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Structure-based modeling for
homogeneous MHD turbulence

By S. C. Kassinos AND W. C. Reynolds

1. Motivation and objectives

The impact of a strong magnetic field on the turbulent flow of an electrically
conductive fluid is encountered in diverse technological applications. Examples in-
clude liquid-metal cooling systems for fusion reactors, electromechanical brakes in
continuous steel casting, solar wind turbulence and coronal heating, and the opti-
mization process of semiconductor crystal growth. Because magnetohydrodynamic
(MHD) effects are encountered in technologically important flows, it is desirable to
incorporate the relevant effects in mainstream turbulence models. Current model-
ing of MHD turbulence tends to rely on models developed for specific applications,
which by their nature are of limited scope and applicability. Incorporating the rele-
vant physics in more general modern turbulence models has the advantage that all
physics, not just the interaction of the turbulence with the magnetic field, can be
captured for a wide range of conditions.

One would expect structure-based models to be well suited for capturing MHD ef-
fects. To understand why, it is useful to consider the limit of low magnetic Reynolds
numbers and strong magnetic fields, conditions that are relevant to technological
flows. In this limit, the Lorentz force can be treated in a quasi-static approxima-
tion and expressed as a linear function of the velocity fluctuations. This simplified
picture of the interaction between the magnetic field and homogeneous turbulence
highlights the key role played by the turbulence structure in MHD flows. The mag-
netic field has a strong effect on the angular distribution of turbulent kinetic energy
in spectral space and, hence, on the anisotropy of the componentality and dimen-
sionality of the turbulence. The Lorentz force preferentially counteracts velocity
fluctuations perpendicular to the direction of the magnetic field, in the process
causing a net dissipation of turbulent kinetic energy called the Joule dissipation.
Joule dissipation is highly anisotropic, being largest for those modes that have their
wavenumber aligned with the magnetic field and smallest for those modes that have
their wavenumber in the plane normal to the magnetic field. Overall, the magnetic
field tends to eliminate gradients of the turbulence in the direction of the magnetic
lines and in the process lengthen turbulent eddies in that direction. Joule damping
tends to produce structurally two-dimensional, (but nevertheless three-component)
turbulence, where the velocity depends only on the coordinates in the plane per-
pendicular to the magnetic field. It is important to note that turbulence produced
this way has a larger fraction of the turbulent kinetic energy residing in velocity
fluctuations along the direction of the magnetic field. Thus MHD turbulence seems
to remain three-component even though it is often approaching a two-dimensional
state. Despite its angular anisotropy, Joule dissipation acts equally at all scales and,
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hence, modifies the standard Kolmogorov phenomenology of the turbulent spectra,
which assumes only viscous dissipation at small scales. This simplified picture of
homogeneous MHD turbulence shows the key role played by the structure of the
turbulence during the interaction with the magnetic field. In turn this suggests that
the structure-based family of models is particularly well suited to capture the main
aspects of MHD turbulence and stands a good chance of bringing these physics into
more mainstream turbulence models.

Here we present models of MHD turbulence in the context of the Interacting
Particle Representation Model (IPRM) (Kassinos & Reynolds, 1994 and 1996) and
the one-point R-D model (Kassinos & Reynolds, 1997). The IPRM is effectively
a simplified two-point theory that is exact for Rapid Distortion Theory (RDT)
and quite robust for general deformations of homogeneous turbulence. The R-D
model is a one-point structure-based model which is currently limited to general
irrotational deformations of homogeneous turbulence.

2. Accomplishments

2.1 Background
The effects of a uniform magnetic field applied on the turbulent flow of an elec-

trically conductive fluid is characterized by two dimensionless parameters, the first
being the magnetic Reynolds number

RmL =
vL

η
= (

v

L
)(

L2

η
). (1)

Here v is the r.m.s. fluctuating velocity

v =
√

1
3Rii Rij = uiuj , (2)

where ui is the fluctuating velocity, and L is the integral length scale. η is the
magnetic diffusivity

η = 1/(σµ∗) , (3)

where σ is the electric conductivity of the fluid, and µ∗ is the fluid magnetic per-
meability (here we use µ∗ for the magnetic permeability and reserve µ for the
dynamic viscosity). Thus the magnetic Reynolds number represents the ratio of the
characteristic time scale for diffusion of the magnetic field to the time scale of the
turbulence. Here we are interested in the limit of low magnetic Reynolds number,

RmL � 1. (4)

For a wide range of applications, (4) is an excellent approximation. For example,
for liquid metals the magnetic Prandtl number,

Pm ≡
ν

η
=

RmL

ReL
ReL =

vL

ν
(5)
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is quite small (≈ 10−7 for mercury, and ≈ 10−5 for sodium). The physical interpre-
tation of (4) is that the distortion of the magnetic field lines by the fluid turbulence
is sufficiently small so that the induced magnetic fluctuations b around the mean
(imposed) magnetic field B are small and can be computed by a quasi-static theory
(Roberts, 1967). In this case, the Lorentz force induced by the magnetic field B
becomes a linear function of the velocity u.

The second relevant dimensionless parameter is the magnetic interaction number
(or Stuart number),

N ≡ σB2L

ρv
=

τ

τm
(6)

where B is the magnitude of the magnetic field and ρ is the fluid density. N rep-
resents the ratio of the large-eddy turnover time τ to the Joule time τm, i.e. the
characteristic time scale for dissipation of turbulent kinetic energy by the action of
the Lorentz force. The ability of an imposed magnetic field to drive the turbulence
to a two-dimensional three-component state depends on N . Under the continuous
action of the Lorentz force, energy becomes increasingly concentrated in modes in-
dependent of the coordinate direction aligned with B. As a two-dimensional state
is approached, Joule dissipation decreases because fewer and fewer modes with gra-
dients in the direction of B are left available. In addition, the tendency towards
two-dimensionalization and anisotropy is continuously opposed by non-linear angu-
lar energy transfer from modes perpendicular to B to other modes, which tends to
restore isotropy. If N is larger than some critical value Nc, the Lorentz force is able
to drive the turbulence to a state of complete two-dimensionalization. For smaller
N , the Joule dissipation is balanced by non-linear transfer before a complete two-
dimensionalization is reached. For very small N (N <∼ 1), the anisotropy induced
by the Joule dissipation is negligible. Here we consider N in the range 1− 50.

2.2 Governing equations

We consider homogeneous turbulence in an incompressible electrically conductive
fluid with uniform fluid density ρ, kinematic viscosity ν, and magnetic diffusivity
η. A uniform magnetic field B̃ is applied to the fluid. The governing magnetohy-
drodynamic equations can be summarized as (Roberts, 1967)

ũi,i = 0 (7)

∂ũi
∂t

+ ũz ũi,z = −1
ρ
p̃,i +

1
µ∗ρ

B̃z B̃i,z + ν ũi,zz (8)

B̃i,i = 0 (9)

∂B̃i

∂t
+ ũz B̃i,z = B̃z ũi,z + η B̃i,zz . (10)
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Here (̃ ) denotes the instantaneous value of the variable ( ). At this point it is
convenient to decompose the hydrodynamic and magnetic field variables into mean
and fluctuating parts according to the scheme

ũi = Ui + ui, p̃ = P + p (11)

and
B̃i = Bi + bi , (12)

where Ui and P are the mean values of the fluid velocity and pressure, and ui and
p are the corresponding fluctuating values. Bi is the mean (externally applied)
value of the magnetic field, and bi is the turbulence-induced magnetic fluctuation.
Applying Eqs. (11) and (12) to Eqs. (7)-(10) and making use of the homogeneity
assumption, we obtain for the mean fields

DUi
Dt

= −1
ρ
P,i +

1
µ∗ρ

BzBi,z (13)

DBi

Dt
= Ui,zBz . (14)

Hereafter we employ the notation

D( )
Dt

=
∂( )
∂t

+ Uz
∂( )
∂xz

and Gij = Ui,j . (15)

Note that under the homogeneity assumption the equations for the mean fields are
decoupled from the turbulence. Also note that in this case the mean magnetic
lines are transported by the flow as mean material lines regardless of the value of
the magnetic diffusivity. This occurs because under the homogeneity assumption
the spatial uniformity of Bi is preserved and the value of the magnetic diffusivity
is irrelevant to the evolution of the mean field. Finally, in decaying turbulence
with no mean deformation Bi remains uniform in space and constant in time. The
continuity and transport equations for the fluctuating fields, assuming uniform Bi,
are

ui,i = 0 (16)

Dui
Dt

= −Gizuz − (uiuz),z −
1
ρ
p,i +

1
µ∗ρ

(Bzbi,z + bzbi,z) + νui,zz (17)

bi,i = 0 (18)

Dbi
Dt

= Gizbz + Bzui,z − uzbi,z + bzui,z + ηbi,zz . (19)

We consider the limit of low magnetic Reynolds number (RmL � 1) described
above, namely

RmL = (
v

L
)(

L2

η
)� 1 . (20)
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When the magnetic diffusion time scale is much smaller than the other time scales
in the problem, the magnetic fluctuations induced by the fluid turbulence are much
smaller than the mean magnetic field (Roberts, 1967), and as a consequence we
take

β � B, where β =
√
〈bibi〉/3, B =

√
BiBi . (21)

It is easily seen from (21) that in this limit one can simplify (17) to

Dui
Dt

= −Gizuz − (uiuz),z −
1
ρ
p,i +

1
µ∗ρ

Bbi,z + νui,zz . (22)

Somewhat more care is needed in simplifying the equation (19) for bi. For this
purpose we use the non-dimensionalization

t = t∗
L

v
ui = u∗i v Ui = U∗i SL xi = x∗i L bi = b∗i β (23)

where v and L are the rms turbulent velocity and integral scale defined above and
here evaluated at some appropriate time t = t1. S =

√
(SijSij) is the rms mean

strain-rate. Using this non-dimensionalization scheme, one finds

∂b∗i
∂t∗

RmL +
SL

v
RmLU∗z b∗i,z = −RmLu∗zb

∗
i,z + RmL

B

β

Bz

B
u∗i,z + RmL

SL

v
U∗i,zb

∗
z + b∗i,zz .

(24)
It is understood that spatial derivatives in (24) are with respect to x∗. The im-
plicit assumption here is that the convective terms on the LHS of (24) scale on
the characteristic time of the turbulence. The factor SL/v multiplying the second
term represents the ratio of the time scale of the turbulence to that of the mean
deformation. Here we assume mild deformation rates with SL/v ≈ 1. This allows
us to drop the second term, but clearly, this assumption is invalid under RDT.
Under the assumption of low magnetic Reynolds number, (24) reduces to

0 = RmL

B

β

Bz

B
u∗i,z + b∗i,zz . (25)

The interpretation of (25) is that when the time scale of the turbulence is much
larger than the time needed for magnetic diffusion, the magnetic fluctuation field
adjusts instantaneously to changes induced by the velocity field. This simplification
corresponds to the quasi-static approximation of Roberts (1967). In dimensional
form (25) becomes

ηbi,kk = −Bzui,z . (26)

Note that the quasi-static approximation (26) allows the fluctuating magnetic field
to be obtained from knowledge of the velocity fluctuation field and B.

Here we consider homogeneous turbulence, for which the hydromagnetic variables
can be expanded in Fourier series. Substitution of these series in (22) and (26) leads
to the evolution equations for the velocity Fourier coefficients. In the next section,
we present an equivalent formulation in terms of the IPRM.
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2.3 An Interacting Particle Representation Model (IPRM)
After a brief review of the original IPRM formulation proposed by Kassinos &

Reynolds (1994, 1996), we present a modified IPRM that includes MHD effects
for the case of low magnetic Reynolds number (RmL << 1). At present we focus
on building an IPRM formulation that captures the basic physics of homogeneous
MHD turbulence and for this reason our discussion is biased towards homogeneous
decaying MHD turbulence (no mean deformation). This bias in the discussion stems
from the fact that most of the available experiments and simulations reported data
on one-point statistics only for this special case. Our long term objective is to
formulate a unified IPRM that can handle homogeneous MHD turbulence in the
presence of general mean deformation, and, therefore, modifications proposed here
and evaluated for the case of decaying homogeneous MHD turbulence may have to
be revised.

The basic IPRM formulation
The basic idea in the IPRM is to follow an ensemble of “particles”, determine

the statistics of the ensemble, and use those as the representation for the one-point
statistics of the corresponding field. The IPRM particles are not physical elements
of fluid, rather they represent a convenient conceptual construction. Details of the
IPRM formulation are described in Kassinos & Reynolds (1996, 1997), and the
interested reader is referred there. Each of the hypothetical particles is assigned a
set of properties:
• V velocity vector
• W vorticity vector
• S stream function vector
• N gradient vector
• P pressure.

In the IPRM we follow the evolution of “clusters” of particles, each cluster repre-
senting a collection of particles having the same unit gradient vector ni = Ni/N .
Averaging over the particles of a given cluster produces conditional moments. For
example, the conditional stresses are defined by

R
|n

ij ≡ 〈ViVj |n〉 . (27)

In a similar fashion, one can define the conditioned dimensionality and circulicity
tensors

D
|n

ij ≡ 〈V 2ninj|n〉 = 〈V 2|n〉ninj
and

F
|n

ij ≡ 〈V 2sisj |n〉. (28)

The physical interpretation of these conditional moments is discussed in Kassinos
& Reynolds (1994, 1996). Further averaging of the conditional moments over all
possible clusters yields the one-point statistics for the turbulent field, for example

Rij ≡ uiuj = 〈R|nij 〉 Dij ≡ Ψ′n,iΨ
′
n,j = 〈D|nij 〉 Fij ≡ Ψ′i,nΨ′j,n = 〈F |nij 〉 (29)
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where the brackets in (29) represent averaging over all clusters and Ψ′i is turbulence
stream function (see Kassinos & Reynolds, 1994).

The relevant equations for a given cluster are the conditionally-averaged stress
evolution equation

Ṙ
|n

ij = −Gv
ikR

|n

kj −Gv
jkR

|n

ki −Cr[2R
|n

ij −R
|n

kk(δij − ninj)]

+ [Gn
km + Gv

km](R
|n

imnknj + R
|n

jmnkni)
(30)

and the unit gradient vector evolution equation

ṅi = −Gn
kink + Gn

krnknrni . (31)

Note that (30) and (31) are closed for the conditional stress tensor R
|n

ij and ni. That
is, they can be solved without reference to other conditioned moments.
The effective gradient tensors Gv

ij and Gn
ij are defined by

Gn
ij = Gij + Cn Ge

ij Gv
ij = Gij + Cv Ge

ij Ge
ij =

1
τ∗

rikdkj . (32)

Here rij = Rij/q2 and dij = Dij/q2 where q2 = 2k = Rii. The two constants
are taken to be Cn = 2.2Cv = 2.2. The different values for these two constants
account for the different rates of return to isotropy of D and R. The time scale τ∗

is evaluated so that the dissipation rate in the IPRM

εPRM = q2 Cv
τ∗

rikdkmrmi (33)

matches that obtained from a model equation for the dissipation rate,

ε̇ = −C0(ε2/q2)− CsSpqrpqε−CΩ

√
ΩnΩmdnm ε . (34)

The last term in (34) accounts for the suppression of ε by mean rotation. Here Ωi
is the mean vorticity vector, and the constants are taken to be

C0 = 3.67 Cs = 3.0 and CΩ = 0.01 . (35)

Mean rotation acting on the particles tends to produce rotational randomization
of the V vectors around the n vectors (Mansour et al. 1991, Kassinos & Reynolds
1994). The third (bracketed) term on the RHS of (30) is the slow rotational random-
ization model, which assumes that the effective rotation due to nonlinear particle-
particle interactions, Ω∗i = εipqG

e
qp, should induce a similar randomization effect

while leaving the conditional energy unmodified. Based on dimensional considera-
tions and requirements for material indifference to rotation (Speziale 1981, 1985),
we take

Cr = 8.5 Ω∗ fpqnpnq, Ω∗ =
√

Ω∗kΩ
∗
k, Ω∗i = εipqG

e
qp . (36)
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Here fij = Fij/q2. The rotational randomization coefficient Cr is sensitized to
the orientation of the n vector so that the slow rotational randomization vanishes
whenever the large-scale circulation is confined in the plane normal to n.

The pressure P is determined by the requirement that R
|n

iknk = 0 is maintained
by (30) and (31). This determines the effects of the slow pressure strain−rate-term
without the need for further modeling assumptions

P = −2Gmk
VkNm

N2︸ ︷︷ ︸
rapid

− (Cv + Cn)
τ∗

rmtdtk
VkNm

N2︸ ︷︷ ︸
slow

. (37)

2.3.1 Modifications for MHD turbulence
In the case of homogeneous turbulence in a conductive fluid at low RmL , MHD

effects can be incorporated in the basic IPRM formulation with minimal additional
modeling. The effects of Joule dissipation as described by (22) and (26) can be
incorporated in the evolution equation for the particle velocity (see Kassinos &
Reynolds, 1994, 1996) through the addition of the term

V̇i = . . . − 1
τm

mzmknznkVi . (38)

Here the ellipsis stands for the standard terms as given by Kassinos & Reynolds
(1996), and 1/τm is the inverse magnetic time scale defined by [see (6)]

1
τm

=
σB2

ρ
.

In (38) we have also used mi to denote the unit mean applied magnetic field

mi = Bi/B B =
√

BkBk . (39)

The corresponding contribution in the cluster averaged Reynolds stress equation is

Ṙ
|n

ij = . . .− 2
τm

mzmknznkR
|n

ij . (40)

Here the ellipsis stands for the RHS of (30). In addition, because the Lorentz force
modifies the basic phenomenology of the non-linear interactions and the turbulent
cascade, we have found that improved predictions can be obtained if the effective-
gradients model is replaced by the formulation

Gn
ij = Gij + CnG

e
ij Gv

ij = Gij + CvG
e
ij Ge

ij =
1
τ∗

rikfkj . (41)

Here rij = Rij/q2 and fij = fij/q2 where q2 = 2k = Rii. The two constants are
taken to be Cn = Cv = 1.0. Note that the effective gradients model (41) differs from
the model (32) suggested by Kassinos & Reynolds (1996). The present model seems
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to be better suited for modeling decaying MHD turbulence than the one previously
reported, but additional evaluation in deformed homogeneous turbulence (with and
without MHD effects) is needed to assess its performance in more general flows.

As before, the time scale τ∗ is evaluated so as to ensure that the dissipation in the
IPRM matches the one obtained from a model equation for the evolution of the
dissipation rate, which now also includes a term accounting for the effects of the
Lorentz force,

ε̇ = −C0(ε2/q2)− CsSpqrpqε− CΩ

√
ΩnΩmdnm ε− Cm

τm
mzmkdkz ε . (42)

The value of the model constant Cm is taken to be Cm = 2.9. The total magnetic
(or Joule) dissipation is determined from the trace of (40) and is

εµ =
2

τm
mzmkdzk . (43)

One-point R-D formulation

A one-point model for the irrotational deformation of homogeneous turbulence
was formulated by Kassinos & Reynolds (1997). This model uses the evolution
equations for the normalized Reynolds stress r and dimensionality d as obtained
directly from the IPRM formulation. Additional modeling assumptions are intro-
duced in order to deal with the non-locality of the pressure fluctuations and of the
magnetic effects.

Modifications to the R-D formulation for the case of homogeneous MHD turbulence
follow directly from the IPRM modifications suggested above. Averaging the mod-
ified IPRM equations (31), (38), and (40) over all clusters and using group theory
to put higher-rank tensors (like the familiar Mijpq in the rapid pressure−strain-rate
term) in a convenient form, we obtain

ḋij = −djkG
n
ki − dikG

n
kj + 2Gv

kmrkm(dij − 2
3δij)

− 2
3Gv

kmdmkδij + Gv
kk(δij − 4

3dij − 2
3rij)

+ (2Gn
km + Gv

km)Zd
kmij + Gv

kmZr
mkij −Gv

kmZf
mkij −

2
τm

mpmq(Zd
pqij − dpqdij)

(44)
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and

ṙij = 1
3

[
(Gv

mj + Gn
mj)(2dmi + rmi) + (Gv

mi + Gn
mi)(2dmj + rmj)

+ Gv
jm(dmi − rmi) + Gv

im(dmj − rmj) + Gn
jm(dmi + 2rmi) + Gn

im(dmj + 2rmj)
]

+ 2Gv
kmrkmrij − 1

2
(Gv

ij + Gv
ji + Gn

ij + Gn
ji)

+ (Gv
mk + Gn

mk)(Z
f
ikmj − Zr

ikmj − Zd
ikmj)

− Ĉrfpq[Z
f
ijpq − Zr

ijpq + 2
3δpq(rij − fij) + 1

3δij(rpq − fpq)]

− 1
τm

[mpmq(Z
f
pqij − Zr

pqij − Zd
pqij)− δij + 2

3 (2rij + dij) + 2
3mpmq(2dpq + rpq)δij ]

+
2

τm
mpmqdpqrij .

(45)
Here Gn

ij and Gv
ij are as defined for the IPRM in (41), and Ĉr = 8.5Ω∗ where Ω∗ is

given in (36). The fourth-rank tensors

Zr
ijkm = 〈V 2vivjvkvm〉/q2, Zd

ijkm = 〈V 2ninjnknm〉/q2, Zf
ijkm = 〈V 2sisjsksm〉/q2

(46)
must be modeled (v, n, and s denote unit vectors). We have constructed a model for
the energy-weighted fourth moment of any vector ti in terms of its second moment tij
that allows the successful closure of (45) and (46) while maintaining full realizability
of the fourth-order moments. The same model can be used for each of the three
vectors vi, ni, and si and their moments and has the general form

Zt
ijpq =〈V 2titjtptq〉/q2 = C1 i ◦ i + C2 i ◦ t

+ C3 t ◦ t + C4 i ◦ t2 + C5 t ◦ t2 + C6 t2 ◦ t2.
(47)

Here i and t stand for δij and tij = 〈V 2titj〉/q2 respectively. Extended tensor
notation is used in (47) where the fully symmetric product of two second-rank
tensors a and b is denoted by

a ◦b ≡ aijbpq + aipbjq + ajpbiq + aiqbjp + ajqbip + apqbij . (48)

The coefficients C1-C6 are functions of the invariants of tij and are determined by
enforcing the trace condition Zt

ijkk = tij and 2D realizability conditions for the case
when the vectors ti lie in a plane.

For high magnetic numbers the applied field can drive decaying homogeneous turbu-
lence into a 2D-3C state. In this case, the magnetic contribution in (45) dominates,
and careful modeling of the Z terms therein is important in order to maintain realiz-
ability. In the limit when the turbulence becomes 2D-3C, independent of the direc-
tion of the magnetic field m, the magnetic contribution from the fourth-moments
reduces exactly to the simple form

mpmq(Z
f
pqij − Zr

pqij − Zd
pqij) = 1

2 [mimk(fkj − rkj) + mjmk(fki − rki)] . (49)
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To maintain realizability it is important to satisfy (49) in the limit of 2D-3C tur-
bulence, especially in the dominant magnetic contribution term. At this stage we
have used rather simple Z models, which satisfy individual realizability constraints
but do not satisfy (49) exactly. In order to test the basic ideas without worrying
at this early stage about fine-tuning the Z model (which can nevertheless be done),
we maintain realizability by using a simple interpolation of the exact forms of the
magnetic term for (nearly) isotropic turbulence and for 2D-3C turbulence (49). The
resulting form of the r equation is

ṙij = 1
3

[
(Gv

mj + Gn
mj)(2dmi + rmi) + (Gv

mi + Gn
mi)(2dmj + rmj)

+ Gv
jm(dmi − rmi) + Gv

im(dmj − rmj) + Gn
jm(dmi + 2rmi) + Gn

im(dmj + 2rmj)
]

+ 2Gv
kmrkmrij − 1

2 (Gv
ij + Gv

ji + Gn
ij + Gn

ji)

+ (Gv
mk + Gn

mk)(Z
f
ikmj − Zr

ikmj − Zd
ikmj)

− Ĉrfpq[Z
f
ijpq − Zr

ijpq + 2
3δpq(rij − fij) + 1

3δij(rpq − fpq)]

− 1
τm

[
φ mpmq(Z

f
pqij − Zr

pqij − Zd
pqij)

+ (1− φ) 1
2 [mimk(rkj − fkj) + mjmk(rki − fki)]

− δij + 2
3 (2rij + dij) + 2

3mpmq(2dpq + rpq)δij

]
+

2
τm

mpmq dpqrij .

(50)

The parameter
φ = (3mkmzdkz)0.02 log(1+N).

is unity for isotropic turbulence and becomes zero in the limit of 2D turbulence
independent of the direction of the magnetic field.

In the future we plan to ensure realizability by using an improved formulation of Z
model that ensures that the proper relations among Zr, Zf and Zd are satisfied in
the limit of 2D turbulence.

2.4 Evaluation for homogeneous MHD turbulence
The modified IPRM and one-point R-D models have been evaluated for the case

of decaying homogeneous turbulence in a conductive fluid which at time t = t1 is
exposed to a uniform magnetic field Bi = Bδi1.

The test case and conditions have been chosen to match as closely as possible those
used in the DNS of Schumann (1976). The simulations of Schumann suffer from the
limitations in computer power of that era, but they are one of the few numerical
experiments that report detailed information on one-point statistics.

In Schumann’s simulations the spatial resolution was 323, the initial Reynolds num-
ber based on the integral length scale L was

ReL =
vL

ν
= 60 v =

√
Rii/3. (51)
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The initial condition was a realization of a Gaussian random velocity field. The
turbulence was allowed to decay for a period t ≤ t1, during which the magnetic
field was switched off. At time t = t1, a uniform magnetic field Bi = Bδi1 was
switched on and maintained constant until a later time, t = t2, when it was again
switched off. The simulations were terminated at a later time t = t3. Results from
these simulations were scaled with the integral length scale L1 = L(t1) and the
r.m.s. velocity v1 = v(t1), which were evaluated at the activation time t = t1. In
these normalized units, the times at which the magnetic field was switched on or
off and when the computations were terminated are

{t1, t2, t3} = {0.4, 1.2, 2.0}L1

v1
. (52)

Simulations were carried out with magnetic fields corresponding to magnetic inter-
action numbers N = 0, 1, 5, and 50. Schumann used the initial conditions at t = 0
to extract the inverse magnetic time scale σ(B)2/ρ for the time interval (t1, t2).

For the purpose of the IPRM and R-D models, the inverse magnetic time scale was
estimated from the initial conditions according to [see (6)]

1
τm

= σ(B)2/ρ = N
vo
Lo

= N vo
εo

(vo)3
= N

εo
(vo)2

= 3N
εo
q2
o

, (53)

where the subscript o in (53) denotes variables at t = 0 and we have used

Lo = (vo)3/εo . (54)

Figure 1a shows the evolution of the turbulent kinetic energy normalized with its
value k(t1) at activation time t1. Following Schumann’s choice, evolutions are shown
in terms of the dimensionless time

t∗ = t
L1

v1
. (55)

Results are shown for four different magnetic interaction numbers (N = 0, 1, 5, and
50). DNS results are shown as symbols, the predictions of the IPRM are shown as
solid lines, and those of the R-D model are shown as dashed lines. The case N = 0
corresponds to pure decay of homogeneous isotropic turbulence for the entire time
interval t = (0, t3). The discrepancy between the DNS and model predictions for
the rate of decay at large times (for N = 0) can partly be attributed to the rather
limited resolution of the DNS. For the remaining cases the magnetic field is active
in the time interval t = (t1, t2), and this is reflected in the enhanced rate of decay of
the turbulent kinetic energy due to Joule dissipation. The predictions of the IPRM
and one-point model are in good agreement with each other and in relatively good
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Figure 1. (a) Normalized turbulent kinetic energy as a function of time for various
values of the magnetic number N . (b) Ratio of R11 (Reynolds stress component
parallel to applied magnetic field) to R22 (Reynolds stress component normal to
applied magnetic field) as a function of time for various values of the magnetic
number N . Solid lines represent predictions of the IPRM and dashed lines represent
those of the one-point R-D model. Symbols are from the 1976 DNS of Schumann
(�: N = 0, • : N = 1, : N = 5, H: N = 50).

agreement with the DNS results. Except for N = 50, the models tend to predict a
somewhat lower decay rate than what is found in the DNS.

Figure 1b shows the time evolution of the ratio R11/R22, i.e. the ratio between the
Reynolds stress components in the directions parallel and normal to the magnetic
field m. In general the development of Reynolds stress anisotropy is captured well
by both models. It is worth noting that, in the absence of a magnetic field, the DNS
data tends to develop anisotropy in the opposite direction. It is not clear how much
results at nonzero N are affected by this trend, but it is evident that at activation
time t1 the DNS results exhibit a reverse anisotropy that has to be overcome by the
action of the magnetic field.

The evolution of the magnetic dissipation εµ [see (43)] is shown in Fig. 2. Fol-
lowing Schumann’s work, εµ is plotted for the entire time interval t = 0 to t = t3 as
if the magnetic field was constant at all times. Both the IPRM and the one-point
R-D model are in excellent agreement with DNS predictions. Upon activation of
the magnetic field at t = t1, Joule dissipation, εµ, decreases quickly as the ed-
dies become elongated in the direction of the magnetic lines, and the turbulence
becomes independent of the direction along m. At large magnetic interaction num-
bers (N ≈ 50), these adjustments take place almost instantaneously upon activation
of the magnetic field.

The evolution of the components of the normalized Reynolds stress and dimension-
ality tensors are shown in Fig. 3 for the case N = 5. Here the comparison is only
between the IPRM and the one-point R-D model. Both models maintain isotropy
until the activation time t = t1. Activation of the magnetic field is followed by
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Figure 2. Evolution of the total Joule dissipation for various values of the
magnetic number N . The results are plotted as if the magnetic field was active at
all times. Solid lines represent predictions of the IPRM and dashed lines represent
those of the one-point R-D model. Symbols are from the 1976 DNS of Schumann
(• : N = 1, �: N = 5, H: N = 50).
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Figure 3. (a) Evolution of the normalized Reynolds stress tensor for the case
N = 5. (b) Evolution of the normalized dimensionality tensor for the case N = 5.
Solid lines represent predictions of the IPRM and dashed lines represent those of
the one-point R-D model.

a rapid decrease in the dimensionality component in the direction of the magnetic
field, d11, and corresponding increase in r11. As shown in Fig. 3, by the deactivation
time t = t2 the turbulence has become almost two-dimensional (2D) independent
of the x1, but clearly the turbulence is still in a three-component (3C) state.
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3. Future plans
Here we developed extensions to the IPRM and one-point R-D models for homo-

geneous MHD turbulence. In principle these extensions should be valid not only
for the case of decaying MHD turbulence (the only test case considered here), but
in the presence of mean deformation as well. We plan to evaluate these models for
more general cases where a mean deformation is applied to homogeneous turbulence
in addition to the magnetic field. Our aim is to evaluate the performance of the
modified effective gradients for general deformations, and to improve the model for
the fourth-moment tensors Z, so that important relations among fourth-moments
are satisfied when the turbulence reaches important limiting states.
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