. A
typical example concerns the numerical solution of (8) in Λ =] − 1, 1[ with L =
λ2 − d2/dx2, f = λ2, g0 = 1, g1 = 0, whose smooth solution displays a boundary
layer of thickness O(1/λ) near x = 1. For the case λ = 10, Fig. 1 displays the
maximal error for the various methods of average bandwidth 7. It is observed that,
with smoothest splines, collocation methods are more accurate than the Galerkin
method. The striking result is that even though GC displays the highest convergence
rate, it does not give the best accuracy for moderate values of N . This tendency
has also been observed for methods of bandwidth 5 as well as for steeper solutions.

An interesting hint of this behavior is given by comparing in Fig. 2 the resolving
power of the first derivative yielded by the various approximations (Lele, 1992).
First, let us mention that a well known result of Swartz & Wendroff (1974) shows
that the resolving power of SCe and SG are identical. The Gauss-collocation method
gives by far the worst behavior in the finest scales. To show that this phenomenon
is not mainly related to the collocation approximation, we have also included in this
figure the modified wavenumber of the Galerkin method using the same B-splines
basis that displays similar wiggles. This phenomenon is most likely related to the
low C1 continuity at the breakpoints that is enforced on the basis; note that a
similar behavior is found for the Fourier analysis of C1 piecewise cubic (i.e. k = 4)
Hermite Galerkin schemes.

2.4 Concluding remarks
The conclusions that can be drawn form this study are twofold. Firstly, a spline

method has better approximation properties when the bases display high continuity
even if it would result in dropping some order of accuracy as is the case for the
smoothest collocation method. Secondly, a collocation method requires less work
for the evaluation of nonlinear terms (Botella, 1999) and is more cost-effective for
solving linear problems even though it should be reminded that collocation matrices
are non-symmetric.

For these reasons, efforts are now engaged towards solving fluid flow problems
with the smoothest collocation method.
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SCo SCe SG GC

Average bandwidth k k � 1 2k � 1 k

Order of accuracy k � 1 k � 2 k k

Continuity at the breakpoints Ck�2 Ck�2 Ck�2 C1

Table 1. Properties of the different methods using B-splines of order k for solving
problem (8).
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Figure 1. Maximal value of the error, taken on 1001 equidistant points, vs. the
number of B-splines for the various methods of average bandwidth 7: SCo, k = 7
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Figure 2. The modified wavenumber of the first derivative, for the collocation
methods of bandwidth 7: (exact); (SCo, k = 7); (SCe, k = 8);

(GC, k = 7); and Galerkin method with the Gauss-splines basis (GG,
k = 7).
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3. Navier-Stokes solver

3.1 Fractional-step scheme
In this part, we consider solving in the domain Ω =]a, b[2 the unsteady Navier-

Stokes equations for an incompressible fluid in the velocity-pressure formulation
with the following Adams-Bashforth/Backward Euler fractional step scheme

3 ṽ− 4vn + vn−1

2∆t
− ν∇2ṽ+∇pn + 2vn ·∇vn − vn−1 ·∇vn−1 = fn+1, (9a)

ṽ|∂Ω = gn+1, (9b)

where ν denotes the inverse of the Reynolds number Re, and
3
2

vn+1 − ṽ
∆t

+∇
(
pn+1 − pn

)
= 0, (10a)

∇ · vn+1 = 0, (10b)
vn+1 · n|∂Ω = gn+1 · n. (10c)

The projection step (10) is not solved in this work by building a Neumann problem
for the pressure since that would require the imposition of a non-physical bound-
ary condition for this quantity. The alternative is to consider (10) as a Div-Grad
problem (see e.g. Quartapelle 1993, Azaiez 1994) that amounts to first discretizing
in space Eqs. (10), then decoupling the velocity and pressure by performing block
gaussian elimination on the discretized system in order to build an equation for the
pressure. In this way, no pressure boundary conditions are needed. This way of
solving the projection step has been considered in finite-difference approximations
(Fortin et al. 1971, Kim & Moin 1985), finite-element methods (Donea et al. 1982,
Gresho & Chan 1990), and spectral methods (Botella, 1997). However, since the
Div-Grad problem is a saddle-point problem, the discrete approximations of the
velocity and the pressure have to be compatible of avoiding pressure oscillations.

3.2 Spatial discretization using a B-spline collocation method

3.2.1 Equal-order discretization
The possibility of pressure checkerboarding in a spline-collocation method is ad-

dressed by considering the following one-dimensional version of the Div-Grad prob-
lem:

σu(x) +
d

dx
p(x) = f(x) inΛ =]0, 1[, (11a)

d

dx
u(x) = g(x) inΛ =]0, 1[, (11b)

u(0) = 0, u(1) = 0, (11c)

where σ is a constant and the functions f and g are given force terms. The velocity
and pressure are approximated with the same smoothest splines basis characterized
by (k, m = k − 2, ξξξ)

u(x) =
N∑
j=1

ujBj(x), p(x) =
N∑
j=1

pjBj(x), (12)
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where, for brevity, the superscript k is dropped. The collocation points {xi, i =
1, . . . , N} are the maximum of the B-splines, and the equal-order spline-collocation
discretization of (11) is

σ
N−1∑
j=2

ujBj(xi) +
N∑
j=1

pjB
′
j(xi) = f(xi), i = 2, . . . , N − 1, (13a)

N−1∑
j=2

ujB
′
j(xi) = g(xi), i = 1, . . . , N, (13b)

with the homogeneous boundary conditions (11c) giving the coefficients u1 = uN =
0. Note that Eqs. (13) amounts to discretizing (11a)-(11b) at the inner collocation
points {xi, i = 2, . . . , N − 1} and adding the boundary condition ∇.v|∂Ω = 0. This
boundary condition can also be found in the influence matrix method of Kleiser &
Schumann (1980) for equal-order Chebychev discretization.

The system (13) takes the following sparse matrix form

σMeU + D̃eP = F, (14a)
DeU = G, (14b)

where U and P are vectors representing the unknown coefficients of the velocity
and the pressure respectively andMe is the (non-diagonal) mass matrix; note that
in a collocation method the first derivative matrix of the pressure D̃e is not the
transpose of the divergence matrix De. By performing block-Gaussian eliminations,
the velocity can be decoupled from the pressure as

σMeU = F − D̃eP, (15a)
1
σ
AeP =

1
σ
DeM−1

e F −G, (15b)

where Ae = DeM−1
e D̃e is the N ×N matrix called the Uzawa operator of the Div-

Grad problem. It is worthwhile to note that, since the inverse of the mass matrix is
dense, the pressure operator Ae is a dense matrix. This block factorization is not
recommended for solving practical problems, but is used for the purpose of eval-
uating the collocation discretization. As it will be shown later, this discretization
yields one spurious pressure mode.

3.2.2 The “staggered splines” discretization
Efficient techniques for preventing spurious oscillations of the pressure are now

well established for the classical numerical methods. Among others, we cite the
use of a staggered finite-difference grid (Kim & Moin, 1985), of pressure elements
of one degree less than the velocity in the finite-element method (e.g. Gresho &
Sani, 1998), and the PN × PN−2 discretization in spectral methods (e.g. Botella,
1997). To our knowledge, this issue has not been previously addressed for B-spline
discretizations.
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Figure 3. Staggered B-spline bases for (a) the velocity and (b) the pressure on
evenly distributed breakpoints (+), with k = 4 and l = 10 . The collocation points
(�) are the maximum of the velocity B-splines.

In the following, we describe a constructive method for building a basis for the
pressure that prevents checkerboarding for a smoothest spline collocation method.
This compatible basis is constructed from the velocity basis, which is given by
the smoothest spline basis (k, m = k − 2, ξξξ). The pressure basis (kp, mp, ξξξp) is
constructed by requiring that p be represented by a smoothest spline of order one
less than for the velocity, i.e.:

kp = k − 1, mp = m− 1. (16)

As for the equal-order discretization, the collocation points are the maximum of the
N velocity B-splines where, by using (5),

N = l + k − 1. (17)

The collocation discretization is defined by requiring that the collocation points at
the boundary x1 = 0 and xN = 1 be used for the boundary conditions and the
N − 2 inner collocation points be used for discretizing the equations; as a result, in
order to close the system, the number Np of pressure B-splines must be equal to
N − 2. The number of pressure breakpoints lp is then, by using (17),

lp = l − 1.

Now, the pressure basis is completely characterized by defining ξξξp as
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size dim(ker(Ai)) ��min ��max

Equal-order discretization, i = e N 2 9.8 18N2

Staggered discretization, i = s N-2 1 9.8 1:5N2

Table 2. Properties of the operator Ai, i = e or s.

N 26 56 106 166

Equal-order discretization 3:7 � 10�3 6:7 � 10�6 1:0 � 10�7 6:2 � 10�9

Staggered discretization 7:6 � 10�3 6:6 � 10�6 7:4 � 10�8 4:3 � 10�9

Table 3. Error on the velocity given by the two formulations with splines of order
6.

ξpj = (ξj + ξj+1)/2, j = 1, . . . , l , (18)

which amounts to staggering the pressure breakpoints with respect to those of the
velocity basis. The compatible B-spline bases are plotted in Fig. 3 for k = 4 and an
evenly spaced distribution of breakpoints ξξξ. In this case, it can be observed that
the inner collocation points are also the maximum of the pressure basis functions
except for the first and last k − 1 B-splines.

The staggered collocation approximation of (11) yields, in a fashion similar to
the previous case, the (N − 2)× (N − 2) pressure operator As = DsM−1

s D̃s, where
the subscript s refers to operators obtained from the staggered bases.

3.2.3 Discussion
The spectral properties of Ai, i = e or s yielded by the equal-order and the stag-

gered discretization respectively has been investigated by numerically calculating
its eigenvalues. As a matter of fact, the dimension of the kernel of Ai gives the
number of spurious pressure modes. Furthermore, the determination of λmin and
λmax, the eigenvalue of Ai with minimal and maximal modulus respectively, gives
an estimation of the spectral condition number χ(Ai) = λmax/λmin that is relevant
for the iterative inversion of this operator. The main properties of the operator Ai
for an even distribution of breakpoints and k = 6 is given in Table 2.

The operator Ae proves to possess two zero eigenvalues, one corresponding to the
constant pressure mode, the other testifying of the presence of a spurious pressure
mode in the equal-order discretization. The extension of this method in two dimen-
sions would give three spurious modes, as is observed in the equal-order Chebyshev
discretization of the Div-Grad problem (Azaiez et al., 1994). On the other hand,
the dimension of the kernel of As is equal to one, showing that no spurious modes
occur in the staggered discretization. Note also that for both discretizations the
other eigenvalues are complex with negative real part, and the condition number
χ(Ai) is proportional to N2. It is expected that, for any given distribution of break-
points ξξξ, the staggered discretization is free of spurious modes, and this has been
checked for the following Chebyshev distribution of breakpoints,

ξj = (cos(π(l + 1− j)/l) + 1) /2, j = 1, . . . , l + 1. (19)
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B-spline order u p p0

k even k k � 2 k � 2

k odd k � 1 k � 2 k � 2

Table 4. Order of accuracy of the staggered collocation discretization with B-
splines of order k.

The Div-Grad problem (11) with σ = 10 has been solved with both collocation
methods for the solution

u = x(1− x) cos(33x), p = cos(14x), (20)

with velocity B-splines of order k = 6, on evenly spaced breakpoints. The error on
the velocity with respect to N is given in Table 3, showing that both discretizations
give a similar sixth order accuracy. Data on the pressure approximation given by
the equal-order collocation method are unavailable since this quantity is plagued
by the spurious mode. The accuracy of the staggered approximation has been
evaluated with numerical tests on the solution (20), and the order of accuracy
observed numerically is summarized in Table 4.

3.3 Two-dimensional numerical results

3.3.1 Iterative solution of the Div-Grad problem
We consider here solutions to the following Div-Grad problem:

σv +∇p = f , (21a)
∇ · v = 0, (21b)

v · n|∂Ω = 0, (21c)

in the domain Ω =]0, 1[2, with the staggered splines collocation method. The two-
dimensional discretization is a straightforward extension of the method described in
the previous section: the velocity and pressure spline approximations are expressed
in tensor product B-splines bases,

v =
N∑

i,j=1

vi,j Bi(x)Bj(y), p =
N−2∑
i,j=1

pi,j B̃i(x)B̃j(y),

where {Bi(x), i = 1, . . . , N} and {B̃i(x), i = 1, . . . , N − 2} are the one-dimensional
compatible B-spline bases of order k introduced in the previous section. Equa-
tions (21) are discretized on the collocation grid {(xi, yj) = maxi,j Bi(x)Bj(y); i, j =
1, . . . , N}, leading to the discrete system

σMU + D̃P = F, (22a)
DU = 0. (22b)
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The pressure equation associated with this system is

1
σ
AP =

1
σ
H, withA = DM−1D̃ and H = DM−1F. (23)

As in the one-dimensional case, the operator A is dense. However this system
can be solved by using an Uzawa-type iterative algorithm (Cahouet & Chabard,
1988, Quarteroni & Valli 1994), which involves only the solution of sparse elliptic
problems. A prototype Uzawa algorithm is given by the following iteration step,
where Pm is given and m refers to the number of the iterations:

Solve σMUm = F − D̃Pm, (24a)

Compute the residual Rm =
1
σ

(H−APm) = DUm, (24b)

Solve C(Pm+1 − Pm) = −ρRm, (24c)

where C is a preconditioner of A and ρ an acceleration parameter. This algorithm
allows us to solve (22) without explicitly building the dense matrix A; the conver-
gence criterion |Rm| < ε permits us to control the degree to which the velocity is
divergence free. If C = I and the value of ρ is computed dynamically with the
steepest descent formula, the above algorithm reduces to the gradient method ap-
plied to (23). As a matter of fact, this basic Uzawa algorithm can be accelerated by
any iterative method, see e.g. Cahouet & Chabard (1988) for a conjugate gradient
version.

Straightforward applications of the Uzawa algorithm for solving (22) have proven
to give poor results: the spline-collocation matrices are not symmetric so that
iterative methods such as conjugate gradient failed to converge. Our attention
has been drawn towards Krylov subspace methods (Saad 1996, Barrett 1996 and
references therein) such as CGS and Bi-CGSTAB. These methods are, however,
known to converge poorly or to be unstable when the system is not well conditioned.
As a matter of fact, a preconditioner of the system is C = AL where

AL = DM−1
L D̃. (25)

In this equation, M−1
L refers to the inverse of the diagonal matrix obtained by

summing the row of the mass matrix and putting the result on the diagonal; such
a matrix is called the lumped mass matrix in the finite-element method (Gresho &
Sani, 1998). The operator AL is sparse, with a bandwidth ' 2k2. The condition
number χ(C−1A) of the unpreconditioned (C = I) and preconditioned (C = AL)
Div-Grad system (22) has been evaluated numerically for both the case of an uni-
form grid and the stretched grid given by the Chebyshev distribution (19). The
relevant results are reported in Table 5. The preconditioned system proves to have
a condition number independent of the number of splines N ; however, its value
increases with the order k of the B-splines.
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Grid Uniform Chebyshev

Precond. C = I C = AL C = I C = AL

k = 4 0:21=h2 9:4 3 � 10�3=h4 9:0

k = 6 0:14=h2 66 3 � 10�3=h4 57

Table 5. Condition number χ(C−1A) of the Div-Grad problem, where h = 1/N−2
refers to the inverse of the number of unknowns in each direction.
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Figure 4. Preconditioned Uzawa Bi-CGSTAB algorithm: Norm of the residual
vs. the number of iterations for various discretizations defined by N = l + k − 1
with l = 25 (◦ ), l = 50 ( ), l = 80 (� ) for splines of order k = 4 (solid line) and
k = 6 (dotted line).

An Uzawa algorithm accelerated by Bi-CGSTAB iterations has been developed
(Botella, 1999). A single step of this algorithm requires in particular the inversion
of two mass matrix problems for each component of the velocity and two inversions
of the preconditioner. An example of application of this algorithm with C = AL is
given by the solution of problem (22) with σ = 1, for the solution

v = rot sin 4πx sin 4πy, p = cos 4πx cos 4πy,

on a regular grid. The convergence history of the residual for splines of order 4
and 6, obtained with the start vector P 0 = 0, is reported in Fig. 4. This figure
shows in particular that the preconditioned algorithm converges in a number of
steps independent of N , although this number is quite high for k = 6. If no
preconditioner is used, it has been observed that such an iterative method, or an
equivalent one accelerated by CGS, does not converge for splines of order 6 when
N ≥ 15. At last, we mention that it has been verified that an O(N−6) accuracy on
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the velocity and an O(N−4) error on the pressure is obtained, in accordance with
the one-dimensional results shown in Table 4.

3.3.2 Navier-Stokes results
In this part, we describe ongoing work on approximating the Navier-Stokes equa-

tions (8), and more precisely on “cheap” ways to solve these equations, by which we
mean that would not require performing Uzawa iterations for solving the projection
step. For the sake of the clarity of the discussion, the staggered-splines collocation
discretization of scheme (9)-(10) is written in the simplified form of the following
first order scheme, where the nonlinear terms are omitted:

M (Ũ − Un)
∆t

−KŨ + D̃Pn = Fn+1, (26)

where K is the viscous diffusion matrix, and

M (Un+1 − Ũ)
∆t

+ D̃(Pn+1 − Pn) = 0, (27a)

DUn+1 = 0. (27b)

We mention, however, that the numerical results discussed in this section have been
obtained with the second order scheme where the nonlinear terms are discretized
in the convective form. These equations are to be solved with the staggered splines
discretization of order k = 4 or 6. Since Eq. (26) is a second-order problem for Ũ ,
the expected spatial order of accuracy of the above scheme is k−2 for both velocity
and pressure. The solution of Eqs. (27) by the Uzawa algorithm requires solving
linear systems involving the preconditioner AL more than 20 times to get a “decent”
solution. Since the sparsity and the conditioning of AL is roughly equivalent to the
pressure operator of finite-difference approximations, this way of solving the Navier-
Stokes equations, with the consistent mass matrix M in Eq. (27a), is very costly
and cannot be in any way competitive with finite-difference methods.

The consistent mass matrix has been a relevant issue in the finite-element method
since its first application to CFD (Gresho & Sani, 1998). An ad-hoc approximation
that is commonly used is to “lump” the mass matrix (i.e. M is replaced byML in
Eqs. (26)-(27)), which causes severe loss of accuracy for time-dependent problems.
So far, the most satisfying alternative to the CM scheme (26)-(27) is the “projection
2” scheme of Gresho & Chan (1990) that uses a semi-consistent mass matrix ap-
proximation, i.e. that consists in lumping the mass matrix in front of the pressure
gradient only. This scheme that introduces a modified form of the pressure gradient
in the first step as

M Ũ − Un

∆t
−KŨ +MM−1

L D̃Pn = Fn+1, (28a)

ML
Un+1 − Ũ

∆t
+ D̃(Pn+1 − Pn) = 0, (28b)

DUn+1 = 0, (28c)
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Figure 5. Error on the splines coefficients of u (◦ ) and p (+) vs. ∆t for the
decaying vortices flow computed with (a) the CM scheme and (b) the SCM scheme;

: reference line of slope 2. The spatial resolution is defined by k = 4 and
l = 25, the reference solution being the solution computed with ∆t = 10−4.

is referred to in the following as SCM. Equations (28b)-(28c) yield the pressure
equation

AL(Pn+1 − Pn) = DŨ/∆t, (29)

which amounts to inverting the operator AL defined by (25) only once for every
time-cycle. This would yield a cost-effective method when compared to the CM
scheme where AL is used as a preconditioner of the projection step and is thus
inverted at each Uzawa iteration.

The time accuracy of the CM and SCM schemes has been evaluated on the
decaying vortices flow discussed by Le & Moin (1991). Fig. 5 compares the time-
accuracy of these schemes at t = 1.5. Both methods give an identical second-order
accuracy for the velocity. The pressure is also second-order accurate, although the
error is higher for the SCM scheme. The properties of the SCM scheme have then
been investigated on the regularized driven cavity flow (Peyret & Taylor, 1983), with
the spatial resolution defined by k = 6 and N = 65 on the Chebyshev distribution
of breakpoints given by (19), and the time step ∆t = 5 × 10−3. The steady-
state solution at Re = 10, 000 is displayed in Fig. 6. Starting from this solution,
the unsteady flow at Re = 12, 000 is computed on nearly half a million time-steps.
Figure 7 displays the time-evolution of the kinetic energy, showing that the periodic
solution is reached at t ' 1500, with a period T = 3.095 ± ∆t. This value of T
compares well with the period T = 3.085 ± 5 × 10−3 computed by Shen (1991)
with a Chebyshev-Tau scheme with a N = 65 truncation. This result shows that
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Figure 6. Streamlines (left) and vorticity lines (right) for the steady-state driven
cavity flow at Re = 10, 000.
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Figure 7. Time-evolution of the kinetic energy for the driven cavity flow at
Re = 12, 000.

the staggered-spline method with the SCM scheme reproduces spectral results with
the same coarse resolution and that it is able to conserve kinetic energy on a long
time integration. Figure 8(a) compares the spatial accuracy of the CM and SCM
schemes with splines of order 4 on the driven cavity flow at Re = 100, the reference
solution being obtained from a fully converged Chebyshev solution (Botella, 1997).
As expected, the CM solution gives a second-order accuracy on both the velocity
and the pressure. The SCM scheme yields an identical accuracy on the velocity, but
one order of accuracy is nevertheless dropped on the approximation of the pressure.
This loss of accuracy is certainly caused by the lumped mass matrix approximation
used in this scheme.

The SCM scheme has demonstrated satisfying stability properties and, for low
order splines (k = 4), good spatial accuracy. However, as observed on the decaying
vortices flow computed with k = 6 (Fig. 8(b)), the high order accuracy that would
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Figure 8. Spatial accuracy of u (◦ ) and p (+) vs. the number of splines N : (a)
Driven cavity flow at Re = 100, CM (solid line) and SCM (dashed line) schemes
with k = 4; (b) Decaying vortices flow at t = 0.45π for SCM with k = 6 .

have been expected is destroyed by the lumped approximation, yielding only second-
order accuracy on the velocity, and first order on the pressure.

This loss of accuracy can be explained when investigating the truncation error of
the SCM scheme (28)

MUn+1 − Un

∆t
−KUn+1 + D̃Pn+1 −∆tKM−1

L D̃(Pn+1 − Pn) + EL = Fn+1, (30)

where in addition to the standard O(∆t2) splitting error, the “lumping” error

EL = (M−ML)M−1
L D̃Pn+1 = O(h), (31)

that appears is a spatial error.
Possible ways to improve the SCM scheme are discussed in Dukowicz & Dvinsky

(1991) and Jacobs (1994); a tempting alternative, proposed in the latter reference,
would be to simply replace the termMM−1

L D̃Pn in Eq. (28a) by D̃Pn. The lumping
error of the resulting scheme, designated in the following as SCM′, reduces to

EL = (M−ML)M−1
L D̃(Pn+1 − Pn) = O(h∆t), (32)

so that this error is now part of the temporal error of the scheme. Computations
of the decaying vortices flow discussed above with SCM′ give accurate results for
values of ∆t as low as 5×10−3 but are found unstable when ∆t is further decreased.
A similar behavior has been found for the computation of unsteady Stokes flows,
so that the instability is not related to nonlinear effects. It has been observed in
Gresho & Chan (1990) that the discrete projector associated to Eq. (28b)-(28c) does
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annihilate the modified pressure gradientMM−1
L D̃Pn of the SCM scheme. On the

other hand, it can be shown analytically that the “correct” pressure gradient of the
SCM′ scheme is only annihilated up to the splitting error when h� ∆t, explaining
the instability when ∆t is decreased. Note also that this condition is opposite to the
standard CFL condition, so that this scheme is of no practical interest. Thus far,
attempts to improve the stability of the SCM′ scheme has proven unsuccessful. From
both the analytical point of view and in numerical tests, “moving” the O(h) lumped
error into the temporal error results in unstable schemes. Let us mention that in
this category belongs the three-step scheme proposed, but never implemented, by
Dukowicz & Dvinsky (1991). Through a change of dependent variables, it can be
shown that this scheme is equivalent to one of the unstable schemes mentioned
above.

4. Conclusions and open questions

In this report, a B-spline collocation discretization for solving the Navier-Stokes
equations has been introduced and evaluated. Although no mathematical justifi-
cations are presented here, the staggered collocation method has proven to be an
efficient method for preventing spurious pressure oscillations, and yields compatible
bases of arbitrary order k. In addition, it is valuable to mention that the staggered
bases are also suitable for a Galerkin discretization.

The staggered discretization uses B-splines bases of maximum continuity, yielding
high resolving power schemes. One of the issues raised in the first part of the report
is that numerical methods should not only be evaluated on their asymptotic order
of accuracy, but also on their resolving power. The C1 Gauss-collocation method
displays an optimal order of accuracy, but the low continuity of the basis induces
a poor resolving power. As a result, its accuracy on the solution of differential
problems is inferior to the one of the smoothest collocation method even if the
latter is formally of lower order.

The low computational efficiency of the unsteady computations is related to the
presence of a non-diagonal mass matrix. This problem represents a critical issue for
finite-element type methods and is not related to the collocation approach chosen
in this study. The lumping of the mass matrix is a widely used ad-hoc technique
allowing finite-element transient calculations to be cost-effective. However, when
calculating an implicit variable like the pressure in incompressible flows, this tech-
nique results in a loss of accuracy for high-order discretizations such as B-spline
methods, as proved by the computations using the lumped “projection 2” scheme.
To our knowledge, there does not exist yet a totally satisfying lumped fractional
step scheme that would yield both a high-order and cost-effective finite-element
type discretization for transient solutions of the Navier-Stokes equations.
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