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Simulation of materials-processing plasmas

By Edward P. Hammond, Krishnan Mahesh AND Parviz Moin

1. Motivation and objectives

Plasmas exhibit a rich variety of complex, non-linear behavior and are heavily
used in industry. Applications of plasma processing are quite broad; the ability of
a chemically active plasma to change the surface properties of materials plays a key
role in such industries as aerospace, automotive, steel, biomedical, and toxic waste
management (see Lieberman & Lichtenberg 1994 and Grill 1994 for examples).

The semiconductor manufacturing industry uses processing plasmas extensively.
Plasmas are used to etch extremely fine features in silicon wafers; feature sizes are
currently on the order of 0.18 µm and are anticipated to decrease to 0.05 µm by
2012, according to the semiconductor industry’s “National Technology Roadmap”
(Hershkowitz 1998). Plasmas are also used in integrated circuit fabrication to de-
posit thin films and clean residual material from the circuits (“ashing”).

The design of plasma reactors includes, but is not limited to, the plasma gener-
ation mechanism (the coupling of the electrical power to the plasma), the plasma
chemistry (the composition of the feedstock gases), and the operating conditions
(pressure and flowrate of the feed gases). The various types of commercial reactors
are discussed by Lieberman & Lichtenberg (1994) and Hershkowitz (1998). Semi-
conductor manufacturing technology is constantly evolving, and designers have to
deal with fundamental problems such as plasma uniformity and contamination of
the plasma by dust (Hershkowitz 1998).

The development of numerical models to simulate processing plasmas has been
ongoing for over two decades, with the most rapid growth occurring during the past
decade. Prior to 1990, simulations were typically one-dimensional, either with a
fluid model or a particle model of the plasma; since then, two- and three-dimensional
models with detailed chemistry have been developed (Kushner 1996). These tools,
most of which were developed in academia or the national laboratories, are actually
being used by industry as part of the design process (Kushner 1996).

The objective of this work is to develop a conservative numerical algorithm that
provides a robust, rapid, and accurate solution to the plasma fluid equations. This
report examines a low-pressure, low-temperature, glow discharge He plasma with a
very small ionization fraction (≈ 10−8). The plasma is maintained in a capacitively-
coupled reactor; this type of reactor is frequently used for materials processing
purposes.

2. Accomplishments

A conservative, time-accurate algorithm that provides rapid solutions to the
plasma fluid equations was developed. Care was taken to ensure that the algo-
rithm is not numerically dissipative. A one-dimensional radio-frequency, capacitive
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Figure 1. A schematic of a one-dimensional, capacitively-coupled plasma reactor.
The plasma bulk is the light gray region, and the dark gray regions represent the
plasma sheaths. The reactor is driven by the radio-frequency voltage applied to the
left-hand electrode. The sheaths form and collapse throughout the radio-frequency
period.

He discharge was used for validation purposes. As will be seen, even this one-
dimensional problem poses significant challenges: it has a wide range of time-scales,
steep unsteady gradients in charged particle densities, and near-zero electron den-
sities in the sheaths. Upwind biasing the spatial discretization is commonly used
to circumvent the problems posed by steep gradients at the sheath edges and very
low electron densities (see, for example, Sommerer & Kushner 1992; Gogolides et al.
1992, and Kushner et al. 1996). However, it will be seen (section 2.3) that upwinded
solutions on coarse grids can be quite inaccurate. A non-dissipative discretization
based on a rearranged form of the electron flux term was derived. Coarse-grid so-
lutions are seen to be noticeably more accurate than an upwinded scheme with the
same computational stencil. The implicit temporal discretization was evaluated for
both cost and accuracy. Unsteady solutions to the one-dimensional problem are
currently obtained in about 10 minutes on a SGI Iris Indigo 2 workstation. This
makes three-dimensional calculations feasible. The algorithm is currently being
implemented in a three-dimensional solver with more detailed physics.

2.1 Plasma model
Generally speaking, processing plasmas are sustained by the highly energetic elec-

trons which collide with the background gas to generate ions and more electrons.
Power is input to the electrons in a capacitive discharge via the applied radio fre-
quency voltage. A sketch of a one-dimensional capacitive discharge is shown in
Fig. 1. Since the characteristic frequency of the ions ( 1

2πωi = 1
2π

√
e2ni/ε0mi ≈

3 MHz) is lower than the radio frequency (12 MHz in this report), the ion vari-
ables change little during a period. In contrast, the characteristic frequency of the
electrons ( 1

2πωe = 1
2π

√
e2ne/ε0me ≈ 300 MHz) is much higher than the radio fre-

quency. As a result, the electrons are subject to significant changes during a period.
On the whole, the plasma is electrically neutral with thin sheaths forming near the
boundaries. These sheaths form because the lighter electrons quickly diffuse away,
which creates a net positive charge and an electric field that acts to prevent fur-
ther electrons from escaping. Sheaths in a capacitive radio-frequency discharge are
extremely unsteady. A more complete description of the physics of a processing
plasma may be found in Lieberman & Lichtenberg (1994).
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The fluid equations for a plasma are derived from the Boltzmann equation for
each species by specifying the velocity distribution function and taking velocity
moments of the Boltzmann equation. This yields conservation equations for the
mass, momentum, and energy of each species. The collisional terms are typically
modeled by assuming a Maxwellian velocity distribution function. Viscosity plays
a negligible role, and its effect is usually not included in the momentum equations.
Maxwell’s equations are solved to determine the electric and magnetic fields gen-
erated by the charged particles and their motion. In the absence of an externally
imposed magnetic field, magnetic effects are generally quite small, and the plasma is
usually treated as electrostatic, where the electric field is the gradient of a potential,
E = −∂Φ/∂x.

In this report, three species are considered: the background gas (He), the ions
(He+), and the electrons. The background gas is assumed to be stagnant and at
constant temperature (300 K) and pressure (250 mTorr). Since the ion mass is
very nearly the same as the mass of the background gas, the ions are assumed to
be in thermal equilibrium with the background, and no energy equation is solved
for the ions. Due to their lower mass, the electrons exchange kinetic energy very
poorly with the other particles, and their temperature can be significantly higher
than the other species. Thus, it is important to solve for the electron energy. A
commonly used simplification to the electron momentum equation is the “drift–
diffusion approximation.” The electron inertial terms, i.e., those in the material
derivative, are neglected. This results in a balance between the Lorentz force, the
pressure gradient, and the drag from collisions with the background gas, which
yields an algebraic expression for the electron flux.

2.1.1 Governing equations
The above assumptions provide the following fluid equations (Nitschke & Graves

1994). The variables ne and ni denote the electron and ion number densities,
respectively, and vi and 3

2nekBTe represent the ion velocity and the electron thermal
energy density. The electron number density and thermal fluxes are represented by
je and qe. The density of the neutrals is denoted by N , and Φ and E denote
the electric potential and electric field, respectively. Note that the ion momentum
equation (1d) should, strictly speaking, have the term −Nneki0e−Ea/kBTe vi/ni on
the right-hand side; however, the magnitude of this term is small, and it is often
neglected.

∂ne
∂t

+
∂je
∂x

=Nneki0e−Ea/kBTe (1a)

je =− 1
kmtNme

(
eneE +

∂(nekBTe)
∂x

)
(1b)

∂ni
∂t

+
∂(nivi)
∂x

=Nneki0e−Ea/kBTe (1c)

∂vi
∂t

+ vi
∂vi
∂x

=
eE

mi
− π

2
Nσcx|vi| vi (1d)
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∂( 3
2
nekBTe)
∂t

+
∂qe
∂x

=− ejeE − hizNneki0e−Ea/kBTe

− 3
me

mneut
NkmtnekB(Te − Tneut) (1e)

qe =
5
2
jekBTe −

5nekBTe
2mekmtN

∂(kBTe)
∂x

(1f)

∂2Φ
∂x2

=− e

ε0
(ni − ne) (1g)

Equations (1a)-(1g) are non-dimensionalized prior to solution. The plasma bulk is
used to define reference values for the charged particle densities (n0) and the electron
temperature (T0). For the simulations discussed in this report, these values are 1.0×
1015 m−3 and 45, 000K, respectively. The Debye length (λe =

√
ε0kBT0/e2n0) and

plasma frequency (ωp =
√
e2n0/ε0me) are used as reference length and time scales,

respectively. The non-dimensional form of the equations, using the same notation
as for the dimensional equations, is shown below with the non-dimensionalizing
parameters.

∂ne
∂t

+
∂je
∂x

=p1ne e
−p2/Te (2a)

je =− p7

(
neE +

∂(neTe)
∂x

)
(2b)

∂ni
∂t

+
∂(nivi)
∂x

=p1ne e
−p2/Te (2c)

∂vi
∂t

+ vi
∂vi
∂x

=p3E − p4|vi| vi (2d)

∂( 3
2neTe)
∂t

+
∂qe
∂x

=− jeE − p5nee
−p2/Te − p6ne(Te − Tneut) (2e)

qe =
5
2
jeTe − p8neTe

∂Te
∂x

(2f)

∂2Φ
∂x2

=− (ni − ne) (2g)

The variables p1 through p8 are defined as follows:

p1 = Nki02π/ωp p2 = Ea/kBT0

p3 = e2n04π2/miε0ω
2
p p4 = Nσcxλeπ/2

p5 = hizNki02π/kBT0ωp p6 = 3meNkmt2π/mneutωp

p7 = 2πe2n0/ωpkmtNmeε0 p8 = 5p7/2

2.1.2 Boundary conditions
Characteristic analysis of the governing equations was performed to determine the

number of boundary conditions required. For the electron equations, the analysis
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showed that boundary conditions should be specified on both sides of the computa-
tional domain. The boundary conditions used in this report are the same as those
used by Nitschke & Graves (1994); they are applied on both sides of the domain:

je =∓ ne
4

√
8kBTe
πme

(1−Θ) (2h)

qe =
5
2
jekBTe (2i)

The boundary fluxes for the electron continuity equation (2a) are assumed to
correspond to the one-way flux for particles with a Maxwellian velocity distribution.
Reflection is accounted for with Θ; a value of 0.25 (Nitschke & Graves 1994) was
used. The thermal flux at the boundaries is equated to the enthalpy flux (2i). A
boundary condition for the energy equation (2e) that is more consistent with the
boundary condition for the continuity equation is to equate qe to the one-way flux
of kinetic energy for a Maxwellian distribution, 4

3 ×
3
2kBT × je, or qe = 2jekBTe.

Our simulations showed little difference between the two; however, for consistency
with Nitschke & Graves (1994), the enthalpy flux boundary condition (2i) is used
in this report.

Characteristic analysis of the ion equations indicated that no boundary conditions
should be specified. The characteristics point in the direction of vi, and, since E
is always directed out of the plasma close to the walls, the ions always flow out
of the computational domain. Thus, no boundary conditions are given for the ion
equations. Nitschke & Graves (1994) applied ∂ni/∂x = 0 on both boundaries and
set ∂vi/∂x = 0 on one boundary. When these boundary conditions were used, small
oscillations in the ion number density were observed at both boundaries. When the
boundary conditions were removed, so were the oscillations. Results demonstrating
this will be shown in section 2.3.5.

The boundary conditions for the Poisson equation (2g) are a sinusoidal radio-
frequency voltage on the left side of the domain and ground on the right side. The
amplitude of the voltage is 500 V, and the frequency is 12 MHz. The spacing
between the electrodes is 4 cm. These conditions were chosen to correspond with
the calculations of Nitschke & Graves (1994).

2.2 Numerical method
The dependent variables are discretized on a non-uniform, staggered grid. A

staggered grid was chosen because of the conservative properties it provides for the
non-linear fluid equations (Harlow & Welch 1965). Figure 2 illustrates the staggered
positioning of variables. The equations governing ne and neTe are quite stiff, and
an implicit time advancement scheme is therefore necessary. The ion equations do
not exhibit such stiffness, and an explicit time advancement scheme is adequate.
The spatial and temporal discretization are described below.

2.2.1 Spatial discretization
The following discrete equations were used to advance the dependent variables

in the interior of the domain. Note that a skew-symmetric form of the convection
term is used in the ion momentum equations.
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Figure 2. Storage locations of variables on the non-uniform, staggered grid.

Ion continuity:

d ni,k
dt

=−
(

2
∆xk−1 + ∆xk

)[(
ni,k + ni,k+1

2

)
vi,k+1/2 (3)

−
(
ni,k−1 + ni,k

2

)
vi,k−1/2

]
+ p1ne,k e

−p2/Te,k

Ion momentum:

d vi,k+1/2

dt
=− 1

2

[
vi,k+1/2

(
ṽi,k+1 − ṽi,k

∆xk

)
+

1
2
ṽ2
i,k+1 − ṽ2

i,k

∆xk

]
(4)

+ p3Ek+1/2 − p4|vi,k+1/2| vi,k+1/2

ṽi,k =
∆xk vi,k−1/2 + ∆xk−1 vi,k+1/2

∆xk−1 + ∆xk

Electron continuity:

d ne,k
dt

= −
(

2
∆xk−1 + ∆xk

)
(je,k+1/2 − je,k−1/2) + p1ne,k e

−p2/Te,k (5)

The discretization of je significantly impacts the robustness of the solution, and is
discussed in detail in section 2.3.

Electron energy:

3
2
d neTe,k
dt

=−
(

2
∆xk−1 + ∆xk

)
(qe,k+1/2 − qe,k−1/2) (6)

− 1
2
(
je,k−1/2Ek−1/2 + je,k+1/2Ek+1/2

)
− p5ne,k e

−p2/Te,k − p6ne,k(Te,k − Tneut)

qe,k+1/2 =
5
2
je,k+1/2Te,k+1/2

− p8

(
neTe,k+1 + neTe,k

2

)(
Te,k+1 − Te,k

∆xk

)
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Figure 3. Schematic of the full Jacobian for the discretized electron equations;
the large X’s indicate numbers with magnitudes much larger than those shown by
small x’s. The structure of the Jacobian indicates that the functional dependence
of the electron variables at the kth location on the electron variables outside the
k − 1 to k + 1 range is weak.

2.2.2 Temporal discretization

A 4th order Runge-Kutta method is used to advance the ion equations; implicit
time advancement is used for the electrons. Both fully nonlinear and linearized time
advancement methods for the electron equations (5 and 6) were considered. Of the
fully implicit methods, the implicit Euler and trapezoidal methods were evaluated.
The implicit Euler method was found to perform better; oscillatory solutions were
obtained with the trapezoidal method unless very small time steps were used. A
Newton-Raphson iterative technique was used to solve the equations resulting from
the fully nonlinear formulation. Strictly speaking, the Jacobian for this system
is a nearly full matrix since both the continuity and energy equations involve the
electric field, which is an elliptic function involving the net charge density. Thus,
the equations for nn+1

e,k and neTn+1
e,k are functions of nn+1

e,1 , nn+1
e,2 , . . . , nn+1

e,N−1, n
n+1
e,N .

However, close examination of the Jacobian matrix reveals that the sub-matrices
which are more than one block off the main diagonal have terms that are much
smaller in magnitude than the sub-matrices on the main diagonal and those im-
mediately adjacent to it (see Fig. 3). Since the Jacobian is used in the iterative
solution of the system of equations, this indicates that blocks not adjacent to the
main diagonal have little impact on the solution at sub-iterations. Thus, the full
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Jacobian can be approximated by a block, tri-diagonal Jacobian. The results ob-
tained with the reduced Jacobian are virtually the same as the results with the full
Jacobian, and the time savings is significant (O(N) operations versus O(N2) with
an iterative solver).

The electrons can also be advanced in time with a linearized implicit algorithm.
Such algorithms for the implicit Euler, trapezoidal, and implicit Runge-Kutta meth-
ods (Zhong 1996) were considered. As before, the Euler method is more stable than
the linearized trapezoidal method. The second order linearized implicit Runge-
Kutta scheme seems to offer the same stability as the linearized Euler, but with
higher order accuracy. While cheaper per time-step than the fully nonlinear formu-
lation, the linearized algorithms require a smaller time step for both stability and
accuracy. A detailed comparison between the time advancement methods is shown
in section 2.3.4.

2.3 Simulation results
The stiff nature of the electron equations makes even one-dimensional simula-

tions challenging. The non-dimensional ne and neTe vary widely over the course of
a radio-frequency period, from a minimum of O(10−55) to a maximum of O(1). The
ion variables are much better behaved, with ni between O(0.1) and O(1) and |vi|
no greater than O(1). Roughly 500 radio-frequency periods are needed to reach a
harmonic quasi-steady-state. The discretization of je has a significant impact on the
stability and accuracy of the solution. Sections 2.3.1 and 2.3.2 discuss some com-
monly used approaches. A non-dissipative discretization based upon rearranging
the expression for je is derived in section 2.3.3 and shown to possess a good com-
bination of robustness and accuracy. Time-advancement of the electron equations
is discussed in section 2.3.4. Finally, section 2.3.5 shows how imposing boundary
conditions on the ions can cause point-to-point oscillations.

2.3.1 Symmetric interpolation
This is the most straightforward discretization of je, which is computed as follows:

je,k+1/2 = −p7

[(
ne,k + ne,k+1

2

)
Ek+1/2 +

neTe,k+1 − neTe,k
∆xk

]
(7)

While this is a natural approach, it turns out that it requires very fine grids to
capture the wide spatial variations in ne and neTe. Even with a stretched grid,
at least about 400 grid points are required. At this resolution, the minimum grid
spacing is about 3% of a Debye length, and the maximum (in the plasma bulk) is
nearly half a Debye length. Using fewer grid points results in unphysical negative
values for ne or neTe in the sheath regions (where these two variables become
extremely small), making the computation unstable. The fine grid required by the
electron equations causes the calculation to take a prohibitively long time — nearly
2 hours on an SGI Iris Indigo 2 (500 steps per period for 500 periods) — which makes
solving this type of problem in three dimensions impractical. Assuming that roughly
100 grid points would be needed for the other two dimensions means that a three
dimensional calculation would take 10,000 times longer, or about two and a quarter



Processing plasma simulation 439

n
e
,n
i
(m
−

3
)

(a)

E
(k

V
/m

)

(b)
−
ej
e

(A
/m

2
)

(c)

en
iv
i

(A
/m

2
)

(d)

3 2
k
B
T
e

(e
V

)

x (m)

(e)

n
e

(m
−

3
)

x (m)

(f)

Figure 4. The plasma variables at several times during the radio-frequency
period (T): 0.5T ( ), 0.675T ( ), 0.75T ( ), and 0.875T ( ). The
variables plotted are: (a) electron number density along with the ion number density
(• ), which essentially does not change throughout the period; (b) the electric field;
(c) the electron current; (d) the ion current; and (e) the electron thermal energy,
3
2kBTe. To demonstrate the drastic rarefaction in the electron number density, the
spatial variation at 0.75T is plotted on a logarithmic scale in (f). The electron
energy density has a similar variation.



440 E. P. Hammond, K. Mahesh, & P. Moin
n
e

(m
−

3
)

x (m)

(a)

3 2
k
B
T
e

(e
V

)

x (m)

(b)

Figure 5. Upwinded calculations as a function of grid resolution: 200 points
( ), 400 points ( ), and 800 points ( ). For comparison, the “exact”
calculation with 400 points ( ) is also shown. All of these computations were
performed with the same size time step (500 steps per radio frequency period) for
the same duration (500 periods) while starting from the same initial condition.

years, on the same computer, assuming (optimistically) that the computation time
would still depend linearly on the number of grid points.

Simulation results, using 1,000 steps per period and the fully implicit Euler
method for the electron advancement, are shown in Fig. 4. Grid independence of
the plotted solutions was established; these results will be referred to as the “exact”
results. The results are virtually identical to those of Nitschke and Graves (1994) for
the same conditions (background gas at 250 mTorr, applied radio-frequency voltage
of 500 V at 12 MHz with a gap of 4 cm). These solutions were used as a benchmark
to evaluate alternative discretizations which are discussed below.

2.3.2 Upwinded interpolation
One approach to increase the stability of the discretized equations and reduce the

number grid points is to use upwinding. This can drastically reduce the minimum
number of grid points needed for a computation, and the calculation time can be
dropped to a few minutes. For example, with 20 grid points and 100 time steps per
period, a solution is obtained in about 3 minutes. This brings a three-dimensional
calculation within reach. Not surprisingly, upwinding is used quite extensively in
processing plasma simulations (Sommerer & Kushner 1992; Gogolides et al. 1992,
and Kushner et al. 1996).

We evaluate an upwinded approach similar to that used in Barnes, et al. 1987.
The sign of the electric field at xk+1/2 determines the discretization of the drift
component of the electron flux. All the other variables are calculated in the same
fashion as before.

je,k+1/2 =

−p7

[
ne,kEk+1/2 + neTe,k+1−neTe,k

∆xk

]
, if Ek+1/2 < 0

−p7

[
ne,k+1Ek+1/2 + neTe,k+1−neTe,k

∆xk

]
, if Ek+1/2 > 0

(8)
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Figure 6. Comparison between the upwinded method and the electron velocity
method. The upwinded calculations are plotted in (a) and (b); the electron velocity
method calculations are plotted in (c) and (d). The grids used in these plots have:
400 points, the “exact” solution ( ); 40 points ( ); and 20 points ( ).
All the simulations were performed with the same size time step (1,000 steps per
radio frequency period) for the same duration (500 periods) while starting from
the same initial condition. The same grid spacing was used for both the upwinded
simulation and the electron velocity based solution on the 20 and 40 point grids.

Although more robust, this approach is not as accurate as the symmetric/central-
difference technique discussed previously. For the same grid as the “exact” calcu-
lation, the upwinded calculation still shows grid dependence (see Fig. 5). Also,
considerable error is observed with coarse grids (Fig. 6).

2.3.3 A non-dissipative flux discretization

An alternative approach that is non-dissipative yet robust is derived below. The
drift-diffusion approximation is rearranged and then integrated to determine the
mean electron velocity. Since the electron flux, je, equals neve, where ve is the elec-
tron velocity, the drift-diffusion equation (2b) can be divided by ne and rearranged
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Figure 7. Influence of spatial discretization on accuracy. The results shown are
from the “exact” solution ( ), the electron velocity method with 20 points
( ), and the upwinded method with 20 points ( ).

via the chain and product rules to yield:

ve = −p7

(
E + Te

∂ lnne
∂x

+
∂Te
∂x

)
(9)

With the electric field expressed as the gradient of the potential, Eq. (9) can
be integrated from xk to xk+1. Using the midpoint rule for the Te∂ lnne/∂x term
yields the following expression for the mean electron velocity:

v̄e,k+1/2 = −p7

[
−Φk+1 − Φk

∆xk
+
Te,k+1/2

∆xk
ln
ne,k+1

ne,k
+
Te,k+1 − Te,k

∆xk

]
(10)

The temperature gradient is commonly neglected in the drift-diffusion represen-
tation of je. However, this is inappropriate. The first term and the second term in
Eq. (10), though much larger in magnitude than the third term, cancel with each
other to a large extent, particularly in the sheath region. Their sum is comparable
in magnitude to the temperature gradient term.

The electron flux at the midpoint is now simply the product of the average velocity
and the average number density.

je,k+1/2 = v̄e,k+1/2

(
ne,k + ne,k+1

2

)
(11)

The results from two upwinded calculations and two calculations with the new
method (henceforth referred to as the electron velocity method) are shown in Fig. 6.
The electron velocity technique, which is non-dissipative, closes in very quickly on
the “exact answer,” while the upwinded method is quite far from grid convergence.
In the sheath region there is a slight discrepancy in Te between the electron velocity
method and the “exact” solution. However, recall that the variables actually being
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Figure 8. Comparison between the time advancement methods. The fully
implicit Euler results are plotted in (a), the linearized implicit Euler results in (b),
and the linearized implicit second order Runge-Kutta in (c). Three different time
steps were used for each method: 4,000 steps per period ( ), 2,000 ( ),
and 1,000 ( ). The same grid and initial conditions were used for all the runs.
All plots show the electron number density profile after 500 periods.

solved for are ne and neTe, both of which are very nearly zero in the sheath; the
electron energy is found from the ratio of the two. Figure 7 shows the large error
with the upwinded calculation in the sheath regions.

This revised discretization for the electron flux makes a three-dimensional calcu-
lation practical. The 20 point calculation shown in Fig. 6 had a run time of slightly
less than 10 minutes on an SGI Iris Indigo 2 (the same computer and same opti-
mization level as that used for the 400 point symmetric interpolation calculation).

2.3.4 Alternative time advancement

Two alternatives to the fully implicit Euler algorithm for the electron time ad-
vancement were evaluated: linearized implicit Euler and linearized implicit Runge-
Kutta (second order). Figure 8 illustrates the sensitivity of these approaches to the
time-step size. In general, the linearized approaches take less time per timestep
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Figure 9. An illustration of the impact of boundary conditions on ni. Calcula-
tions were performed on a uniform grid with 100 points in (a) and (b), and with
200 points in (c) and (d). Shown are the left and and right edges of the domain in
each case without ( ) and with ( ) boundary conditions.

when compared to the fully nonlinear formulation. However, the error associated
with linearization requires that the timestep be smaller to achieve the same accuracy
as the nonlinear formulation. The net result is that the linearized implicit Euler
method requires more CPU time to achieve the same level of accuracy, while the
second order linearized implicit Runge-Kutta requires about the same CPU time
as the fully implicit formulation. The run times for the various methods and step
sizes are shown in Table 1.

2.3.5 Impact of ion boundary conditions

A characteristic analysis of the ion equations was performed to determine the
validity of the boundary conditions used by Nitschke and Graves. The analysis
indicated that no boundary conditions should be enforced. The effect of imposing
boundary conditions is shown in Fig. 9. The ∂ni/∂x = 0 boundary condition used
by Nitschke and Graves is enforced by setting ni,1 = ni,2 and ni,N = ni,N−1.
The ∂vi/∂x = 0 boundary condition on the left side is enforced by setting vi,1 =
vi,3/2. With the boundary conditions imposed, oscillations in ni are observed close
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Time Time steps Approximate run
advancement per period time (minutes)

Fully implicit 4,000 25
Euler 2,000 14

1,000 9.5
Linearized implicit 4,000 9

Euler 2,000 4.5
1,000 2

Linearized implicit 4,000 13
Runge-Kutta 2,000 6.5

1,000 3.5

Table 1. Run times for various electron time advancement methods. All com-
putations were performed on the same grid (20 points) for the same duration (500
periods) with the same initial condition.

to the boundaries. Simulations were performed on uniform grids of 100 and 200
points, and, despite the increase in resolution, the point-to-point oscillations are
still evident. When the boundary conditions are removed, so are the oscillations.

3. Future plans
A three-dimensional solver using the algorithm derived in this report is being

developed. The solver will be capable of simulating both inductively coupled, as well
as capacitively coupled plasmas. Non-Maxwellian effects in the electrons, simple
chemistry, and effects due to dust particles will be included. When completed, the
solver will be used to explore the impact of dust contaminants on the plasma.
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