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Coherence in the turbulent cascade

By Javier Jiménez1

1. Motivation and objectives
It has been known for some time that intermittency is an inevitable consequence

of multiplicative cascades, which arise naturally from two assumptions (Jiménez
1999):

1. Causal locality, which implies that a variable vn, associated with the cascade step
n, depends only on the value of a single ‘parent’ in the preceding cascade step so
that its probability distribution pn is

pn(vn) =
∫
W (vn|vn−1; n)pn−1(vn−1) dvn−1. (1)

This is in contrast to more complicated functional dependencies such as on the
values of vn−1 in some extended spatial neighborhoods or on several previous
cascade stages.

2. Scale similarity, which implies that the transition probability distribution W is
independent of the cascade step n and depends only on the ratio vn/vn−1.

The model assumes that each step generates eddies with smaller length scales ∆x,
usually ∆02−n. After the initial effects are forgotten, the probability distribution of
vn is completely determined by the distribution W of the ‘breakdown coefficients’
vn/vn−1 (Frisch, 1995). These assumptions are known to describe well some of the
statistical properties of isotropic turbulence and, in particular, the scaling exponents
of the velocity structure functions (Meneveau & Sreenivasan, 1991),

Sp = 〈|∆u∆x|p〉 ∼ ∆xζp , (2)

where 〈〉 stands for global averaging, and

∆u∆x = u(x+ ∆x/2)− u(x−∆x/2). (3)

This is so even if there is no precise implied dynamical model of how the multiplica-
tive process is related to the Navier-Stokes equations (Jiménez 1998).

The converse of the previous discussion is not true, and intermittency does not
necessarily imply a multiplicative cascade. Structural observations of numerical
and experimental turbulent flows show, for example, that the vorticity is partially
organized into coherent filaments with large aspect ratios, whose lifetimes are long

1 Also with the School of Aeronautics, U. Politécnica Madrid.
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compared to those which would correspond to their smallest dimensions (Jiménez
& Wray, 1998). The concept of ‘scale’ is difficult to apply to these anisotropic
structures, and several models have been proposed in which the flow is described in
terms of self-similar and coherent components.

It was argued by Jiménez and Wray (1998) and Jiménez (1999) that this dif-
ferentiation into components is a natural consequence of intermittency itself and
that any intermittent field, as opposed to a set with no spatial topology, is likely to
develop a coherent component which is essentially different from the background.
This is because the first of the two assumptions above is violated, and the evolution
of the field variable generically depends on global, besides local, information. The
nonlocality of the interactions introduces the average intensity of the fluctuations
as an extra scale for the cascade, self-similarity is lost, and strong structures behave
differently from weaker ones. Thus, while self-similarity is natural for noninteract-
ing variables, it is not a generic behavior for fields in which several elements at the
same stage of the cascade are coupled to each other.

In such cases, such as in three-dimensional turbulence, a full description of the
strong structures should include their geometry, which controls how they interact
with the background, but this has only been possible at the moderate Reynolds
numbers accessible by numerical simulations. Such flows have very short inertial
ranges, and it is difficult in them to study structures whose dimensions are neither
in the dissipative nor in the integral range of scales. This was nevertheless the way
in which vortex filaments with diameters of the order of the Kolmogorov scale were
first identified. Only later could similar signals be educed from experimental flows
at higher Reynolds numbers. A summary was given by Jiménez (1998).

It was argued theoretically by Jiménez and Wray (1998) that these dissipation-
scale structures should only be the most obvious manifestations of coherence and
that a continuum of both weaker and stronger ones should be expected. The former
would have larger diameters and weaker vortices and could perhaps be related to
the low-pressure filaments observed in some experiments (Cadot, Douady & Couder,
1995). The latter would have diameters below the Kolmogorov scale and velocity
differences comparable to those of the presently observed vorticity filaments. Re-
liable numerical and experimental data are lacking for the sub-Kolmogorov scales,
but the purpose of this note is to discuss whether evidence can be found in the
available experiments for, or against, organized structures in the inertial range of
scales.

Experimental data are analyzed in the next section, of which a more extended
version can be found in (Jiménez et al., 1999). The structure of filtered direct
numerical simulation fields is briefly described in §3, and conclusions are offered in
§4.

2. Analysis of experimental data

The scaling properties of the inertial range have traditionally been characterized
by the probability density functions (p.d.f.s) of the velocity differences at different
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Figure 1. Midpoint value of the conditional p.d.f.s of the breakdown coefficients
for the surrogate averaged dissipation, as a function of the averaging length and of
the ‘parent’ velocity increment. Reλ = 1600. The diagonal dashed line represents
the standard Kolmogorov cascade.

separations and, in particular, by their structure functions. It has been repeat-
edly noted, however, that statistical moments are poor discriminants of the dif-
ferences between probability distributions (Chhabra & Sreenivasan, 1992; Nelkin,
1995; Jiménez et al., 1999), so that, even if is found that the structure functions
scale approximately as powers, as in Eq. (2), it is difficult to conclude from that
observation that the p.d.f.s of the breakdown coefficients are truly independent of
the length scale.

Here we directly study the probability distributions, using three time series of
the longitudinal velocity component in approximately isotropic turbulence in low-
temperature helium gas (Belin et al., 1997). The Reynolds numbers are Reλ =
155, 760, and 1600. The range between the integral length Lε and the Kolmogorov
scale η is 8, 400 at the highest Reynolds number, and each set contains 104 − 105

integral scales. For more details, see Jiménez et al. (1999). Only the two highest
Reynolds numbers have clear power-law ranges in their spectra, and they are the
ones used below. The remaining set, whose Reynolds number is comparable to those
of numerical simulations, does not collapse well with them.

We first discuss the p.d.f.s of the breakdown coefficients

W (q2∆x) = W (ε∆x/2ε2∆x) (4)

for the averaged dissipation

ε∆x =
1

∆x

∫ x+∆x/2

x−∆x/2

(∂xu)2 dx. (5)
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Figure 2. Standard deviation of the conditional distributions of the velocity
increments, as a function of the separation and velocity increments of their ‘par-
ent’ intervals. Each line represents a logarithmically spaced separation in the range
2∆x/η = 25(×2)1600, increasing upwards, and is normalized with the global Kol-
mogorov velocity scale uk = ν/η. The dotted lines would correspond to complete
self similarity of the cascade, and the open circles are the abscissae of the velocity
thresholds used to compute Fig. 3(a). Reλ = 1600.

They are roughly symmetrical in (0, 1) and approximately bell-shaped. It was
suggested by Van Atta and Yeh (1975) that they can be characterized by their
mid-point values, W (0.5), which is where their maxima approximately occur. This
value varies with the separation (Van Atta & Yeh, 1975) and with the dissipation in
the parent interval, arguing against strict self-similarity of the cascade, and is given
in Fig. 1. It is seen that the weakest fluctuations at each length scale have narrower
distributions with taller peaks, implying that they break down into sub-segments
whose dissipations tend to be half of that of their parents, as would be expected
in an incoherent situation in which the parent is composed of several uncorrelated
smaller pieces. More intense fluctuations have more spread distributions with lower
central peaks, suggesting coherence. This effect is most pronounced at the smallest
scales.

Another way of characterizing the cascade is to directly study the conditional
probability distributions of the velocity increments as a function of the velocity
increments of their parent intervals. This was done by Jiménez et al. (1999) for
the data sets discussed here. If the cascade were completely self-similar, the con-
ditional p.d.f.s would be universal, and their means and standard deviations would
be proportional to the velocity increment of the parent interval,

〈∆u∆x|∆u2∆x〉 = ∆u2∆x/2, 〈∆u2
∆x|∆u2∆x〉 = ∆u2

2∆x/2
2/3. (6)

The second relation assumes Kolmogorov’s inertial scaling for the energy spectrum.
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The first relation in Eq. (6) is approximately satisfied by the data, but the second
one is not, and the form of the conditional distributions depends on ∆x. The
conditional standard deviations are given in fig. 2 for several separations in the
inertial range. The dotted lines are Eq. (6) and do not describe the experiments
well. The measured deviations are bounded below by a global additive ‘noise’
which is of the order of the Kolmogorov velocity scale at that particular separation,
(ε∆x)1/3. This is consistent with the idea introduced above that the breakdown
of the weak fluctuations is controlled by the background. The situation is different
for the stronger fluctuations, whose intensities depend more linearly on the velocity
differences of their parent intervals. It was shown by Jiménez et al. (1999) that
it is possible to approximately describe Fig. 2 as the superposition of a random
additive process, corresponding to the minimum conditional standard deviation at
each separation and a multiplicative one that generates the linear tails. A similar
conclusion was reached by Friedrich and Peinke (1997).

Several refinements of this analysis are possible. It was, for example, noted by
Jiménez et al. (1999) that velocity increments are used in this context as band-pass
filters to isolate a range of length scales and that sharper filters could give different
results. It was also remarked by Sreenivasan and Dhruva (1998) that this and other
flows are not isotropic and that the scaling improves if this is taken into account by
analyzing increments associated with a given mean velocity. Both corrections were
tested here, the former by using a five-point band-pass filter instead of (3), and the
latter by repeating the analysis only for those segments for which the mean velocity
is in a narrow range around the global mean. Figure 2 is essentially unchanged by
both corrections.

2.1. Educed velocity traces
To gain some understanding of the approximately self-similar intense structures

implied by the linear tails of Fig. 2, we compiled averaged velocity traces conditioned
on strong velocity increments across a given distance. Some precautions had to be
taken to avoid the smearing that would result from counting each structure more
than once. Disjoint ‘active’ segments were defined, each of which was the largest
connected union of segments of width ∆x for which ∆u∆x > uthr, where uthr was
fixed to a multiple of the global r.m.s. value of ∆u∆x. The velocities around the
mid-points of all the active segments were then extracted and averaged together.

The resulting conditionally averaged velocities are shown in Fig. 3(a), for sepa-
rations ranging from the dissipative to the integral range of length scales and for a
relatively high conditioning uthr. They are roughly antisymmetric with widths and
intensities which are consistent with those of the conditioning algorithm. Some-
what similar traces were found by Belin et al. (1996) for the dissipative range and
were interpreted by them as the effect of single vortices advected at an angle to
the mean stream. In the present analysis the averaged structures in Fig. 3 are not
representative of individual velocity traces and cannot be used directly to deduce
the type of structures which are being observed.

Different traces can, in fact, be interpreted as caused by different structures. A
hump of width δ and height uδ is, for example, consistent with a positive vortex of
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Figure 3. Mean velocity, conditioned on ∆u∆x > uthr. Velocities and abscissae
are normalized with the conditioning values, and ∆x/η = 12(×2)3000, increasing in
the direction of the arrow. Reλ = 1600. (a) uthr = 3〈∆u2

∆x〉1/2. These thresholds
are given in Fig. 2. (b) uthr = 0.2〈∆u2

∆x〉1/2.

circulation 2πδuδ passing at a distance O(δ) below the probe (or with a negative
one above it). A negative hump is also consistent with a vortex of the opposite sign.
Because the detection algorithm always centers the structures about their positive
slopes, negative humps precede the detector while positive ones lag behind it, and
their average results in traces similar to those in Fig. 3. If those were the only types
of traces found in our sample, the conditional average will return to the global mean
value in a distance comparable to the detection length. That this is not so is due to
the presence of velocity ‘steps’ which do not immediately return to the mean and
which cannot be explained by vortices. The most likely interpretation of these steps
are vortex sheets or plane stagnation strains. The three kinds of traces are found
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in our sample, as well as others which are harder to interpret, and neither type is
clearly dominant. The traces for the smaller separations are more asymmetric than
those for the larger ones, which could be interpreted as an indication that sheets or
stagnation structures become more common at the smaller scales.

The velocity thresholds used in this figure are plotted in Fig. 2 and fall in the
approximately linear part of the conditional standard deviation curves. It was
checked that the results are independent of the precise threshold as long as it falls
in the linear part of the standard deviation curves. Conditional averages using
a much lower threshold in the range of the background are given in Fig. 3(b).
They quickly return to the mean outside the central detection interval (−0.5, 0.5)
and would, therefore, seem to imply the predominance of vortices among weak
structures. Inspection of individual traces show that conclusion to be incorrect. The
difference between the velocities selected by the two thresholds is that, while those
at the higher threshold retain some coherence outside the detection interval and
therefore produce mean values which are not trivially zero, those at weak thresholds
do not, and the traces outside the detection interval are essentially random. Their
average immediately returns to the global mean. The difference between the two
sets of traces is, therefore, another measure of the higher coherence of the strong
fluctuations as compared with the weaker ones.

4. Direct numerical simulations
Given the difficulties in interpreting the conditional velocity traces obtained from

one-dimensional signals, it is tempting to compare them with the results of sim-
ilar conditioning in three-dimensional direct numerical simulations even if their
Reynolds numbers are lower. In this section we present two figures from an isotropic
simulation at Reλ = 168 (Jiménez & Wray, 1998), for which Lε/η = 290. A plane
section of the vorticity magnitude without filtering is shown in Fig. 4(a) and shows
a complicated pattern of vortex sheets whose width is a few Kolmogorov scales.
Detailed inspection shows that the most intense vorticity is in the form of circular
vortices, some of which are associated to sheets, presumably corresponding to the
filaments observed in three-dimensional visualizations (Jiménez & Wray, 1998).

To obtain an equivalent representation for the velocity differences, we define a
‘discrete vorticity’,

Ω∆x, i = ∆x−1εijk∆uk,∆xj , (7)

where εijk is the fully antisymmetric unit tensor and the velocity increments replace
the usual derivatives. That quantity, although not a true vector, is an approxima-
tion to the result of filtering the vorticity over a box of size ∆x3 and gives a sense
of how the velocity increments separate into rotational and potential components.
The magnitude of Ω∆x is shown in Fig. 4(b) and is dominated by a strong ‘vortex’
at the location of the cross. It can be shown from three-dimensional representa-
tions that the most intense values of the discrete vorticity magnitude are organized
into roughly tubular objects, although with smaller aspect ratios than those found
in the dissipation range, and that ‘vortex’ lines of Ω∆x run along their axes and
connect neighboring objects as would be expected of true vortices. It can be tested
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Figure 4. (a) Vorticity magnitude in a plane section across a triply periodic
computational box of isotropic turbulence at Reλ = 170 (Jiménez & Wray, 1998).
The smallest visible features are approximately 2-3 Kolmogorov lengths across.
(b) ‘Discrete vorticity’ magnitude in the same plane. The velocity increments are
computed over ∆x/η = 50, which is the size of black cross. The scale bars to the
right are normalized with the global r.m.s. vorticity magnitude.
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independently that a probe moving in the neighborhood of each of these objects,
more or less perpendicularly to their axes, would see velocity increments at scale
∆x which are consistent with the passage of a vortex, but a two-dimensional section
of ∆u∆x contains other structures which are difficult to explain in this way.

The comparison of the two parts of Fig. 4 shows that the discrete ‘vortex’ is not
simply a smoothed version of a single dissipation-scale structure, but the collective
effect of a particularly strong sheet and a cluster of smaller vortex cores.

5. Conclusions

We have shown that available experimental evidence is inconsistent with a strictly
self-similar multiplicative cascade in the inertial range. A better description is that
the velocity increments at scale ∆x are related to those at their ‘parent’ intervals
by the superposition of a local multiplicative process and of a ‘global’ additive noise
whose intensity is proportional to the standard deviation of ∆u2∆x. This is con-
sistent with the theoretical arguments outlined in the introduction, which suggest
that this superposition is a generic property of cascades in fields and results in the
separation of the field into weak and strong components with different behaviors.
This separation is illustrated here by the conditional distributions of the breakdown
coefficients of the dissipation, which are shown to depend on the relative intensity
of their parent intervals with respect to their Kolmogorov-predicted average.

The implied cascade model is

vn+1 = vnφ1 + 〈v2
n〉1/2φ2, (8)

where φ1 and φ2 are mutually independent stochastic processes. As far as we are
aware, models of this type have seldom been considered in the literature although
some related numerical experiments, in which the additive term is missing but the
variance of φ1 depends nonlinearly on 〈v2

n〉1/2, were presented by Jiménez (1999).
The case in which φ1 is deterministic leads to a Fokker-Plank equation which may
result in intermittency under the proper assumptions for φ2 and which has been
studied by Friedrich and Peinke (1997).

The multiplicative cascade is recovered for fluctuations which are much stronger
than the background, and such fluctuations were studied both through conditional
averaging and, to a lesser extend, through visualizations of numerical fields at lower
Reynolds numbers. It was noted that the symmetry of the conditionally obtained
averages is spurious and can be interpreted as the superposition of different struc-
tures that include both quasi-circular vortices and vortex or stagnation sheets. The
latter seem to become more prevalent at smaller separations.

It is impossible with the present data to distinguish between the different struc-
tural models, but the comparison with the results of DNS suggests that inertial-scale
structures, including vortices, exist and that at least some of them consist of clus-
ters of smaller structures. The dynamics of the inertial range of scales, in isotropic
turbulence or otherwise, is one of the greatest unknowns in our present understand-
ing of turbulence. The ambiguities of the present study underline the need for high
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Reynolds number experiments which are more complete than time traces of one
velocity component.
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manuscript.
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