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On wakes and near-wall behavior in coarse
large-eddy simulation of channel flow with wall
models and second-order finite-difference methods

By W. Cabot, J. Jiménez! AND J. S. Baggett?

1. Motivation & goals

Many high Reynolds number, wall-bounded turbulent flow applications are still
too expensive to compute with well resolved large-eddy simulation (LES), which
requires resolutions nearly as fine as direct numerical simulation (DNS) near walls.
Baggett et al. (1997) estimated that well resolved LES of channel flow would require
a number of grid points scaling as Re2, where Re, is the friction Reynolds number,
based on the requirement that the mesh capture most of the energy-containing
scales, which become very small approaching the walls. Thus high Reynolds number
flows, especially in complex geometries, become exorbitantly expensive to compute.
Approximate wall boundary conditions are needed to avoid computing the fine-
scale, near-wall regions and to allow the LES mesh to be determined solely by large
outer flow scales and geometry.

In many engineering applications involving turbulence in complex geometries,
low-order numerical differencing schemes are often employed because they are easy
to implement and, for central differencing schemes, have good conservation proper-
ties. The subgrid-scale (SGS) model and the wall model must also be fairly simple
to implement and computationally inexpensive if they are to gain widespread ac-
ceptance. It is therefore of practical interest to examine the performance of fairly
simple wall models applied to the standard second-order central finite difference
codes employed in many codes at CTR, despite the fact that the numerical errors
seriously degrade the effective resolution of the simulation and the accuracy of the
SGS model (Lund & Kaltenbach 1995, Ghosal 1996, Kravchenko & Moin 1997).

When wall stress models are used in conjunction with very coarsely meshed LES
of channel flow, the near-wall points in the outer LES flow are observed to be poorly
predicted (e.g., Nicoud et al. 1999, Nicoud & Baggett in this volume), with the mean
flow moving too rapidly with respect to the core flow. In the channel this means
that the skin friction is overpredicted for a given bulk mass flux. This problem
also occurs in the attached boundary layers and can lead to poor predictions of
separation in flows experiencing adverse pressure gradients farther downstream.
Another anomalous feature of these coarse simulations is the lack of any significant
“wake” region in the core of the flow, which is observed in experiments and in well
resolved DNS and LES.
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Our goal in this report is to present some LES results of channel flow on very
coarse meshes which exhibit these symptoms and to attempt to determine the likely
sources of error contributing to them. We will also discuss briefly what needs to be
done in future work to fix or work around these problems.

2. Results

2.1 Numerical setup

The LES code used in this study was essentially the same one used by Lund &
Kaltenbach (1995), but modified to use wall stresses from model routines instead
of computing viscous stresses directly from the wall gradients, which are not re-
solved on the extremely coarse meshes that we use. The code uses a second-order
central finite-difference scheme on a staggered mesh and a third-order Runge-Kutta
time advancement scheme. A fractional step method is used that updates the pres-
sure at each substep in the Runge-Kutta time advancement (keeping the flow field
divergence-free at all times) and keeps the solution for the velocity field strictly
second-order in time. The standard dynamic SGS model (Germano et al. 1991,
Lilly 1992) is implemented with test filtering and averaging on horizontal planes.

The numerical domain for the channel simulations are 27w x 2 x 27/3 in units
of channel half-width ¢ in the streamwise (z), wall-normal (y), and spanwise (z)
directions, respectively, with periodic boundary conditions in the horizontal (z, z)
directions. We note that these dimensions are probably marginally too small to
resolve the largest scales properly in a periodic domain. Uniform meshes were
chosen with 323 and 643 computational cells. This gives a very coarse resolution near
the walls that is incapable of resolving the energy-bearing scales there. However,
because the grid is uniform in all directions, there are no numerical errors due to
grid stretching. Target friction Reynolds numbers Re, = u,d/v = 650, 1030, 4000,
and 20000 were computed, where v is the coefficient of molecular viscosity and u. is
the friction speed. A constant mean streamwise force f was applied, and in steady
state the mean streamwise wall stress 7, = u2 = f§, which is supplied from wall
stress model.

In the second-order scheme, the viscous wall stress for the horizontal velocity
components is normally computed from a one-sided difference of the velocity at
first off-wall point using the no-slip value at the wall. This expression is replaced
in the code with the wall stress from the wall model so that the wall values of
horizontal velocities are not actually specified, and one can consider them to be slip
velocities. A problem does arise in computing the SGS eddy viscosities in the center
of the computational cells along walls, where values of strain and stress tensors are
required and which, like wall values, cannot be determined on the coarse grid. Some
of the usual recourses are to use the usual expressions with no-slip values at the
walls or to use one-sided differences and averages from the interior; we have used
the latter for the results shown here. As it turns out, though, the velocity field
is so unphysical near the walls that it is probably not possible to get an accurate
determination of the SGS stresses there based on the outer flow in any case.
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FIGURE 1. Mean streamwise velocity in wall units for LES with TBLE wall stress
models on a 323 mesh at nominal Re, = 650, 1030, 4000, 20000 ( —e— ). For
comparison a log law (Eq. 1) using k = 0.41 and B = 5.1 is shown ( ------- ).

2.2 Wall stress models

Wall stresses were predicted (1) by matching the interior horizontal speed to an
instantaneous log law,

U,, = u, [Ii_l In(ymu,/v) + B] , (1)

where U, is the horizontal speed in the outer flow at a distance y,,, from the wall
(usually in the first or second off-wall computational cells), k = 0.4 is von Karman’s
constant (inverse log law slope), and B =~ 5 is the log law interceptor; or (2) by
solving the thin boundary layer equations (TBLE) on a fine near-wall grid (Cabot
1995). A comparison of results between these two models, and the results using
Piomelli et al.’s (1989) shifted model (Nicoud et al. 1999, Nicoud & Baggett in this
volume), confirmed the earlier finding of Cabot (1995) that there are no significant
differences in results between these wall models when applied to channel flow.

2.8 Near-wall behavior

Mean streamwise velocities U are shown in Fig. 1 which all exhibit the same
shape with anomalously high values in the first two or three grid points near the
wall. Because the outer flow is matched at these high values, the core flow is too
low. In Fig. 2 we find that the streamwise rms velocity fluctuations ' are much
too high near the wall compared with Kravchenko et al.’s (1996) well resolved LES.
This is observed mostly in the first 4 or 5 points in the vicinity of the wall. This
behavior is also a well known symptom of LES with poor horizontal resolution in
the near-wall region, even though very fine wall-normal meshes may be employed.
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FIGURE 2. Velocity fluctuation intensities for LES with TBLE wall stress models

at Re; = 4000 on a 323 mesh ( —— , closed symbols) and on a finer 643 mesh
(e , open symbols). For comparison the well resolved zonal LES data of
Kravchenko et al. (1996) at Re, = 4000 is shown ( ———).

Another useful way of viewing the anomalous near-wall behavior of U is that the
wall-normal gradients of U are too small in the near-wall region, since this is the
way in which it enters the mean momentum balance:

Tw = (Vv +vg)dU/dy + Ri2 + fy , (2)

where v, is the mean SGS eddy viscosity and Ry = —u/v’ is the resolved Reynolds
shear stress. One might suspect that the eddy viscosity is too high near the wall, but
an examination of its behavior in Fig. 3 shows the opposite to be true: the dynamic
Smagorinsky coefficient and the eddy viscosity actually tend to drop dramatically in
the grid points nearest the wall. Porté-Agel et al. (1999) have recently shown that
this occurs as a function of the grid spacing rather the physical spacing (and which
we have confirmed in comparing the 323 with the 643 mesh results); they suggest
that this behavior results from applying the dynamic procedure inappropriately to
large, energy-bearing scales that do not act self-similarly.

An arbitrary means of enhancing the near-wall SGS eddy viscosity was employed
in which C was fit linearly to its interior values from the 4th off-wall point to
about 0.59. This is partially justified by consideration that the flow at the first off-
wall stations is already well in the log layer and should not experience strong wall
blocking effects. This causes C' to be nearly constant (as in the original Smagorinsky
model) and v; to increase rapidly near the wall as seen in Fig. 3. The effect of this
in Eq. (2) is to provide a large amount of dissipation near the wall that reduces R
much more that it increases the term v,dU/dy. Since the other terms in Eq. (2) are
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FIGURE 3. The mean SGS eddy viscosity v, in units of u,0 (=) and coefficient
20CA?%/62 (o) for the dynamic Smagorinsky model (Germano et al. 1991) for LES
on a 32 mesh at Re, = 4000. Curves with open symbols were specially modified
near the wall while curves with closed symbols were unmodified.

fixed in steady state, the response of the flow is to steepen the slope of U near the
wall. This has the effect of straightening out the profile U toward the logarithmic
profile as shown in Fig. 4. While the rms streamwise velocity u’ is seen to drop at
the first off-wall point in Fig. 5, the anisotropy in velocity fluctuations is seen to
get even worse farther out in the flow. Baggett (1998) speculated that boosting the
eddy viscosity (either by this method or by shifting to a RANS description) merely
causes the near-wall flow to behave like one at a much lower Reynolds number, which
may explain the shift outward in the peak of u’. The effects of this enhancement
are of course much less pronounced on the finer 643 grid as seen in Fig. 6 for mean
velocity profiles, although it still improves the results noticeably.

It should be noted that the mean streamwise velocity profile near the wall is
also found to be more log-like when a stretched grid is used or when there are
other large numerical errors that act in a dissipative manner. This was observed by
Cabot (1995) using a first-order accurate time advancement scheme with large time
steps. On the face of it, it may seem that more model dissipation is called for near
the poorly resolved wall where the model would be expected to carry much more
of the stresses and dissipation. But there is also the fact that the velocity field on
such coarse meshes is unphysical and has fluctuations that are preternaturally large.
Baggett (1998) has suggested that enormous pseudo-streaks form on the scale of
the grid (which is much larger than the physical spacing of natural streaks of about
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FIGURE 4. Mean streamwise velocity in wall units for LES with TBLE wall stress
models on a 323 mesh at nominal Re, = 4000 and 20000 with (open symbols)
and without (closed symbols) enhanced SGS eddy viscosity near the walls. For
comparison a log law (Eq. 1) using k = 0.41 and B = 5.1 is shown ( ------- ).

FIGURE 5. Velocity fluctuation intensities for LES with TBLE wall stress models
on a 32% mesh at Re, = 4000 with (open symbols) and without (closed symbols)
enhanced SGS eddy viscosity near the walls. For comparison the well resolved LES
data of Kravchenko et al. (1996) at Re, = 4000 is shown ( ———).
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FIGURE 6. Mean streamwise velocity in wall units for LES with an instantaneous
log law wall stress model on a finer 64% mesh at Re, = 4000 with (open symbols)
and without (closed symbols) enhanced SGS eddy viscosity near the walls. For
comparison a log law (Eq. 1) using k = 0.41 and B = 5.1 is shown ( ------- ).
Experimental data by Comte-Bellot (1965) for Re, = 4800 ( —- x--) shows the
typical shape of the wake.

100 wall units) and that velocities in these unnatural structures have excessively
large fluctuation values. Indeed the reason SGS models using stochastic backscatter
(Mason & Thomson 1992) obtain better mean velocity profiles may be that they
prevent these structures from forming. Good mean profiles were also obtained using
wall stresses derived from a suboptimal matching of a target log law (Nicoud et al.
1999, Nicoud & Baggett in this volume); these wall stresses have large fluctuations
that may also act to disrupt the formation of unphysical streak-like structures.

We also note that the dynamic mixed model (Zang et al. 1993), though often
touted as superior to the standard dynamic model in some situations, does quite
a bit worse in this case. A run with this model produced large near-wall stresses
with little accompanying dissipation from the similarity term, and it reduced the
dissipation from the Smagorinsky term. This acts in exactly the wrong way in
Eq. (2), boosting the resolved stress even higher than before and causing dU/dy to
decrease even further near the wall.

The issue of how to generate good near-wall velocity profiles is, therefore, still
rather unsettled from the modeling standpoint. It may in fact be too much to
ask that we can ever get the nearest two or so points near the wall to behave
physically. The numerical error in second-order finite-difference methods is such
that the effective resolution is no better than one in three points compared with a
spectral method. Applying this logic to the near-wall region suggests that something
like the first two or three points away from the wall are doomed to be unreliable
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FIGURE 7. Defect plot for LES with wall stress models on a coarse 322 mesh and
finer 642 mesh at Re, = 4000 and 20000 (—— ) with (open symbols) and without
(closed symbols) enhanced SGS eddy viscosity near the walls. For comparison,
experimental data ( ---- ) for Re, = 1655 ( + , Wei & Willmarth 1989) and 4800
( x , Comte-Bellot 1965) are shown.

simply because of the poor numerical resolution caused by the finite-differencing
scheme. It should be possible to determine the expected behavior of stresses and
strains, and the eddy viscosity derived therefrom, measured in a priori tests of
coarsely filtered DNS and LES with well resolved walls. However, converting this
information into a successful RANS-like model for the near-wall region may be much
more difficult in practice (Baggett 1998).

2.4 Wake behavior

A notable feature of the mean streamwise velocity profiles for the very coarse
322 meshed in Fig. 1 is the lack of any significant wake-like feature in the core of
the flow. Even streamwise velocity profiles on finer 64% mesh (Fig. 6), show no
noticeable wake compared with experimental data or well resolved simulations. A
more direct way of viewing the core flow is to plot the mean velocity profile in outer
units as a defect (U — U.)/u, with respect to the centerline velocity U., which is
shown in Fig. 7 for several of the coarse LES runs with wall models and for some
experimental data. The LES defects are seen to be much too shallow compared
with the experimental values, again indicative of a much smaller wake.

Standard fits of the log-wake region (e.g., Dean 1976) give a defect law that
depends only on the slope of the log law (k~!), the wake parameter II, and the
position in outer units (y/0):

(U = Ue)/ur = 7" In(y/6) — 211+ G(y/9)] , (3)
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FI1GURE 8. Wake parameter as a function of friction Reynolds number for AGARD
(1998) channel and pipe flow data: DNS channel data ( v ) (Kim et al. 1987, Moser
et al. 1999), experimental channel data ( » ) (Wei & Willmarth 1989, Comte-Bellot
1965), and experimental pipe flow with smooth walls ( o , Perry et al. 1986; v ,
Zagarola & Smits 1997) and with rough walls ( o , Perry et al. 1986). Results from
a well resolved LES at Re, = 1000 ( = , Kravchenko et al. 1996) and from the LES
with wall models presented here at Re, = 4000 and 20000 with ( % ) and without
( o) enhanced SGS viscosity near the walls.

where G(x) = (1 + 6I1)z? — (1 + 4I)23. Typical values of II are roughly 0.1 for
channels and 0.2 for pipes. In Fig. 8 we have plotted a number of values of 1I from
channel and pipe experiments and simulations. The wake parameters for our very
coarse LES are virtually zero, similar in fact to the classic low Reynolds number DNS
case by Kim et al. (1987) at Re, = 180. It would appear then that the cumulative
sum of all our modeling and numerical errors results in an essentially low Reynolds
number flow. We note too that enhancing the near-wall SGS eddy viscosity, which
represents a sizable change in the boundary condition, has almost no effect on the
results, already indicating that the near-wall conditions are probably not to blame
here. Nicoud et al. (1999, also see Nicoud & Baggett in this volume) used a rather
violent wall stress boundary condition, but their very coarse simulations also exhibit
the same (lack of) wake behavior as ours.

We also note that the rough pipe data (Perry et al. 1986) shows somewhat smaller
wakes than their smooth counterparts. It is tempting to speculate that this differ-
ence in boundary condition causes differences in the core flow, but the difference
between smooth and rough wake parameters is fairly minor compared with the
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difference between coarse LES and resolved simulations, and no other major differ-
ences in core turbulence intensity or length scales between smooth and rough walls
is found in Perry’s data to suggest that this is in fact the case.

The real culprit appears instead simply to be poor resolution, as found previously
in the resolution tests by Lund & Kaltenbach (1995) for this second-order code in
a Re; = 2000 channel. Their coarsest simulations had a stretched wall-normal grid
that resolved the viscous region and about the same streamwise resolution and twice
the spanwise resolution as our finer (64%) mesh cases; mean velocity profiles from
these simulations also showed virtually no wake. However, when they increased
their horizontal resolution by a factor of 3/2, a small wake became evident. And
when they increased the initial horizontal resolution by a factor of 3, a large wake
was found — larger in fact than the typical experimental wake. This is due to the
fact that they were using a numerical domain of 74 /2 in the span, which is known to
be much too small to resolve large core structures in a periodic domain. Even “well
resolved” LES by Kravchenko et al. (1996) using a domain of 7§/2 in the span gave
a huge, unphysical wake, while results at Re, = 1000 with a 76 spanwise domain
gave good agreement with experimental wake parameters as shown in Fig. 8.

The effects of poor resolution in the second-order code are amplified using the
standard dynamic procedure for the SGS model. The second-order differencing
causes roughly the lower two-thirds of the velocity spectrum to be corrupted. The
standard dynamic procedure then uses this corrupted information to predict an
inaccurate Smagorinsky coefficient and SGS stresses. Only when the grid is padded
by a factor of 3 or more and explicit filtering is used to removed the erroneous
high-wavenumber information, or if a grid is used that is large enough such that
the residual SGS stresses are negligible anyway, will one obtain accurate results in
the core flow irrespective of the wall model.

3. Future work

It became evident in the course of this work that much better and more extensive
experimental data exists for turbulent pipe flow, smooth and rough (see Fig. 8),
and it would be very useful to perform coarse LES for pipes using wall models and
finite-difference methods. It would also be interesting to explore further the possible
correspondence between wall roughness and wall models to clarify the effects that
wall boundary conditions have on the interior flow.

Simulations of channel flow with wall models using higher fidelity numerics (e.g.,
spectral-spline methods) should be attempted to remove some of the numerical
resolution issues encountered in this work and allow a clearer assessment of the wall
model performance.

It may be unavoidable having the flow in the first few grid points in the vicin-
ity of the wall be corrupted by inadequate resolution in low-order finite difference
codes. In that event, the flow calculation there serves no useful purpose other than
acting as an artificial buffer region. In particular, flow data at these near-wall grid
points should not be used for matching to the log law or any other near-wall RANS
model to determine wall stresses. More accurate flow conditions from beyond the
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contaminated region should be used instead, and any details about the steady-state
inner flow should be constructed from a detailed RANS solution. In boundary lay-
ers with separation, the situation becomes somewhat more difficult because details
about the growth of the boundary layer and separation depend to a large degree on
the near-wall momentum, which may be grossly inaccurate using wall stress models
and low-order numerical schemes. In this case, and perhaps in some time devel-
oping cases, it may be possible to develop an iterative scheme in which a detailed
inner RANS solution is computed occasionally and used to readjust the wall stress
model for the outer flow solution. Simulations with large separation regions such
as turbulent flow behind a step and around a cylinder may provide good test cases
for this kind of scheme.
This work is supported by the AFOSR.
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