Center for Turbulence Research 329
Annual Research Briefs 1999

On the use of the optimal control
theory for deriving wall models for LES

By F. Nicoud' AND J. Baggett?

1. Motivations and objectives

The large number of grid points required in the near-wall region of attached
turbulent boundary layers is the chief obstacle to applying large eddy simulation
(LES) to many flows of engineering interest. Current subgrid scale (SGS) models
do not accurately model the subgrid scale Reynolds stresses (Baggett et al. 1997,
Jiménez & Moser 1998). Thus, if the LES is to include the near-wall region, the
filter width has to be such that most of the Reynolds stresses are carried by resolved
motions. This requires the filter width to scale as a fixed fraction of the local
turbulent integral scales which scale as the distance to the wall. Baggett et al.
(1997) calculated that the number of grid points required for accurate LES of a
turbulent boundary layer with a resolved near-wall region scales as N ~ Rei, where
Re; is the friction Reynolds number.

To alleviate these prohibitive near-wall resolution requirements, the no-slip bound-
ary condition is replaced by approximate boundary conditions. The approximate
boundary conditions attempt to account for the effects of the unresolved near-wall
region on the outer flow. In the most common approach, the wall stresses are mod-
eled and the transpiration velocity is set to zero. This approach was first introduced
by Deardorff (1970) and Schumann (1975); the latter assumed the streamwise wall
stress was in phase with the streamwise velocity at the first off-wall grid point. More
recently, there have been attempts to provide wall stress models that incorporate
more physics. For instance, a two-layer approach has been employed in which the
three-dimensional unsteady boundary layer equations are integrated on an embed-
ded near-wall grid to estimate the wall stresses (Balaras et al. 1996, Cabot 1995).
Cabot has shown that the two-layer model can yield better predictions of first-order
quantities such as mean wall stress even in complex flow regions such as the sepa-
rated flow behind a backward-facing step (Cabot 1996). A more complete review is
given in Nicoud et al. (1999).

However, even the exact wall stresses from a field to which the appropriate LES
filter has been applied may not be good approximate boundary conditions for ad-
vancing the filtered LES velocity field to the next time step. This is because in LES
of a turbulent attached boundary layer in which the first off-wall grid point is in
the logarithmic region, the filter width of the LES near the wall is always such that
not even the energy-containing eddies can be resolved in the first few grid volumes.
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Thus, SGS modeling errors will dominate the near-wall region. The problem of wall
stress modeling is inherently coupled to the SGS model used and the numerical
resolution. In Nicoud et al. (1999), we proposed a strategy for finding wall stress
models that accounted for this crucial linkage.

In this note, we review our previous work in which an optimal control strategy
was used to find promising new wall stress boundary conditions for coarse LES sim-
ulations of turbulent channel flow. We also show how this approach can be extended
to the case in which the approximate boundary conditions include both wall stress
boundary conditions for the tangential velocities and a transpiration condition on
the wall-normal velocity. We begin by describing the general methodology for using
a control strategy to explore approximate boundary conditions.

2. General methodology

The information that a wall stress model, or more generally any approximate
boundary condition, has to supply to the outer LES is essentially unknown. To
overcome this difficulty, we use an optimal control strategy in which the objective is
to force the outer LES towards a desired solution by using approximate boundary
conditions as control. The optimal strategy does not result in a practical wall model
for LES because the solution must already be known, but it does produce reference
data that can be used to compare or derive new wall models.

In Nicoud et al. (1999), we consider the case in which the control applied to the
LES is a wall stress boundary condition with zero wall transpiration velocity. In
that case, we use the data from the optimally controlled simulation of turbulent
channel flow to derive a practical wall stress model. To do so we approximate by
Linear Stochastic Estimation (LSE) the conditional average of the optimal wall
stresses given the local velocity field. The resulting LSE wall stress model gives
an explicit, algebraic formula relating the wall stresses to the local velocity field at
the current time step. The LSE wall model reproduces the results of the optimal
control strategy at a cost only slightly higher than LES with no wall model. The
LSE wall model, with coefficients fixed once and for all, produces good mean flow
predictions for skin-friction Reynolds numbers ranging from 180 to 20, 000 on a 323
uniform grid (see section 3.1). Before describing the details of the control strategy
and the derivation of a practical model, we summarize the numerical method.

2.1 Numerical method

In this study a second-order accurate finite difference scheme is used to discretize
the LES equations on a staggered grid system as proposed by Harlow & Welch,
1965. Given the simple geometry considered (periodic channel flow), more accurate
(spectral) methods could have been used. However, these highly accurate methods
are not flexible enough to handle industrial applications with complex geometries
(e.g. flow around an airfoil), where both low-order numerics for simplicity and
wall modeling for high-Reynolds number boundary layers are needed. A staggered
grid system is used to avoid the decoupled pressure-velocity mode as well as the
prescription of boundary condition for the pressure. The time integration is a
third-order Runge-Kutta scheme for all the convection and diffusive terms. The
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diffusive terms in the normal direction to the wall are not treated implicitly since
only coarse grid computations are considered. Periodic conditions are imposed in
the two directions x; and x3 (or & and z) parallel to the walls so that the Poisson
equation can be solved efficiently using a FFT-based Poisson solver.

The SGS model is the Smagorinsky model with the coefficient determined by
the plane-averaged dynamic procedure proposed by Germano et al. (1991). Unless
otherwise stated, all quantities are nondimensionalized by the friction velocity, u.,
and channel half-height, A. The channel walls are at y = +1. The skin friction
Reynolds number is then defined as R, = u,h/v. When the mean flow is converged
in the statistical sense, the mean streamwise pressure gradient is equal to the wall
stress, that is, —0P/0x =< 1, >= 1.

Since ‘non-resolved’ LES are considered in this study, the classical no-slip bound-
ary condition for the velocity components is replaced by a set of approximate bound-
ary conditions. The optimal control problem is written for the case where the two
shear stresses 77% and 735 are provided together with the transpiration velocity v.
The sketches in Fig. 1 show the location of the variables and boundary conditions
in the staggered grid system. The wall normal direction is zo (or y) while u; (or w,
v, w) and P are the velocity components and the pressure. Only the plane (z1, x2)
is shown.
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FIcURE 1. Staggered grid system and boundary conditions location.

2.2 Optimal formulation

In the process of deriving a new wall model for LES, it is crucial to keep in mind
that:

e The objective is to provide an approximate boundary treatment able to handle
very large Reynolds numbers. In this respect, using DNS data as a guide may not
be the most judicious choice since these data are only available for low to moderate
Reynolds numbers.

e In any coarse grid LES where the first grid point is within the logarithmic
region, the turbulent integral length scale (L = ky) is less than half the grid spacing
(Ay = y). As a consequence, both subgrid modeling and numerical errors are
important. Therefore, the approximate boundary condition should compensate for
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these errors if the correct mean profile is to be obtained in a coarse grid computation.
In this case the best approximate boundary conditions to supply are not necessarily
the physical ones.

It follows that the reference data used to compare or derive new wall models
should be obtained from a high Reynolds number LES simulation on a coarse grid.
Of course, such a simulation requires a good model for the near-wall region in the
first place. The optimal control framework is applied here to conduct such a simu-
lation without a priori knowledge of the necessary wall stress boundary conditions.
The case of a channel flow with constant pressure gradient is considered. The objec-
tive is to optimize the shear stresses 714 and 735 as well as the transpiration velocity
in order to minimize a given cost function. The mathematical formulation detailed
in the following subsections is a generalization of the case with zero transpiration
velocity presented in Nicoud et al. (1999).

2.2.1 State equation

The problem considered is governed by the unsteady, incompressible, filtered
Navier-Stokes equations as well as the divergence-free constraint which arises from
continuity. The governing equations read:

Bui +8uiuj __8P 4 0 (I/—|—V) 8uz +8Uj
ot Bacj n Bmz 8I‘j ! 8I‘j 89@2

ox j
Note that no specific notation is used to describe the spatial filtering associated with
the LES formulation. Each variable in the previous and subsequent equations should
be understood as a low-pass filtered version of the actual variable (e.g. u; = 7y,
where the overbar stands for the filtering operator). Equation (1) is valid for any
subgrid model based on the Boussinesq assumption. The boundary conditions are:
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where the subscript n stands for the outward normal to the wall. Also v, is the wall
value of the total dynamic viscosity v + v;. Note that (¢, dv, D) = (T1%, Ve, T32)
at y = +1 and (¢u, Ov, ) = —(71%, Vuw, 75%) at y = —1 where 714, 73%) denote the
shear stresses at the wall and v,, is the transpiration velocity.

In the classical optimal control procedure the objective is to reduce the given
cost function for some period of time. This method has been proven to be efficient
(Abergel & Temam 1990). However, this is a very expensive procedure in terms
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of storage and manipulation of many 3D fields over the entire period under con-
sideration. We therefore make use of a more affordable sub-optimal procedure in
which the state equation is first discretized in time, then a control procedure is used
to minimize the cost function over a short period of time (the time step) at each
time step (Bewley et al. 1993). This method does not necessarily provide the ‘best’
answer, but it is much more cost effective than the optimal strategy. The equation
of state (1) is, therefore, discretized in time by assuming an implicit discretization:
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The boundary conditions, Eq. (2), apply to Egs. (3). The terms which depend only
on the variables at the previous time step n are gathered in the generic notation
RHS™ and disappear in the analytical development (Bewley et al. 1993).

2.2.2 Cost function

The goal of the sub-optimal approach is to provide numerical boundary conditions
to the flow solver so that the overall solution is consistent with what is expected
in a channel flow. In this particular case, the mean velocity profile should be well
approximated by a logarithmic profile. Therefore, the cost function is chosen to
be a measure at each time step of the difference between the actual mean velocity
profile and the target profile ujéf = %ln y* + C. This difference can be expressed
as:

o) = [ [ ) do d: (4)

where A stands for the channel area in the homogeneous plane. Note that all the
subsequent developments can be done for all forms of the target profile. Noticeably,
a more realistic shape could be used in the centerline region. The logarithmic profile
is well suited in the ‘near wall’ region if the grid spacing is large enough so that the
first grid point belongs to the log region. In the same way one can define an error
in the w mean velocity profile as:

ul) = 5 [ [ (w =) do a: (5)

where the reference velocity in the z direction is obviously wyes = 0 in the present
case. A functional of the form :

-1

. > -~

+1 o
7@ = [ P+ uwP) dy+ [ [ G diadt) iz (©)

vV vV
Error in mean profiles Cost



334 F. Nicoud & J. Baggett

provides a measure of the difference between the actual and the target mean velocity
profiles. The control parameter ¢ is defined as ¢ = (¢y, v, ). A second term
quadratic in ¢ and related to the ‘cost’ of the control is added to build the final cost
function to be minimized. It is introduced to avoid the numerical instabilities which
would arise if the imposed shear stresses or transpiration velocity become too large
during the optimization process. The parameter « is tuned to balance the effects
of the two terms in J.

2.2.3 Adjoint problem

The gradient of the cost function J with respect to the control parameter ¢ is es-
timated by using the Fréchet differential (Vainberg 1964) defined for any functional

T Flo+ )= 510
DF - . +e€
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where ¢ is an arbitrary direction. From Eq. (6) the derivative of the cost function

J is:
(E /// [25 20 W] dxdydw%a/[w@;dm (8)

where U and )V denote the Fréchet derivatives of u and w respectively. Note that
in Eq. (8), ¢¢ should be understood as ¢,y + ¢vdy + duwdw. An adjoint problem
must be formulated to estimate the gradient of 7 since the derivatives i/ and WV are
unknown. The first step is to take the derivative of the semi-discrete state equation
(3) to obtain:
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The right-hand side term in Eq. (9) is now zero since the flow field at time step n
does not depend on the boundary condition to be imposed for the current time step.
Therefore, the superscript ‘n + 1’ has been dropped for clarity. Note also that the
Fréchet derivative of the eddy viscosity was supposed to be zero, viz. Dvy/D¢ = 0,
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to obtain Eq. (9). Moreover, this system of equations is linear in the variables U;
and P, where P is the Fréchet derivative of pressure. Therefore, it can be written
in the form:

AO=0 (11)

where A is a linear operator acting on the vector © = (U;, P)T. To bypass the
resolution of the differential problem Eq. (11) with unknown boundary conditions
equation (10), an adjoint operator A* is formulated by considering the equation

<AOV>=<0,A" V> +BT (12)

where < a, b > stands for the inner product defined as the integral over the volume
of the dot product of the two terms a and b and ¥ is the adjoint state vector ¥ =
(n;, m)T. Practically, the adjoint operator is formed by using successive integrations
by parts to turn all the spatial derivatives acting on © to derivatives acting on W.
Some boundary terms arise during this process which are contained in the term BT
of Eq. (12). It is straightforward to show that the adjoint operator A* acting on
the adjoint state vector W is such that the vector A* W is defined as:

0 ou; on; 0 on;  0n;
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and that the boundary terms are:
BT = 2pAt // (Press + Conv + Visc) dx dz (14)
with
Press = Pnay,
Conv = n;U;vy, (15)
Visc = —1, (m ng —U; SZ:L + 1 88?: —U,; 8877;:’)
From Eq. (12), the relation (11) defining the adjoint operator reduces to
< A" ¥,0 >= —BT (16)

2.2.4 Gradient estimate

We now have the liberty to choose boundary condition and right-hand side terms
for the adjoint problem such that the relation Eq. (16) can be utilized to compute
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the gradient of J. By comparing Eqs. (8), (14), (15), and (16), it appears that a
judicious choice for the definition of the adjoint problem is:

20y . 204

U= (220,22 0)T 1
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with boundary conditions at the wall:
mvn + ng—;}; =0
on = 0 (18)
N3Vn + Vw% =0
Y

In doing so, Eq. (16) can be re-written as
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Since Eq. (19) is valid for all directions #, the gradient of J may be extracted:
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where the subscript w stands for values at the wall. A control procedure using a
simple gradient algorithm at each time step may now be proposed such that:

n+1g
MDJ((ﬁ )

ntlepyr — gntly
¢ ¢ ir

(21)

Note that the adjoint operator A* depends on the state vector (u;, P)T at time n+1
so that the state equation and the adjoint problem must be solved simultaneously
to obtain the sub-optimal shear stresses and transpiration velocity. More details
about the algorithm used to solve the adjoint problem can be found in Nicoud et
al. (1999).
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3. Results

3.1 Case 1: no transpiration

The case without transpiration velocity (v, = 0) has been studied in detail in
Nicoud et al. (1999). The gradient of the cost function reduces to:

D7 2
=20At M 4w + — by
Do, BAE MW + 1 ¢
(22)
D7 2
—— = 20At N34 + — bu
Do, BAL 13,0 + 1 ¢
with the boundary conditions
om on3
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m 2 R (23)

for the adjoint problem Eq. (17).

Several LES’s have been performed to test the optimal strategy. The grid is
uniform in all directions (with typically 32x33x32 cells) and the domain size is
(2rh, 2h,2mh/3) where h is the channel half height. The Reynolds number based
on the friction velocity u, and h is 4000 (the range 180-20000 and other mesh
resolutions have been investigated in Nicoud et al. 1999). Figure 2 shows the mean
velocity profile from the coarse LES. The mean value of 7{% was either provided by
the optimal procedure itself or re-computed so that the first point coincides with the
logarithmic law < u >T= 2.411Iny™ + 5.2. The results are very similar in the two
cases. The overall agreement is much better than with the shifted model of Piomelli
et al. (1989). An artificial boundary layer still develops between the second and the
third grid point, but its amplitude is much smaller than with the shifted model. The
deficit in the log-law intercept is of order 0.25 compared to 1.35 with the explicit,
analytical model of Piomelli et al.

While the sub-optimal control strategy for generating wall stresses could be used
as a wall model for coarse-grid LES, its cost is approximately 20 times greater than
of an LES on the same grid compared to an explicit wall stress model such as an
analytical model. Furthermore, a target mean velocity profile must be provided
to define the objective function. It may be possible to lower the cost of control
strategy, but we have not investigated that possibility yet. The real strength of
the optimal control strategy is that it yields wall stress boundary conditions that
work for coarse-grid, high Reynolds number LES. Thus, a reference data set can be
generated against which new wall models can be compared or built. An example
of use of such reference data is given in Nicoud et al. (1999) where one requires
the wall stress model to be the best possible mean square estimate of the sub-
optimal wall stress as a function of the velocity field in a neighborhood of the
point where the wall stress is required. This is the conditional average of the wall
stress given the local velocity field (a conditional average is necessary because the
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>
10000
FIGURE 2. Mean velocity profiles for Re, = 4000. —— : sub-optimal computa-
tion; —+— : Shifted model of Piomelli et al. (1989); -—-- : LSE model; —-— :

<u>tT=241lny* +5.2.

wall stress may have a stochastic, or unpredictable, component with respect to the
local velocities). It is denoted by (7/5(z, z)|E), where E is a vector of events. In the
present study, E will be a vector containing the local velocity field, but it could easily
contain pressure, velocity gradients, quadratic products, or any other quantities
which might characterize the wall stresses. The conditional average embodies so
much statistical information that it is unlikely that it could be found exactly, but
it can be approximated by its LSE, given by (see Adrian et al. 1989 for instance):

(1i5(z, 2)|E) = 75 (x,2) = Lyj; E; i=1,3, j=1,2,3,....N (24)

where N is the number of events being considered and L;; are estimation coefficients
relating 79 to E;. By the statistical orthogonality principle (Papoulis et al. 1965),
the mean square error between 7,5 and 7;5 is minimized when the event data are

uncorrelated with the error e; = 7§ — 7.%:

(eiblk) = (i3 — Ti3) Ex) = 0. (25)
Substituting Eq. (24), the estimation coefficients L;; are governed by:
(i Er) = Lij(E; Ex) (26)

The matrix (E; E},) is invertible provided the events are linearly independent. Thus,
to obtain the LSE, the correlations (7% E)) and (E;Ej) must be found, and the
events must be selected that best characterize the wall stress. Though the technique
employed here is essentially the same as that of Bagwell et al. (1993), the results
are different since the reference data used here is already known to work well for
a coarse grid LES, whereas Bagwell’s reference data comes from a direct numerical
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simulation at low Reynolds number. As shown in Nicoud et al. (1999), an event
field consisting of the nearby velocities is sufficient to yield wall models of the form
Eq. (24) that have greater than 80% correlation with the optimal wall stresses.
Also shown in Fig. 2 is the mean velocity profile from a simulation with such a LSE
model. The new explicit wall model is able to reproduce nearly exactly the results
of the sub-optimal simulation.

3.2 Case 2: non zero transpiration

The optimized wall stress boundary conditions in section 3.2 produce a mean
velocity profile that is nearly exact for the first two grid points. The small error in
the channel interior is believed to be due to the sub-optimal formulation in which
the wall stresses are optimized only over each time step. Another reason may be
the zero transpiration assumption which is not fully justified in the case of a coarse
LES. If we can use the control strategy described above to generate approximate
boundary conditions that include nonzero transpiration velocities, then we could
use the resulting data to derive new approximate boundary conditions that include
transpiration velocities. However, all of the LES’s that have been performed with
optimized shear stresses and transpiration as control have been found unstable
so far. The reason for this failure seems to be in the definition of the boundary
conditions for the adjoint problem, Eq. (18).

Consider a typical coarse LES in a channel flow with N3 grids points (uniform
mesh). With second-order differentiation, the Newmann-Dirichlet boundary condi-
tion for 7; may be written as:

M,g (V2 + Vi /AY) = v /Ay (27)

This relates the value of n; at the first off-wall point to the ghost value to be
imposed in order to satisfy the boundary condition equation (18). In wall units,
the standard deviation of the transpiration velocity is expected to be of order unity,
with zero mean. Moreover, the term v, /Ay is of order 10~2 (with R, = O(1000)
and N = O(10)). Thus the term vy, + v,,/Ay is very close to zero for common
values of the transpiration velocity. When this occurs, the boundary condition for
the adjoint velocity is ill-posed numerically. Several discretizations of Eq. (18) have
been tested to overcome this difficulty but the computations have thus far been
unstable.

4. Future plans

Very promising results have been obtained with the sub-optimal procedure in the
case where only the shear stresses are optimized. The control procedure provided
reference data to derive a new, practical wall stress model. In the case which
includes a nonzero transpiration velocity, the classic set of boundary conditions
for the LES equations (two shear stresses and normal velocity) leads to a sub-
optimal formulation that is well defined mathematically but ill-posed numerically.
To overcome this difficulty, a simple way may be to use a weak formulation to
prescribe the condition equation (18).
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The next step along these lines is to investigate so-called “off-wall” approximate
conditions. In this approach, which has met with limited success thus far (see
Baggett 1997, Jiménez & Vasco 1998, Nicoud et al. 1998), the approximate bound-
ary condition is used to provide Dirichlet boundary conditions directly to the LES
velocity field at some point away from the wall where the LES filter width is suffi-
ciently small so that the LES computation is known to be reliable. The sub-optimal
control strategy may be useful in determining if such an approach is at all feasible.
If so, the control strategy can provide reference data for deriving a practical set of
off-wall boundary conditions.
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