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Large scale reaction front dynamics in
anisotropic reaction-diffusion systems

By Sergei Fedotov

1. Motivation and objectives

The last decade has seen increasingly detailed development of the theory of trav-
eling waves in reaction-diffusion systems (Debnatz, 1997). Due to its relative sim-
plicity, special attention has been paid to the Fisher equation, or Kolmogorov-
Petrovskii-Piskunov (KPP) equation, describing front propagation into an unsta-
ble state. The major feature of this process is that the dynamics of the reaction
front are determined by the processes taking place at the leading edge of the front
profile. However, in most cases the transport process is described by a diffusion
approximation. As a result, the rate at which the wave propagates throughout the
reaction-diffusion system can be overestimated. Physical reasoning supports this
observation because the density field predicted by the diffusion approximation has
higher tails than the density of the real transport process (Joseph & Preziosi, 1989).
To deal with this problem several researchers have introduced the hyperbolic cor-
rection to the diffusion approximation, taking into account the finite speed of the
transport process (Monin & Yaglom, 1987; Mendez & Camacho, 1997; Gallay &
Raugel, 1998).

Recently we have presented a formulation of reaction front dynamics in terms of
special relativity theory, where the diffusion wave speed plays the role of the speed
of light (Fedotov, 1998, 1999). We have found that, in the long-time large-distance
asymptotic limit, the Hamiltonian dynamical system associated with the reaction-
diffusion system is similar to that of classical relativistic mechanics. This analogy is
rooted in the fact that, in both cases, there is a finite propagation speed. In the so-
lution of the generalized Fisher equation, ρ has the asymptotic form ρ ∼ exp (G/ε),
where ε is the small parameter describing the long-time large-distance limit and G
obeys the relativistic Hamilton-Jacobi equation defining the Hamiltonian dynamical
system associated with the reaction-diffusion system. One of the main advantages
of this approach over conventional analyses of traveling wave solutions is that the
front dynamics can be described by a first order partial differential equation rather
than a second order equation (Evans & Souganidis, 1989).

It is quite natural to ask whether or not there exists a general relativity anal-
ogy and, if so, how both gravitational and electromagnetic fields associated with a
reaction-diffusion system can be determined. It is the purpose of this paper to find
the answer to this question and show that the function which determines the reac-
tion front position can be derived from a variational principle of general relativity
theory. The central result of this paper is that, for the anisotropic reaction-diffusion
system, the reaction front position can be found exactly from the general relativity
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Hamilton-Jacobi equation (Landau & Lifshitz, 1961). The diffusivity tensor deter-
mines the metric tensor of the 4-dimensional Riemannian space of general relativity,
and the finite speed of diffusion waves can be regarded as the speed of light.

The theory presented in this paper is an approximate one analogous to the WKB
approximation and the relation of geometric optics to electrodynamics. The math-
ematical basis of such theory is an asymptotic expansion in powers of a small pa-
rameter ε, which is the ratio of a characteristic width of traveling wave profile to
the typical length scale of the problem. The basic equation governing the reaction
front dynamic is for the lowest order terms. Due to this approximation, the theory
cannot describe the phenomena involving interaction of reaction fronts, appearance
of singularities, etc.

2. Reaction front propagation in the anisotropic reaction-diffusion system
Our analysis of reaction front propagation in anisotropic media begins with the

transport equation for a scalar field ρ (t, r)

∂ρ

∂t
+∇ · J = U (r) ρf (ρ) , r =

(
x1, x2, x3

)
(1)

where J is the mass flux and the non-linear source term on the RHS of (1) is of
Kolmogorov-Petrovskii-Piskunov-type (Freidlin, 1996), that is

max
ρ∈[0,1]

f (ρ) = f (0) = 1, f (1) = 0, (2)

The reaction rate parameter U (r) is assumed to be a function of the space coor-
dinate r. The reason for taking this dependence into account is that it might induce
the phenomenon of wave front jump (Freidlin, 1996).

It is well known that in an anisotropic medium the direction of the mass flux J
is, in general, not that of the gradient of the scalar field ∇ρ. The component of the
mass flux vector J (t, r) can be written as

J i (t, r) =
1
2

3∑
k=1

Dik (r)
∂ρ

∂xk
, (3)

where Dik (r) is the diffusivity tensor, which in our analysis may depend on the
spatial coordinate r. However, this classical approach to the transport process,
in which one expresses an instantaneous dependence of flux on gradient, is not
sufficiently accurate and may result in an overestimation of the speed of propagating
fronts (Fedotov, 1999). In order to investigate the role of inertia effects in the
anisotropic transport process described by Eq. (1), we introduce the relaxation
time τ in a such way that the component of the flux J can be determined by the
Cattaneo’s law (Joseph & Preziosi, 1989)

J i (t, r) =
1
2τ

3∑
k=1

∫ t

0

exp
(
t− s
τ

)
Dik (r)

∂ρ

∂xk
(s, r)ds. (4)



Large scale reaction front dynamics 131

Here the matrix Dik is assumed to be symmetric and positive definite. If inertia is
neglected (τ = 0), then we have Fick’s law (3), and Eq. (1) together with (3) can
be written in the form of the classical Fisher-KPP-equation.

Equations (1) and (4) can be rewritten as a single equation for ρ

∂ρ

∂t
=

1
2τ

3∑
i,k=1

∫ t

0

exp
(
t− s
τ

)
∂

∂xi
Dik (r)

∂ρ

∂xk
(s, r)ds+ U (r) ρf (ρ) . (5)

This equation incorporates the combined effects of anisotropic diffusion with finite
velocity, exponential growth, and non-linear saturation. It should be noted that the
initial flux J i (0, r) is assumed to be zero.

To analyze the reaction front dynamics corresponding to (5), the initial distri-
bution for ρ has to be specified. It is well known that the propagation rate may
vary from the minimum velocity value to infinity depending on the initial condition
(Freidlin, 1996). Here we assume the initial distribution to be in the form of the
indicator function χS0 of the set S0

ρ (0, r) = χS0 =
{

1, if r∈ S0,
0, otherwise, . (6)

This initial condition ensures that the reaction front propagates at the minimum
velocity. To avoid unnecessary complications, S0 is assumed to be the convex set.
For example, the set S0 can be a ball of a radius R/ε such that

ρ (0, r) =
{

1, if ,
(
x1
)2 +

(
x2
)2 +

(
x3
)2 ≤ R2

ε2

0, otherwise,
ε << 1. (7)

One can see from (7) that the initial distribution involves a small parameter ε
that plays a very important role in what follows.

It is well known that the hyperbolic scaling procedure t → t/ε, r → r/ε yields
the large-scale geometric front propagation for the Fisher-KPP equation (Freidlin,
1996). The behavior of the rescaled field ρε (t, r) = ρ (t/ε, r/ε) may be explained in
terms of a simple geometric picture. Since the nonlinear function ρεf (ρε) on the
RHS of (5) is equal to zero only if ρε = 0 and ρε = 1, we may argue that in the
limit ε→ 0 the solution ρε converges to the indicator function of the set St (Evans
& Souganidis, 1989)

lim
ε→0

ρε (t, r) = χSt =
{

1, if r∈ St,
0, otherwise.

The boundary of the set St can be regarded as a reaction front describing the
interface dynamics between the stable (ρε = 1) and unstable (ρε = 0) phases.

After hyperbolic scaling t → t/ε, r → r/ε, Eq. (5) can be rewritten as (see
Appendix 1)

ετ
∂2ρε

∂t2
+
(

1− τU (r) f (ρε)− τU (r) ρε
df (ρε)
dρε

)
∂ρε

∂t
=
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ε

2

3∑
i,k=1

∂

∂xi
Dik (r)

∂ρε

∂xk
+
U (r)
ε

ρεf (ρε) (8)

while the initial condition has the form

ρε (0, r) =
{

1, if r∈ S0,
0, otherwise. (9)

Now we turn to the problem of finding the front dynamics for (8) and (9) in the
limit ε→ 0.

3. Geometric optic approximation

Here we present a heuristic derivation of the Hamilton-Jacobi equation describing
reaction front dynamics. Let us write down ρε (t, r) in exponential form

ρε (t, r) = exp
(
−G

ε (t, r)
ε

)
, Gε (t, r) ≥ 0, (10)

where the non-negative function Gε describing the logarithmic asymptotic of the
concentration field plays a very important role. It follows from (10) that as long
as the function G (t, r) = limε→0 G

ε (t, r) is positive (G (t, r) > 0), the rescaled
field ρε (t, r) → 0 as ε → 0. So the boundary of the set St (see (7)), described
above as the reaction front position, is nothing else but the boundary of the set
where G (t, r) > 0. Therefore, we may argue that the reaction front position can be
determined as

δSt =
{
r ∈ R3 : G (t, r) = 0

}
.

Now we are in a position to determine the function G (t, r). First let us find
an equation for Gε (t, r). Inserting (10) into (8), we find that Gε (t, r) satisfies the
non-linear PDE

τ

(
∂Gε

∂t

)2

− (1− τU (r) f)
∂Gε

∂t
− 1

2

3∑
i,k=1

Dik (r)
∂Gε

∂xi
∂Gε

∂xk
+ U (r) f

(
e−

Gε(t,r)
ε

)
=

ε

τ ∂2Gε

∂t2
− 1

2

3∑
i,k=1

(
Dik (r)

∂2Gε

∂xi∂xk
+
∂Gε

∂xk
∂Dik (r)
∂xi

)−U (r) τ
∂Gε

∂t

df

dρε
e−

Gε(t,r)
ε .

(11)
Since

lim
ε→0

f
(
e−

Gε(t,r)
ε

)
= 1, lim

ε→0
exp

(
−G

ε

ε

)
= 0 (12)

provided Gε (t, r) > 0 it follows from (11) that the limiting function

G (t, r) = − lim
ε→0

ε ln ρε (t, r) (13)
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obeys the nonlinear PDE of the first order

(
∂G

∂t

)2

−
(

1
τ
− U (r)

)
∂G

∂t
− 1

2τ

3∑
i,k=1

Dik (r)
∂G

∂xi
∂G

∂xk
− U (r)

τ
= 0 (14)

provided
G (t, r) > 0.

If τ = 0, then

∂G

∂t
+

1
2

3∑
i,k=1

Dik (r)
∂G

∂xi
∂G

∂xk
+ U (r) = 0. (15)

Freidlin (1996) was the first to show that in the long-time large-distance limit the
traveling wave solution to the classical Fisher-KPP equation is equivalent to the
solution of the Hamilton-Jacobi equation (15). The function G (t, r) can be found
from the variational problem

G (t, r) = min
{∫ t

0

L

(
r (s) ,

dr
ds

(s)
)
ds : r (0) ∈ Ω0, r (t) = r

}
,

where L is the Lagrangian function of classical mechanics

L=
1
2

3∑
i,k=1

Dik (r)
dxi

ds

dxk

ds
− U (r) .

The reaction rate parameter U (r) plays the role of potential energy, the matrix
Dik (r) =

(
Dik (r)

)−1 determines the positive definite quadratic form of the kinetic
energy, and xi may be regarded as the generalized coordinates. It is quite remarkable
that the concepts of classical mechanics lead to a new formulation of reaction front
dynamics for the reaction-diffusion system.

Our problem now is to find a solution to Eq. (14) that can be considered a gener-
alization of (15) and possibly to find a new interpretation of the phenomenological
parameters U (r), Dik (r) and τ .

4. General relativity Hamilton-Jacobi equation

The interesting feature of Eq. (14) is that it can be rewritten in the form of the
Hamilton-Jacobi equation for a relativistic charged particle (e = 1) in the presence
of both gravitational and electromagnetic fields

4∑
α,β=1

gαβ
(
∂G

∂zα
− 1
c
Aα

)(
∂G

∂zβ
− 1
c
Aβ

)
+m2c2 = 0, (16)
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where the new four-dimensional radius vector zα is determined as

z0 = ct, zi = xi, i = 1, 2, 3. (17)

Here we have introduced the 4-potential of the electromagnetic field Aα such that
the space components of Aα (α = 1, 2, 3) forming the vector potential of the field
are zero

A1 = A2 = A3 = 0 (18)

and the time component A0 forming the scalar potential is

A0 = −ϕ, ϕ (r) =
1
2

(
U (r)− 1

τ

)
. (19)

The contravariant metric tensor gαβ has the following form

gαβ =


−1 0 0 0
0 d11 d12 d13

0 d21 d22 d23

0 d31 d32 d33

 , (20)

where the contravariant tensor dik is determined as follows

dik (r) =
Dik (r)

maxi,k,rDik (r)
(21)

The mass m (r) and ”speed of light” c are

m (r) =
1

2c2

(
U (r) +

1
τ

)
, c2 =

maxi,k,rDik (r)
2τ

. (22)

The fact that Eq. (14), which governs the dynamics of the reaction front, can be
rewritten as the general relativity Hamilton-Jacobi equation is of basic importance
for us. It allows us to write down the solution of (14) as in Landau & Lifshitz
textbook (1961)

G = min
{
−mc

∫
ds+

1
c

∫
Aidz

i

}
(23)

where ds is the line element of the 4-dimensional Riemannian space of general
relativity

− (ds)2 =
4∑

α,β=1

gαβdz
αdzβ (24)

and gαβ is the covariant metric tensor

gαβ =


−1 0 0 0
0 d11 d12 d13

0 d21 d22 d23

0 d31 d32 d33

 (25)
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Here the covariant tensor dik is

dikd
kj = δji (26)

where δjk is the familiar Kronecker delta.
The components dik can be found by using standard procedure; that is, if we set

d =| dik | and let Cik be the cofactor of dik in d, then dik = Cik/g.
The explicit solution (23) can be rewritten in terms of the Lagrangian function

L

G (t, r) = min
{∫ t

0

L

(
r (s) ,

dr
ds

(s)
)
ds : r (0) ∈ Ω0, r (t) = r

}
, (27)

where

L = −mc2
√√√√1− 1

c2

3∑
i,k=1

dik (r)
dxi

ds

dxi

ds
− ϕ. (28)

In terms of the phenomenological parameters U (r) , Dik (r) and τ , the Lagrangian
function L takes the form

L = −1
2

(
U (r) +

1
τ

)√√√√1− 2τ
maxi,k,rDik (r)

3∑
i,k=1

dik (r)
dxi

ds

dxi

ds
− 1

2

(
U (r)− 1

τ

)
.

(29)
Thus expression (27) provides an explicit solution to the reaction position problem

for the generalized Fisher-KPP equation (5) with the initial condition (6). The exact
formula for reaction front position and its propagation rate can be obtained when
the reaction rate parameter U and the diffusion tensor Dik are constant.

5. Explicit formula for reaction front position
Let us denote by H (r,p) the Hamiltonian function associated with the variational

problem (27). By using the Legendre transformation

H (r,p) = max
k

(p · k− L (r,k)) (30)

we can find

H (r,p) =

√√√√m2 (r) c4 + c2
3∑

i,k=1

dik (r) pipk + ϕ (r) . (31)

The optimal trajectories giving the minimum to the functional (27) satisfy the
Hamilton equations

dxi

ds
=
∂H

∂pi

dpi
ds

= −∂H
∂xi

. (32)
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When the parameters m2 (r) , dik (r) and ϕ (r) are independent from the space
coordinate r, we have

dxi

ds
= const, pi = const. (33)

It follows from this that the optimal trajectories are straight lines. Taking into
account the boundary conditions in (27), we can find

xiopt(s) =
xi − yi
t

s+ yi, y ∈ δS0. (34)

When these trajectories are substituted into (27), we obtain

G (t, r) = min
y∈S0

−mc2t
√√√√1− 1

c2t2

3∑
i,k=1

dik (xi − yi) (xk − yk)− ϕt

 . (35)

Let us denote by l2min (r, S0) the following expression

l2min (r, S0) = min
y∈S0

3∑
i,k=1

dik (xi − yi) (xk − yk) . (36)

Then

G (t, r) = −mc2t

√
1−

(
lmin (r, S0)

ct

)2

− ϕt. (37)

It is clear from (37) that the theory is valid as long as

1−
(
lmin (r, S0)

ct

)2

≥ 0.

This condition has a very simple physical interpretation: relativity theory forbids
the particle from propagating at a speed which exceeds the velocity of light c. As
a result, an inequality lmin (r, S0) ≤ ct must hold. It follows from (26) that the
reaction front position δSt =

{
r ∈ R3 : G (t, r) = 0

}
at time t can be represented

as
δSt =

{
r ∈ R3 : lmin (r, S0) = ut

}
, (38)

where

u = c

√
1−

(
1− τU
1 + τU

)2

=

√
2 maxi,kDikU

1 + τU
, τU ≤ 1. (39)

We can also give the asymptotic behavior of scalar field ρε (t, r) in terms of
lmin (r, S0)

lim
ε→0

ρε (t, r) =
{

1, if lmin (r, S0) > ut
0, otherwise,

(40)
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6. Summary and future work

We have extended the classical treatment of the Fisher-KPP equation due to
Freidlin (1996) to include the phenomenon of diffusion with a finite velocity. The
main result is that in the long-time large-distance asymptotic limit the Hamiltonian
dynamical system associated with the anisotropic reaction diffusion system has a
structure identical to that of general relativity theory. We have shown that the
function determining the position of reaction front and its speed is nothing else but
the action functional for a particle in both gravitational and electromagnetic fields.
The metric tensor of the 4-dimensional Riemannian space of general relativity has
been determined through the diffusivity tensor, while the speed of light corresponds
to the finite speed of diffusion waves. The mass of the relativistic particle and scalar
potential have been found to be functions of reaction rate coefficient and relaxation
time. For the constant values of reaction rate function and diffusivity tensor, the
analogy with the general relativity theory has allowed us to find the explicit formula
for the reaction front position and its speed.

An important application of the result of this paper may be the propagation
of a reaction front in a turbulent combustion flow (Bray, 1990). It is well known
that the macroscale equations for turbulent heat/mass transport involve effective
anisotropic transport processes with a finite velocity (Monin & Yaglom, 1987). It
is also of great interest to analyze the reaction front dynamics in a slowly varying
medium when the phenomenon of the reaction front jump might happen.
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Appendix 1
The system (1),(4) can be rewritten as follows

∂ρ

∂t
+

3∑
i=1

∂J i

∂xi
= U (r) ρf (ρ) , r ∈ R3, (A1)

∂J i

∂t
= −J

i

τ
− 1
τ

3∑
k=1

Dik (r)
∂ρ

∂xk
. (A2)

It is easy to see that an expression for J i in (4) is just a solution of the differential
equation (A2) under the initial condition J i (0, r) = 0.

By differentiating the first equation with respect to time t and the second one
with respect to the space coordinate xi we obtain

∂2ρ

∂t2
+

3∑
i=1

∂2J i

∂t∂xi
= U (r)

(
f (ρ) + ρ

df (ρ)
dρ

)
∂ρ

∂t
, r ∈ R3, (A3)

∂2J i

∂xi∂t
= −1

τ

∂J i

∂xi
− 1
τ

3∑
k=1

∂

∂xi
Dik (r)

∂ρ

∂xk
. (A4)

By using (A1) the last equation can be rewritten as

3∑
i=1

∂2J i

∂xi∂t
= −1

τ

(
−∂ρ
∂t

+ U (x) ρf (ρ)
)
− 1
τ

3∑
i,k=1

∂

∂xi
Dik (r)

∂ρ

∂xk
. (A5)

Substitution of the expression for
∑3
i=1

∂2Ji

∂xi∂t given by (A5) into (A3) and multi-
plication by τ give

τ
∂2ρ

∂t2
+
(

1− τU (r) f (ρ)− τU (r) ρ
df (ρ)
dρ

)
∂ρ

∂t
=

3∑
i,k=1

∂

∂xi
Dik (r)

∂ρ

∂xk
+ U (r) ρf (ρ)

After hyperbolic scaling t→ t/ε, r→ r/ε, this equation can be rewritten as (8).


