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Analysis of the data base from a DNS of
a separating turbulent boundary layer

By Martin Skote1 AND Dan S. Henningson1 2

1. Motivation and objectives
This work was performed at CTR during a month-long visit in May 1999. The

data base analyzed comes from a simulation performed by Na and Moin (1998).
Although the data from the simulations has been used in the study of the structure

of the wall pressure Na and Moin (1998), an analysis of the mean flow had not been
conducted to a great extent. The aim of this work is to investigate the near wall
scalings of the turbulent mean flow close to separation.

The scalings are very important for the correct behavior of wall damping functions
used in turbulence models. For a zero pressure gradient (ZPG) boundary layer, the
damping functions and boundary conditions in the logarithmic layer are based on
a theory where the friction velocity,

uτ ≡
√
ν
∂u

∂y

∣∣∣∣
y=0

, (1)

is used as a velocity scale. However, in the case of a boundary layer under an adverse
pressure gradient (APG), uτ is not the correct velocity scale, especially for a strong
APG and low Reynolds number. In the case of separation this is clear since uτ
becomes zero. In a number of studies the case of separation has been investigated.
The various theories will be presented in the section where the analysis is presented.

Also, for moderate pressure gradients, the near wall region is influenced if the
Reynolds number is low enough. The combination of a pressure gradient and low
Reynolds number give a flow that deviates from the classical near wall laws. The
equations governing the inner part of the boundary layer can be analyzed, and the
theory is applicable to the results from the direct numerical simulations investigated
here.

In section 2 the numerical method and flow geometry is briefly described. The
results from the investigation of the mean flow are presented in four parts in section
3. The first part (3.1) is devoted to the total shear stress. Here the alternative
velocity scale based on the pressure gradient is introduced, and the effect of the
APG on the inner part of the boundary layer is discussed. Continued investigation
of the total shear stress in the second part (3.2) leads to the logarithmic law of the
velocity profile. The law is extended to the APG case and is shown to be in fair
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Figure 1. Freestream velocity. : U ; : V .

agreement with DNS data. To further investigate the different velocity scales, the
viscous sub-layer is investigated in the third part (3.3). And finally, in the fourth
part (3.4), some earlier theories regarding the APG flow and separation are briefly
presented.

2. Numerical method and flow characteristics
The simulation evaluated here was performed by Na and Moin (1998), using a

second-order finite difference method. The computational box was 350 × 64 × 50
based on the δ∗ at the turbulent inflow. The number of modes was 513×193×129.
The inflow condition was taken from Spalart’s ZPG simulation. It consists of a mean
turbulent velocity profile with superimposed turbulence with randomized amplitude
factors while the phase was unchanged. The boundary conditions applied on the
upper boundary are the prescribed wall normal velocity and zero spanwise vorticity,

v(x, Ly, z) = V (x)
∂u

∂y

∣∣∣∣
x,Ly,z

=
dV (x)
dx

. (2)

In Fig. 1 the two components of the freestream velocity are shown as a function
of the downstream coordinate x. The two components are denoted U and V in the
streamwise and wall normal directions respectively. Elsewhere in the flow the two
components of the mean velocity are denoted u and v. There is no third direction
in the mean flow.

The wall normal velocity (V ) is prescribed in order to create a separation bubble.
The point of separation is at x = 158, and the reattachment occurs at x = 257.
V varies in the downstream direction and thus induces a gradient in the u com-

ponent at the free stream boundary, due to the zero vorticity condition. In Fig. 2
three velocity profiles are shown from different downstream positions before, inside,
and after the separation bubble. The gradients at the free stream boundary due
to the boundary conditions are clearly visible. Since the boundary conditions ap-
plied in the simulation do not allow the y−derivative of the velocity profile to be
zero at the upper boundary, all quantities involving δ∗ or other integral quantities
become ambiguous. The near-wall behavior is not influenced by this gradient, and
the analysis of the boundary layer equations can be compared with the DNS data.
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Figure 2. Velocity profiles at x = 157, 200, and 260.
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Figure 3. In the vicinity of the separation. : U ; : uτ × 100.

The quantities shown in Fig. 3 as a function of the downstream direction in the
vicinity of the separation are U and uτ . There is a strong variation of uτ at the
point of separation as seen in Fig. 3.

3. Mean flow profiles
In this section the existing theoretical theories will be presented together with

results from the DNS. Much of the theory is based on the two distinct regions of
the flow, the inner and outer part respectively. Since only the inner part of the
boundary layer will be considered here, the theory concerning the outer part is
omitted.

3.1 The total shear stress
When neglecting the non-linear, advective terms in the equations describing the

mean flow, the equation governing the inner part of the boundary layer is obtained.
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Figure 4. Total shear stress at x = 150. : τ+; : Eq. (4); :
Eq. (5).

This equation can, when using the inner length and velocity scales ν/uτ and uτ be
written,

0 =
ν

u3
τ

1
ρ

dP

dx
y+ +

∂2u+

∂y+2 −
∂

∂y+
〈u′v′〉+, (3)

where 〈u′v′〉 is the Reynolds shear stress. If the term involving the pressure gradient
is smaller than the other terms, the equation reduces to the equation governing the
inner part of a ZPG boundary layer. However, for the APG case considered here,
this term cannot be neglected. Equation (3) can be integrated to give an expression
for the total shear stress,

τ+ ≡ ∂u+

∂y+
− 〈u′v′〉+ = 1 +

ν

u3
τ

1
ρ

dP

dx
y+ (4)

The total shear stress, τ+, from the DNS and the curve τ+(y+) represented by
Eq. (4) are shown in Fig. 4 at the position x = 150. The third and dotted line is
obtained when considering that the pressure gradient is slightly dependent on the
wall normal coordinate, in which case the integration of Eq. (3) yields,

τ+ = 1 +
∫ y+

0

ν

u3
τ

1
ρ

dP

dx
(y+)dy+. (5)

As seen in Fig. 4, the two expressions (4) and (5) are nearly identical. For a zero
pressure gradient case, Eq. (4) predicts a constant shear stress of unity.

The pressure gradient term in Eq. (4) is evidently important for the shear stress
distribution in the inner part of the boundary layer. This was observed in, among
others, the experiments by Bradshaw (1967), Samuel & Joubert (1974), and Sk̊are
and Krogstad (1994). It can be shown that the pressure gradient term decreases
with increasing Reynolds number. The term is thus important only for low Reynolds
numbers. However, close to separation, where uτ approaches zero, it is clear that
the terms becomes infinite even for large Reynolds numbers.
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Figure 5. Total shear stress at x = 150. : τp; : Eq. (8); :
asymptotic profile τp = yp.

When considering separation the singularity mentioned above can be avoided by
introducing the velocity scale,

up ≡
(
ν

1
ρ

dP

dx

)1/3

. (6)

First Eq. (4) is formulated as

τ+ = 1 + (
up
uτ

)3y+. ()7

The velocity scale up has to be used instead of uτ if the last term in Eq. (7) becomes
very large, which happens if uτ � up, i.e. the boundary layer is close to separation.
This was noted by Stratford (1959), Townsend (1961), and Tennekes & Lumley
(1972). By multiplying Eq. (7) by (up/uτ )2, the following expression for τp ≡ τ/u2

p

is obtained,
τp = yp + (

uτ
up

)2, (8)

with the asymptotic form τp = yp when separation is approached, where yp ≡
yup/ν. Thus, in this rescaled form, the singularity is avoided.

In Figs. 5 and 6 the shear stress scaled with up is shown at x = 150 and x = 158.
Both the linear expression (8) and its asymptotic form are shown. At x = 150
the separation has not been reached, thus the asymptotic version deviates while
the profile from Eq. (8) coincides with the DNS data. At x = 158 the asymptotic
expression agrees with the profile from DNS since uτ = 0 at that position.

3.2 The logarithmic region
Now, when the velocity scale up has been introduced, it is possible to investigate

how other theoretical results for a ZPG turbulent boundary layer can be modified
by the presence of an APG.

The Eq. (3) and the equation for the outer part of the boundary layer constitute
a problem with inner and outer solutions. This problem has been treated with the
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Figure 6. Total shear stress at x = 158. : τp; : Eq. (8); :
asymptotic profile τp = yp.

method of matched asymptotic expansions by, among others, Mellor (1972) and
Afzal (1996). The aim is to obtain higher order terms in the matching of the inner
and outer solutions. The small parameter that is used in the expansions is uτ/U ,
which is related to the Reynolds number through the logarithmic friction law.

The presentation here will be very brief and only the inner part is discussed. For
the ZPG case, the scaling of the total shear stress with uτ gives a self-similar profile
(τ+ = 1). From Eqs. (7) and (8) it is observed that neither uτ nor up as velocity
scale results in a self-similar expression. However, Eq. (4) can be formulated as

τ∗ ≡ 1
u2
∗

(
ν
∂u

∂y
− 〈u′v′〉

)
= 1, (9)

where u∗ is a velocity scale that depends on y and can be expressed in either plus
or pressure gradient units,

u2
∗ = u2

τ +
u3
p

uτ
y+ = u2

τ + u2
py
p. (10)

Thus, by scaling the total shear stress with u∗, a self-similar expression is obtained
(τ∗ = 1).

For the ZPG case, the matching of the inner and outer equations results in the
equation,

y+ ∂u
+

∂y+
=

1
κ
. (11)

If now u∗ is used as the velocity scale, the velocity gradient can be formulated as,

ν
∂u

∂y

1
u2
∗

=
(
∂u

∂y

)∗
. (12)

The matching between the inner and outer equations as described by Afzal (1996)
results in

y∗
(
∂u

∂y

)∗
=

1
κ
, (13)
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Figure 7. Velocity profiles. : DNS; : Eq. (15) with κ = 0.41 and
B = −2; : u+ = 1

0.41 lny
+ + 5.1.

where
y∗ ≡ yu∗/ν =

√
(y+)2 + (yp)3. (14)

In the same way as Eq. (11) can be integrated to give the logarithmic law for the
ZPG case, Eq. (13) above can be integrated. However, Eq. (13) must be formulated
with either uτ or up as velocity scale before being integrated. If uτ is chosen as
velocity scale, the integration of Eq. (13) yields,

u+ =
1
κ

(
lny+ − 2ln

√
1 + λy+ + 1

2
+ 2(

√
1 + λy+ − 1)

)
+B, (15)

with

λ =
(
up
uτ

)3

. (16)

The expression (15) is not self-similar due to the term λ, which is Reynolds number
dependent.

Equation (15) is the same expression Afzal (1996) arrived at. It is also similar to
the equation which Townsend (1961) derived from mixing length arguments. The
velocity profiles from the DNS of Na and Moin close to the point of separation
are shown together with the standard log-law and the extended log-law (15) in
Fig. 7. The separation occurs at x = 158 and the four velocity profiles are shown
at x = 150, 155, 157, 158.

From Fig. 7 it is clear that the logarithmic law, valid for ZPG flows, is a poor
instrument for obtaining boundary conditions in the log-layer for turbulence models.
The extended log-layer, which involves the pressure gradient, seems to capture the
deviation from the logarithmic profile surprisingly well. The parameters κ and B
have not been adjusted to fit the DNS data; rather, the standard values have been
used. Also, the region where Eq. (15) is valid can be discussed.

When up → 0, Eq. (13) reduces to the equivalent equation for the ZPG case (11),
and the usual log-law is recovered. If uτ → 0, Eq. (13) reduces to,

√
yp
∂up

∂yp
=

1
κ
, (17)
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Figure 8. Velocity profiles. : DNS; : Eq. (18) with κ = 0.41 and
C = −7.

and the half power law is obtained,

up ≡ u

up
=

1
κ

2
√
yp + C, (18)

which was first obtained by Stratford (1959).
Since it is shown that the scaling based on up is preferred over uτ close to sepa-

ration, the profiles in Fig. 7 should collapse better when scaled with up. The same
velocity profiles as in Fig. 7 are plotted together with the half power law (18) in
Fig. 8.

An interesting observation is that Eq. (18) leads to a shape factor of two with a
small correction due to the constant C. The correction vanishes for large Reynolds
numbers when up/U → 0. In both DNS at low Reynolds numbers (Spalart 1987)
and experiments at large Reynolds numbers (Sk̊are and Krogstad 1994) of flows
near separation, a shape factor close to two was observed. The shape factor is 1.8
at separation for the flow of Na and Moin. But, as discussed earlier, the gradient
of the velocity profile at the upper boundary give a value of the shape factor that
cannot be considered a proper one.

By expressing Eq. (13) in pressure gradient units and integrating, the following
expression for up is obtained,

up =
1
κ

(
2
√
γ2 + yp + γlnyp − 2γln(

√
γ2 + yp + γ)

)
+C (19)

where
γ =

uτ
up
.

In the limit of uτ → 0, Eq. (18) is recovered. The velocity profiles collapse
much better in the pressure gradient scaling as can be seen from Fig. 8 where the
asymptotic profile (18) is also shown. The profiles obtained from Eq. (19) do not
vary much for different downstream positions, hence only the asymptotic profile is
shown.
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The two expressions (15) and (19) are equivalent; only the choice of scaling when
integrating Eq. (13) differs. They are both dependent on the Reynolds number
through the terms λ and γ respectively. Equation (13) cannot be integrated directly
to yield u∗(y∗) independent of the Reynolds number. This is due to the term(

∂u

∂y

)∗
,

which cannot be expressed in only u∗ ≡ u/u∗ and y∗. However, these arguments
regarding the lack of self-similarity of the velocity profile will be clearer if the viscous
sub-layer, where the Reynolds stress can be neglected, is considered.

3.3 The viscous sub-layer
In the viscous sub-layer the Reynolds shear stress approaches zero and Eq. (8)

can be integrated to give,

up =
1
2
yp2 +

(
uτ
up

)2

yp (20)

In plus units this equation becomes,

u+ = y+ +
1
2

(
up
uτ

)3

y+2
. (21)

This equation reduces to the usual linear profile in ZPG case.
Figures 9 shows velocity profiles near the wall for x = 150 and x = 158 in plus

units. The higher profile is located at x = 158. The solid lines are DNS data and
the dashed ones are the profiles from Eq. (21). The dotted line is the profile valid
for the ZPG case (up = 0). As seen from Fig. 9, the linear approximation works
reasonably well at x = 150, upstream of separation. But at x = 158, the effect from
the pressure gradient is too large. The profiles diverge as separation is approached
since the second term in Eq. (21) becomes infinite.

Figure 10 shows velocity profiles near the wall for x = 150 and x = 158 in pressure
gradient units. The higher profile is located at x = 150. In this case the asymptotic
profile (dotted) is valid at separation. The solid lines are DNS data and the dashed
are the profiles given by Eq. (20). From Fig. 10 one can draw the conclusion that
the pressure gradient scaling is preferred since the profiles approach an asymptotic
profile instead of diverging infinitely as uτ approaches zero.

In both the viscous and logarithmic region, the velocity has been scaled with two
different velocities, uτ and up. Both of these scalings give in an asymptotic state
a Reynolds number independent expression. The representations in plus units,
Eqs. (15) and (21), return to the ZPG formulation when up approaches zero. The
representation in pressure gradient units, Eqs. (19) and (20), become the square-
root and square profiles when separation is approached.

In both these scalings the velocity profile is dependent on the ratio between uτ
and up as seen in the four equations mentioned above. However, the total shear
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Figure 9. Velocity profiles at x = 150 and x = 158. : u+; :
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Figure 10. Velocity profiles at x = 150 and x = 158. : up; :
1
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stress could be made independent of this ratio by scaling with u∗, Eq. (9). Thus the
profiles are self-similar with respect to Reynolds number and pressure gradient. In
order to obtain an expression for the velocity scaled with u∗ in the viscous sub-layer,
Eq. (9) with the Reynolds stress equal to zero must be solved. Thus, it is

ν
∂u

∂y

1
u2
∗

= 1. (22)

that needs to be solved. The solution u∗(y∗) should be independent of the ratio
between uτ and up. Equation (22) formulated in star units gives

∂u∗

∂y∗
+

1
2

(
yp

y∗

)3(
y∗
∂u∗

∂y∗
+ u∗

)
= 1, (23)

where the relation between y∗ and yp is given by Eq. (14), which can be written

y∗2 =
(
uτ
up

)2

(yp)2 + (yp)3. (24)
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Figure 11. Velocity profiles at x = 150 and x = 158. : u∗ at x = 150;
: u∗ at x = 158.
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Figure 12. Velocity profiles. : up; : Eq. (25) with κ = 0.15,
B = −6.5.

The ratio between uτ and up is still present in Eq. (24), thus no independent solution
can be found. This is also evident from DNS data where the profiles are scattered
for different downstream positions as shown in Fig. 11.

3.4 Comparison with other theories for the logarithmic region
According to Tennekes & Lumley (1972), the scaling with pressure gradient ve-

locity up should lead to the same form of matching as in the zero pressure gradient
case. From this assumption a logarithmic law is obtained in the same manner as the
usual procedure of matching the outer and inner solutions. The log-law becomes,

up =
1
κ
ln(yp) +B (25)

Equation (25) is shown in Fig. 12 together with DNS data from the positions x = 150
to x = 158.

According to Stratford (1959), the velocity profile should be a half-power law
close to separation. Also Yaglom (1979) showed that a dimensional analysis gives
the following expression for the velocity profile close to separation,

u+ = K+
√
λy+ +K+

1 , (26)
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which can be expressed in pressure gradient scaling,

up = K
√
yp +K1 (27)

Yaglom (1979) also proposed a fairly complicated dependence of K and K1 on up
and uτ . This dependency was introduced to extend the theory valid at separation
to the region upstream of detachment. It cannot be regarded as a sound procedure
to incorporate a functional behavior in constants of an expression valid only in an
asymptotic state. It seems to be a better approach to the equations to introduce
the mixed velocity scale u∗ and do the analysis leading to Eq. (19).

4. Conclusion

The scalings in the near wall region of a turbulent boundary layer close to sep-
aration have been analyzed. Two different velocity scales appears naturally in the
governing equation: the friction velocity and the pressure gradient velocity. With
the aid of the momentum equation governing the inner part, it is possible to derive
a mixed velocity scale. By using this velocity scale and matching the inner and
outer solutions, an extended logarithmic law is obtained. When approaching the
zero pressure gradient case, the familiar log-law and plus scales are recovered. In
the limit of separation, the half-power law in pressure gradient scaling is obtained.
In the vicinity of separation, the extended logarithmic law in plus scaling give pro-
files in agreement with DNS data. The profiles are widely scattered when using the
friction velocity as a velocity scale due to the large variation of the friction velocity
in the vicinity of separation. When using pressure gradient scalings, the profiles
are much less scattered, and the extended logarithmic law in its asymptotic form
(half-power law) agrees with the DNS data.

The mixed velocity scale, which depends on y, was shown to give self-similar
profiles for the total shear stress. For the velocity however, no such profiles can
be derived. Thus, for practical purposes such as boundary conditions for RANS-
modeling and wall-damping functions, the extended logarithmic law should give
more reasonable results than the corresponding zero pressure gradient laws. When
the friction velocity varies rapidly or approaches zero, the scaling with pressure
gradient velocity is preferred since the singularity at separation is avoided.

Even in the viscous sub-layer, the pressure gradient influences the velocity profile
if the Reynolds number is low enough. The two velocity scales based on the fric-
tion velocity and pressure gradient velocity give profiles that are independent on
Reynolds number only in the limit of zero pressure gradient and separation respec-
tively. The comparison with data in the viscous sub-layer from direct numerical
simulation shows that the velocity scale based on the pressure gradient can indeed
be used in this region of the flow close to separation. In fact, such scaling shows that
the velocity profiles approach an asymptotic, self-similar profile at separation. If
the friction velocity scaling is used, the profiles diverge as separation is approached.
This scaling gives an asymptotic self-similar profile (the linear profile) in the limit
of zero pressure gradient.
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