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Parameter optimization in jet flow control

By Angela Hilgers

1. Motivation and objectives
The control of turbulent jet flows has applications in combustion, aerodynamic

noise, and jet propulsion. In combustion processes it is important to enhance the
turbulent mixing of the chemical species to make the process more efficient and
reduce the concentration of pollutants. Acoustic emission of an aircraft can be
reduced by controlling flow unsteadiness that produces noise. Enhanced mixing
in aircraft propulsion systems decreases the plume temperature and suppresses in-
frared radiation.

The mixing rate of a turbulent jet can be significantly altered by applying a
suitable excitation at the jet orifice. Various experiments have been carried out
to study the reaction of jets to external forcing (Crow 1971, Ho 1982, Lee 1985,
Parekh 1987, Parekh 1988). It has been shown that a large spreading of the jet
can be achieved with a small mass flow actuation if suitable frequencies are chosen
(Parekh 1996). Here, it is assumed that a large spreading angle corresponds to
efficient mixing of a passive scalar transported by the flow with the surrounding
air. Numerical simulations of compressible and incompressible jet flows have been
carried out that confirm many observations made in experiments with periodically
forced jets (Freund 1998, Freund 1999, Danaila 1998, Urbin 1997). An automatic
search for optimal actuation parameters was carried out by Koumoutsakos et al.
1998. This work showed that evolution strategies are capable of finding suitable
actuations for a vortex model and direct numerical simulations of compressible jets.

In this paper we compare the effects of helical and combined axial and helical
forcing on a jet. We combine evolution strategies with direct numerical simulation
(DNS) to search for the actuation parameters that maximize the spreading of the
jet. An objective function that measures the spreading of the jet evaluates the
performance of a given set of actuation parameters. The evolution strategy searches
for the optimal actuation by automatically varying the parameters and calculating
their objective function value. Solutions that lead to a pronounced spreading are
found within reasonable time although the evaluation of the objective function, the
DNS of the jet, is expensive. It has been shown in experiments that jet mixing can
be significantly enhanced by using dual-frequency actuation (Parekh & Reynolds
1987, 1988). Our simulations confirm that a combined axial and helical actuation
is much more efficient with respect to jet mixing than a helical actuation alone.

2. Accomplishments

2.1 Numerical method
The numerical solver simulates a free round jet issuing from a circular orifice

of diameter D in a solid wall. The incompressible Navier-Stokes equations and
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the transport equation for a passive scalar are solved in a spherical coordinate
system, with (r, θ, φ) denoting the radial, tangential, and azimuthal directions. The
computational domain is bounded in the radial direction by the surfaces r = 5D
and r = 15D and by the cone starting from the center of the sphere with an opening
angle of 36o. This geometry covers a domain with a streamwise extent of 10D and
a spanwise diameter of 4D for the inflow section and 10D for the outflow section.
Such a discretization is able to follow the streamwise spreading of the jet and allows
a well-balanced resolution of the flow field with a reasonable number of grid points.
Spatial derivatives are calculated on a staggered spherical grid. The time integration
is carried out with a second order Adams-Bashforth method. More details of the
numerical scheme can be found in Boersma (1998).

At the lateral boundary, the total normal stress is set to zero, which allows fluid
exchange across the boundary. This condition properly simulates the entrainment
of ambient fluid in the spreading jet flow. A so-called convective boundary condition
(Orlanski 1976) is used to evacuate the vortex structures through the downstream
boundary. At the inflow section, the mean streamwise velocity profile is imposed as
initial and boundary condition

Vz0(rc) =
V0

2

(
1 + tanh

[
0.25D/Θ0(D/(4rc)− 4rc/D)

])
, (1)

where V0 is the centerline velocity and rc is the radius in a cylindrical system. The
initial momentum thickness was Θ0 = D/60 in our simulations.

For the DNS of a jet with Re = 1500, based on orifice velocity V0 and diameter
D, the spherical grid consists of 192× 128× 96 points in the radial, tangential, and
azimuthal direction. Typical CPU times for the calculation of a fully developed
jet are 1500 node hours on an Origin 2000, using the Message Passing Interface
(MPI). Optimization requires the simulation of approximately 150 jets for different
actuation parameters. We will explain in Sec. 2.3 how we have reduced the CPU
time during the optimization process.

In unforced jets, large coherent structures are observed that are related to the
instability modes of the jet. The dominating modes are the axisymmetric or varicose
mode and helical modes. The axisymmetric mode causes the shear layer to roll up
into vortex rings. By applying axial forcing to the shear layer, the frequency of
vortex ring generation and the pairing of the vortex rings may be altered.

The initial shear layer is able to amplify a large range of frequencies. The fre-
quency which leads to the maximum amplification of the initial shear layer is called
the natural frequency. It can be obtained by linear spatial instability analysis
(Michalke 1984, Ho & Huerre 1984). For an axisymmetric jet with initial velocity
profile (1), it is StΘ = fΘ/V0 = 0.018. The natural frequency is lower for thicker
shear layers, as they appear in forced jets. The frequency fp of the axial pertur-
bation that produces the largest total amplification is called the preferred mode
of the jet. It corresponds to the frequency of vortices at the end of the potential
core. This frequency has been determined to be Stp ≈ 0.3 (Crow 1971, Hussain
1981). However, other studies have found the preferred Strouhal number to vary
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between 0.25 and 0.5 (Hussain 1981). Mankbadi (1985) observed for a round jet
under axisymmetric forcing that mixing is enhanced if the forcing Strouhal number
corresponds to about twice the jet’s preferred mode. It was also found that at high
Strouhal numbers the momentum thickness is reduced along the jet.

Mixing may be increased significantly if axial and helical forcing are combined
(Lee 1985, Parekh 1987, Parekh 1997). In the following we will denote the Strouhal
numbers of axial and helical forcing with Sta and Sth. Large spreading angles (up
to 80◦) have been observed for certain ratios β = Sta/Sth of the Strouhal numbers
(Parekh 1988). In particular, the jet splits into two branches for β = 2 (bifurcating
jet) and into three branches for β = 3. For non-integer ratios 1.6 < β < 3.2, vortex
rings are shed in various radial directions (blooming jet). It has been discussed by
Parekh & Reynolds (1988) that these flow patterns appear for both low and high
Reynolds numbers.

In our simulation the actuation of the shear layer was achieved by superposing
periodic disturbances on the initial velocity profile. We have used two kinds of
actuation. For the first, the total inflow velocity in the z direction of a cylindrical
coordinate system (z, rc, ϕ) is

Vz(rc, ϕ, t) = Vz0(rc)
[
1 +Ahsin

(
2πSth

V0

D

)
cos(ϕ)

2rc
D

]
. (2)

Ah is the amplitude of the actuation, which is phase locked in the plane ϕ = 0. It
corresponds to the superposition of two counter rotating helical modes of the same
frequency. It has been observed in simulations and experiments that this type of
actuation causes the jet to perform a flapping motion in the plane of actuation. The
second type of actuation is a superposition of axial and helical modes

Vz(rc, ϕ, t) = Vz0(rc)

[
1+Aasin

(
2πSta

V0

D
t

)
+Ahsin

(
2πSth

V0

D
t+ α

)
cos(ϕ)

2rc
D

]
.

(3)
Here Aa and Ah are the amplitudes of the axial and helical mode and Sta, Sth
are the respective Strouhal numbers. We have again chosen the helical part of the
actuation to be phase-locked in the plane ϕ = 0. The angle α determines the plane
of spreading. The actuation (2) with β = Sta/Sth = 2 has been used before to
model bifurcating jets (Danaila 1998). To simplify the notation, we will refer to
jets obtained with the dual-frequency actuation equation (3) as bifurcating jets,
even if β takes on a value that is not exactly two. In the following sections we will
investigate for which parameter vector x = (Sta, Sth, Aa, Ah) the spreading of the
jet is maximal.

2.2 Optimization with evolution strategies
Evolutionary computation techniques use the basic principles of evolution: a

reproduction cycle, natural selection, and diversity by variation, to find the optimal
solution to a given problem. The phase space of possible actuation parameters
is searched automatically by an evolution strategy. There have been numerous
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applications of evolution programs in engineering, which is due to the simplicity of
these strategies and their robustness. It has been shown by Koumoutsakos et al.
(1998) that evolution strategies are well suited for the optimization of jet actuation
since they are easy to implement, inherently parallel, and very efficient.

An optimization problem is described by a set, or vector, of parameters that are
varied during the procedure and an objective or fitness function that evaluates the
performance of the parameters. The surface that describes the fitness value as a
function of the parameters is referred to as fitness landscape. While classical ap-
proaches like gradient methods converge quickly, there is a certain risk of premature
convergence to a local optimum. Stochastic methods, on the other hand, avoid this
by allowing steps in seemingly unfavorable directions with a certain probability.
They are, therefore, useful for the optimization of multimodal functions. The dy-
namic behavior of the jet is determined by the nonlinear interaction of different
modes. This is likely to cause a complicated dependence of the jet development
on the actuation parameters. We therefore expect the objective function to be
multimodal, which makes the use of stochastic optimization methods necessary.

Evolution strategies describe populations of individuals which represent possible
solutions of the given problem. Each individual represents a vector x containing n
parameters and an associated vector s containing n mutation steplengths. In the
simplest possible case, each generation consists of only one parent and one offspring.
An offspring is obtained from the parent by a random mutation

xi+1
o = xip + sipN(0, 1). (4)

Here the indices p and o denote parent and offspring and i is the number of the
generation. N(0, 1) is a normal distribution with zero average and unit variance.
The performance of the offspring is evaluated by the objective function. Depending
on the objective function value, the parent is kept for the next generation or replaced
by the offspring.

For optimization problems with multimodal fitness landscapes, the search of the
parameter space can be sped up by simultaneously evaluating several search trajec-
tories. This corresponds to evolving generations with several parents and offspring.
We have used an evolution strategy with µ parents and λ offspring, where in each
generation the best µ individuals are chosen among the µ+λ parents and offspring
((µ+ λ) strategy).

The steplengths of the mutation are decreased if the offspring are better than
the parents, otherwise they are increased. For the (1 + 1) strategy this is done
according to the 1/5 success rule (Rechenberg 1994); for the µ+ λ strategy either
the steplengths of successful mutations are passed on to the next generation or the
Covariance Matrix Adaptation of the step size (CMA, Hansen 1996, Koumoutsakos
1999) is used, which takes into account not only successful mutations of the previous
generation, but the whole path the evolution has taken. There are certain limits
to the parameters. The amplitudes must be positive, and the Strouhal numbers
should be within a certain interval. When a mutation step leads to a value outside
the allowed range, the step is considered unsuccessful and is repeated until allowed
values are obtained.
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2.3 Jet optimization
An important part of the formulation of the optimization problem is the choice

of an objective or fitness function which measures the spreading of the jet and is
sufficiently sensitive to changes in the actuation parameters. Furthermore, we have
to ensure that the evaluation of the objective function is possible within reasonable
CPU times.

The objective function must be based on the quantities calculated by the DNS
simulation: the velocity field, the scalar concentration, and the pressure. The
dependence of the radial velocity on the actuation parameters is pronounced while
the variation of the axial and azimuthal velocity is small and difficult to quantify.
We have, therefore, maximized the integral of the radial velocity (in the cylindrical
system)

f(x, t0) =
∫
V

v2
rc(r, θ, ϕ, t0)dV ′ (5)

where V is the whole computational domain. The integral of v2
rc is time dependent.

A suitable time t0 must be chosen in the jet simulation for the evaluation of the
objective function.

Other possible objective functions are the centerline velocity or the spreading
angle of the jet. The spreading angle, which has been used as objective function
in Koumoutsakos (1998) in the simulation of inviscid vortex rings, is difficult to
quantify in our simulations because pressure rings are not well resolved far away
from the orifice. While the integral of v2

r changes as a function of the parameter
values early in the DNS, the center line velocity does not show clear variations
at that stage. Different objective functions have been investigated by Freund &
Moin (1999). It has been shown that volume integrals of moments of the scalar
concentration and integrals of the scalar dissipation are suitable metrics to quantify
mixing in a jet.

Figure 1 shows how the objective function f(x, t) evolves with time for the single-
frequency actuation equation (2). The three curves correspond to different values
of the Strouhal number at constant amplitude Ah = 0.05. The time scale is the
normalized scale of the jet simulation. (For comparison, the time scale of an exci-
tation with St = 0.55 is T = D/(StV0) = 0.29, and for St = 0.36 it is T = 0.44.
The time for the DNS of a fully developed jet is approximately t = 7.) We have
determined the fitness value of the parameter vector at time t0 = 1.6 where the
objective function values already clearly differ. In Fig. 1, the objective function is
shown for the Strouhal number St = 0.36 that maximizes the objective function
value at t = 1.6 and for St = 0.17 and St = 0.55 that resulted in much lower
values. For St = 0.55, the spreading of the jet starts later and reaches lower values;
for St = 0.17 the overall spreading is low. For Strouhal numbers in the vicinity
of the optimal Strouhal number, the fitness value is only slightly smaller than the
maximum value. Which Strouhal number from this region is chosen as the global
optimum may depend on the choice of the time t0.

In order to further decrease the computational time for the optimization, we have
used a coarse grid with 64× 64 × 32 grid points. Although most of the structures
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Figure 1. Objective function f vs. time for a jet forced with single-frequency
excitation (2) and Ah = 0.05, St = 0.17 ( ), St = 0.36 ( ), St = 0.55
( ); the fitness value is determined at t = 1.6.

observed in the jet are not resolved on this grid, the objective function shows a very
similar behavior as a function of time in the early stages of the simulation. With this
approximation, the CPU time necessary for one evaluation of the objective function
is approximately 3 node hours on a SGI-ORIGIN 2000. The data shown in Fig. 1
have been obtained from simulation on this coarse grid. We note that under-resolved
simulations can only be used for a rough estimate of the jet dynamics. In addition,
it cannot be excluded that f(t) curves corresponding to different parameters may
cross at times t > t0. However, by comparing f(t) for different grid resolutions
and by relating jet spreading at time t0 with the full jet simulation, we found the
approximations made do not significantly affect the results. In fact, our approach
leads to good results while keeping the computational time within reasonable limits.

For the data shown in Fig. 1, the jet simulation has been started at time t = 0
from the initial laminar flow at the orifice. The optimization has been repeated with
an initial non-laminar velocity field, which has been obtained from a jet simulation
with small axial and random forcing. The parameter vectors found by the evolution
strategy again did not differ significantly.

Figure 2 shows the fitness value as a function of the generation number. The
optimization has been done for the dual-frequency actuation (3) by varying two
parameters x0 = (Sta, β). The amplitudes have been kept constant at Aa = 0.025
and Ah = 0.05 and the fitness function (5) has been evaluated at t0 = 1.6. Starting
from an initial vector x0 = (0.5, 2.5) the best spreading was obtained after 30
generations for the parameters xbest = (0.66, 2.1). In Fig. 2 the fitness value shown
is the average of the two best individuals rather than the single best. This causes
the non-monotonic behavior including the dips around the 10th and at the 18th
generation. For the initial value chosen here the vicinity of the optimum is reached
by the best individual already after a few generations. In general the search needs
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Figure 2. Convergence of the evolution strategy for the parameter vector x =
(Sta, β) and Aa = 0.025, Ah = 0.05 fixed.

to be continued for a larger number of generations to ensure that convergence to a
local optimum is avoided.

2.4 Results of the optimization

The limits of the Strouhal numbers were 0.1 < Sth < 0.55 for the single-frequency
and 0.1 < Sta < 1.2 for the dual-frequency excitation. For the latter case, the ratio
of Strouhal numbers was 1.6 < β < 3.2. This corresponds to the range used in
experiments with bifurcating jets.

We first varied only the Strouhal number of the actuation equation (2) and kept
the amplitude Ah fixed. The optimization was done with the objective function
(5) and the (1 + 1) evolution strategy. Starting from an initial value St = 0.5,
the evolution path was found to approach an optimum in the 27th generation (28
evaluations of the fitness function) at St = 0.36. Our computations have shown
that the optimization strategy tends to choose the amplitude to be as large as
possible within the given limit. Since an actuation with very large amplitudes is
not desirable, we have kept Ah = 0.05 fixed for the single-frequency actuation.

We repeated the calculation with an objective function that integrates v2
r within

the subdomain between 5 and 10 jet diameters from the nozzle. This neglects
spreading in the part of the computational domain close to the orifice and, therefore,
favors lower Strouhal numbers. As a result of the optimization, we found St = 0.28.
While Parekh et al. found the most intense motion of the jet for St ≈ 0.2, they also
observed efficient mixing at St ≈ 0.27, which is close to our result, and at St ≈ 0.4.

The fitness value is shown as a function of the Strouhal number in Fig. 3 for the
two cases: the evaluation of the objective function (5) in the whole domain and in
half the domain. The location of the extrema of the fitness landscape depends on
the domain chosen. For the latter case there is only one maximum at St = 0.28. For
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Figure 3. Fitness value as function of the Strouhal number for evaluation of
the integral (5) over the whole (rhombs) and half (crosses) of the computational
domain.

the large domain we have found the global maximum at St = 0.36, and there are
local maxima at St = 0.24 and St = 0.45. In this case the evolution strategy is able
to find the global maximum independent of the starting value. For low Strouhal
numbers the mode that determines the creation of vortices saturates and is replaced
by its subharmonic further downstream than for large Strouhal numbers. The first
pairing of vortices, which is the onset of the jet spreading, happens further away
from the orifice for small Strouhal numbers. Evaluation of the objective function in
half of the domain as described above, therefore, favors lower Strouhal numbers.

For the best Strouhal numbers found by the evolution strategy, we have repeated
the DNS of the jet on the fine grid described in section 2.1. Figure 4 shows the
passive scalar concentration obtained when the helical actuation (Eq. 2) is applied
at the orifice. It is a snapshot taken at time t = 9 (based on the normalized
time scale of the jet). Different shades of grey denote different concentration C
of the scalar. The concentration is approximately one in the inner (dark) region
and zero far outside (white) region. The figure shows the jet in the plane of the
actuation, ϕ = 0 (left), and in the plane ϕ = π/2 (right). The jet spreads rapidly
in the plane of the actuation and contracts in the orthogonal plane. Although the
amplitude of the actuation is small, the jet spreads at a large angle, and the jet
column shows a strong flapping motion. The jet column disintegrates towards the
end of the computational domain, but regions of concentration C ≈ 1 remain near
the centerline of the jet. Figure 5 shows the best result obtained using half of the
computational domain for the evaluation of the fitness function. The jet spreads
further downstream from the orifice than in the previous case.

Instead of keeping the amplitude fixed during the optimization, we have also used
an objective function that penalizes large amplitudes fpenalty(x) = f(x) − CA2

h

with C > 0, which seeks to maximize the spreading of the jet while minimizing
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Figure 4. Snapshots of the passive scalar concentration at time t = 9 for a jet
excited with the single-frequency actuation (Eq. 2) in the plane of the actuation
ϕ = 0 (left) and the plane ϕ = π/2 (right); St = 0.036 and Ah = 0.05.

Figure 5. Snapshot of the scalar concentration at time t = 7 for a jet actuated
with single-frequency actuation (Eq. 2) and Sth = 0.28, Ah = 0.075.
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Figure 6. Snapshot of the scalar concentration at time t = 7 for a jet actuated
with dual-frequency forcing (Eq. 3) and Sta = 0.66, Sth = 0.31, Aa = 0.025,
Ah = 0.075.

the amplitude Ah. The constant C is chosen such that the two terms are of the
same order of magnitude. The optimization with this objective function (where
the integral is again calculated over the whole computational domain) produced
x = (Sth, Ah) = (0.29, 0.08) as best parameter values. Details of the optimization
using a penalty function are described in (Hilgers 1999).

For the two-frequency actuation we have varied the two Strouhal numbers and
one of the amplitudes. The second amplitude was kept fixed in order to reduce the
dimension of the search space. We did the following optimization runs.
1. Variation of x = (Sta, β, Ah), with β = Sta/Sth for different start vectors and
with different evolution strategies: a (µ+λ) strategy with µ = 2 and λ = 5 and the
(1 + 1) strategy,
2. Variation of x = (Sta, β) while keeping both amplitudes fixed,
3. Separate optimization of Sta and (β,Ah).
We will only summarize the main results; details of the optimization procedure are
described in Hilgers (1999).

For Cases 1 and 2, the global maximum was found at the same Strouhal numbers
(Sta = 0.66, Sth = 0.31). In the first case, the variation of the Strouhal numbers
and one amplitude, it was again found that the amplitude was chosen as large as
possible within the given limits. While the objective function value grows with
the amplitude, variations of Ah do not have a large influence on the shape of the
fitness landscape. Therefore, the frequencies are the important parameters of the
optimization. The amplitudes do not significantly influence the location of the
optimum in the space of frequencies within the given parameter range. It has been
shown, however, in (Mankbadi 1985) that for axial forcing the Strouhal numbers
that enhance mixing are different at very low (A < 0.01) and at high forcing levels.
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Figure 7. Snapshot of the scalar concentration of a natural jet without significant
actuation, Re = 2000.

The same best parameter vector was found for different start vectors. In some
cases the search path started near a local optimum and crossed an area with low
objective function values before approaching the global optimum. This shows that
the evolution strategies indeed avoid premature convergence to local optima. If a
starting point is chosen far away from the optimum, the evaluation of up to 50
generations may be necessary. Figure 6 shows a snapshot of the jet actuated with
the parameters xbest = (Sta, Sth) = (0.66, 0.31), Ah = 0.075, and Aa = 0.025. This
dual-frequency actuation leads to an impressive spreading of the jet. The center
of the jet shows a strong flapping motion, which is due to the large amplitude of
the helical forcing. Comparing Figs. 6, 4, and 5 we find that the shape of the jet
differs slightly for the three types of actuation. The overall spreading, i.e. the area,
to which a significant amount of the tracer is transported, is comparable, although
the total amplitude is smaller for the jets with one-frequency forcing. The flapping
motion of the jet column, however, is most pronounced for the dual-frequency actua-
tion. The jet column is completely dispersed near the end of the domain, indicating
that the jet bifurcates. Although a clear spreading in two branches is not visible,
there are areas on both sides of the centerline with much higher concentration of
the scalar and much lower radial velocity (not shown) than on the centerline. For
comparison we also show a natural jet, calculated for a slightly higher Reynolds
number, in Fig. 7. A larger domain is chosen since the potential core is much longer
in this case. The spreading angle of the jet is approximately 10◦. A quantitative
comparison of the jets obtained by our simulation with the experimental results by
Parekh et al. (1996) is difficult because the Reynolds numbers differ. In addition,
different types of perturbation are used in the experiment and simulation, and hence
spreading angles will always be slightly different.

For Case 3, the separate optimization of the frequencies, the resulting optimal
parameter vector differs from that of the Cases 1 and 2. The corresponding fitness
value is slightly smaller, indicating that the parameter values obtained for simul-
taneous optimization lead to a larger spreading of the jet. The Strouhal numbers
are not independent and should be optimized simultaneously. This result is not
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surprising because the spreading pattern of the jet is due to the interaction of the
various modes in the jet. For Case 1 we compared the performance of different
evolution strategies. We used a (µ+ λ) strategy with Covariance Matrix Adaption
of the steplength as well as a simple (1 + 1) strategy. We found that the number
of objective function evaluations that is necessary to approach the optimum does
not differ significantly for these strategies. It should be noted that the convergence
speed of the (1 + 1) strategy depends not only on the choice of the initial param-
eter vector, but also on the initial steplengths. However, the fact that the simple
strategy, which uses only one search path, can reach the optimum rapidly indicates
that for our optimization problem the landscape is not too complex.

The best actuation parameters found by the different optimization runs are sum-
marized in Table 1. Note that in all except the first case the optimal Strouhal
number of the helical actuation is St ≈ 0.3. It differs from the natural Strouhal
number, for which linear instability analysis predicts the largest amplification of
signals (Michalke 1984), but is in agreement with the preferred frequency of the jet
found by Crow & Champagne (1971). The optimal axial Strouhal number found
by the optimization procedure is approximately twice as large as the preferred fre-
quency, as predicted by Mankbadi (1985).

In the formulation of the optimization procedure, some arbitrary choices have
been made that may affect the results. The optimal parameter vector depends on
the choice of the time, t0, at which the objective function value is determined. It
also depends on the domain that is chosen for the integration of v2

r or in general on
the length of the computational domain. However, for each choice of the domain,
actuation parameters were found that lead to a large spreading of the jet.

type of actuation Sta Sth Aa Ah
single-freq., Eq. (2) − 0.36 − 0.05 (fixed)

single-freq., penalty C = 5 − 0.29 − 0.08
two-freq., Eq. (3) 0.66 0.31 0.025 (fixed) 0.075

two-freq., separate opt. of Sti 0.72 0.29 0.025 (fixed) 0.075 (fixed)

Table 1. Best actuation parameters found by the evolution strategies.

2.5 Mean flow
In the previous section we have shown that the spreading of the jet strongly

depends on the forcing applied in the inflow plane. The average streamwise velocity
and concentration of the scalar on the centerline of the jet is evaluated in order to
obtain a more quantitative measure of turbulent mixing. From turbulence theory it
is known that the decay rate of round jets is proportional to [z−z0]−1 where z0 is the
virtual origin of the jet and z the distance measured from the jet orifice (Schlichting
1979). The perturbations given by Eqs. (2) and (3) are not axisymmetric, and,
therefore, linear decay of the jet is not expected. In Fig. 8 (left) we show the
centerline velocity obtained from the flapping and bifurcating jet computations.
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Figure 8. The averaged centerline velocity u′z (left) and the inverse of the
centerline velocity (right) for the bifurcating ( ), flapping ( ) and standard
( ) jets.
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Figure 9. The averaged streamwise centerline scalar concentration C′ for the
bifurcating ( ), flapping ( ) and standard ( ) jets.

For comparison we include the profile for a round axisymmetric jet (standard jet)
with comparable Reynolds number. For both the flapping and bifurcating jets, the
centerline velocity starts to drop near z/D = 5, which is much earlier than in the
standard jet. The decay rate (slope of the curve in Fig. 8, right) of the flapping
jet is comparable to that of the standard jet while the bifurcating jet decays much
faster. For the flapping jet the decay is approximately linear, for the bifurcating jet
superlinear.

In our simulation it can be assumed that for values of the scalar concentration
C ≈ 0.5 the flow is well mixed. In Fig. 9 we show the center line scalar concentration
for the bifurcating, the flapping, and the natural jet. The actuation leads to a
much earlier decay of the concentration than for the natural jet. For the flapping
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Figure 10. The norm of the turbulent scalar flux
√
u′rC

′2 + u′zC
′2 for the flapping

(left) and bifurcating (right) jets in the plane of the actuation.

actuation, the concentration reaches C ≈ 0.4 on the centerline at the end of the
domain. For the bifurcating jet, the decay starts even earlier and the mixing is very
efficient. Towards the end of the domain, the average of the concentration reaches
low values due to the bifurcation of the jet, which transports the scalar away from

the centerline. Fig. 10 shows the total turbulent flux of the scalar
√
u′rC

′2 + u′zC
′2

in the plane of the actuation for both the flapping and bifurcating jets. For the
flapping jet the flux has high values near the centerline. The bifurcating actuation
on the other hand directs the total flux outwards. The bifurcating jet, therefore,
has by far the best mixing properties. From the figures presented in this section, it
is clear that there is a certain amount of scatter in the DNS data due to the limited
size of the statistical sample.

3. Summary and future plans

DNS and evolution strategies have been combined to search for actuation param-
eters (Strouhal numbers and amplitudes) that enhance mixing in a jet. The main
result is that a combined axial and helical perturbation leads to better mixing and
a faster decay of the center line velocity and scalar concentration than a flapping
perturbation, as has been shown before in experiments by Parekh et al. (1987). For
applications it is necessary to have a large spreading not only in one plane, but in
the whole three-dimensional domain. This can be obtained by replacing the phase-
locked helical forcing used in our simulation by a helical actuation that is rotating
around the orifice.

The evolution strategies appear to be very efficient for optimization of the jet
actuation. Although convergence to a local optimum can never be completely ex-
cluded, it can be stated that the strategy is able to find a good solution within
reasonable time. In a real experiment the perturbation is not described by a simple
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mathematical function like in our simulation, and, therefore, a one-to-one compar-
ison between simulation and experiment is difficult. However, we expect that the
frequency range found to be best in our simulations is similar to that for experi-
ments under comparable conditions. We also expect that evolution programs can
be used to optimize physical experiments. Future work will concentrate on the use
of more realistic actuators and on simulations at higher Reynolds numbers.
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