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WKB approximation for acoustics in
combustion chambers with arbitrary

steady-state heat release profiles

By O. M. Umurhan

1. Motivations and objectives

Advances made in simulation techniques and computing power have made it pos-
sible to study complex engineering related problems including those involving com-
bustion induced acoustic instabilities. Much effort exists today towards developing
large simulations of fully compressible three-dimensional turbulence and turbulent
combustion to understand and study the problem. Large eddy simulation (LES)
is a powerful tool that can lead to insights and provide real solutions to observed
and unwelcome acoustic-combustive instabilities. To date, however, only low Mach
number and largely incompressible codes have been developed and are inadequate
at self-consistently modeling the physics of acoustic generation in combustion envi-
ronments.

Current work at the Center for Turbulence Research is geared towards devel-
oping fully compressible turbulence with combustion. Tests and benchmark solu-
tions are needed in order to measure the accuracy of a developed code and these
should include, among others, comparing numerically generated acoustic spectra
against those predicted theoretically. Even if the theoretical acoustic spectra are
only roughly accurate, they serve as good signposts for the evaluation of the ro-
bustness of the compressible scheme.

There has been much recent work towards obtaining benchmark solutions begin-
ning with the important work of Cummings (1977), who developed a one-dimensional
WKB solution with no mean flow but with an arbitrary axial temperature gradient.
Some exact solutions for combustion ducts with weak temperature gradients on top
of a mean flow have been performed by Munjal & Prasad (1986) and Peat (1988,
1994, 1997). Other important work including an array of exact solutions for partic-
ular axial temperature gradients possessing no mean flow have been developed by
Karthik et al. (1999), Kumar & Sujith (1997), and Sujith et al. (1995) and others.

We present here a general WKB solution for predicted acoustic eigenfunctions
for a one-dimensional combustion chamber with an arbitrary (but positive) dis-
tributed heat release over the chamber domain. The solution, otherwise, makes no
assumption about the asymptotic nature of the fluid flow velocity or the steepness
of background thermodynamic axial gradients like previous authors have done. Our
only restrictions are that these average quantities satisfy steady state continuity re-
lationships and that the flow in the domain remains subsonic. Situations in which
the flow becomes supersonic within the domain require special attention and are
not dealt with here.
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No analytical solutions yet exist in the literature in which the temperature gra-
dient and the mean-flow are self consistent and non-trivial. More precisely, most
previous work have assumed that either the temperature gradient is an order one
quantity while the mean-flow is zero or the temperature gradient is weak and is
embedded in a background axially uniform flow field. We present here a WKB
acoustic solution in which the axial gradients for temperature and mean-flow are all
order one quantities that derive exactly from an a priori heat release profile within
the domain. The solution technique here is pedagogically demonstrated, and we
show how, when the appropriate distinguished limit is taken, we recover the result
of Cummings (1977).

The specific outline of this work is as follows: in the introduction of Section 2
we present the equations we plan to solve including steady-state configurations and
perturbation equations, while in Section 2.1 we make our WKB ansatz and in a
detailed manner present the perturbative solution method and obtain acoustic so-
lutions; in Section 2.2 we briefly sketch out how the current solution reduces to the
previously known result. The presentation is pedagogical in nature in order to pro-
vide a calculation template for future numerical investigation by others. In Section
3 we: (i) summarize the mathematical results, (ii) discuss the physical origins of
the small parameter utilized in the WKB method employed, and (iii) suggest uses
of these solutions in checking development of current compressible numerics and in
subsequent acoustic analysis of combustion simulations. We conclude with some
parting comments about current directions of this effort.

2. One-dimensional problem and solution
We begin by stating the dimensional, 1-d Euler equations

∂tρ+ ∂xρu = 0 (1a)
ρ∂tu+ ρu∂xu = −∂xP (1b)

(∂t + u∂x)P + γP∂xu = (γ − 1)Q (1c)

where ρ, u and P are the density, velocity, and pressure respectively. The quantity
γ is the ratio of specific heats and is defined by γ = CP /CV . Q is the heat release
throughout the solution domain. We also assume an ideal gas equation of state

P = RρT (2)

where R is the gas constant and T is the temperature. We proceed in this analysis
by searching for time independent steady-state configurations about which we will
temporally perturb in order to study the resulting acoustic disturbances.

For one-dimensional nondimensionalized flows with a distributed nondimension-
alized heat source Q̄(x), we find that the steady state configurations satisfy

ρ̄ū = M (3a)
P̄ + γMū = 1 + γM2 (3b)

ūP̄x + γP̄ ūx = (γ − 1)Q̄, (3c)
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where the constant parameter M is the Mach number of the incoming flow and
γ is the ratio of specific heats of this ideal gas. The overbars refer to the steady
state quantities for which we seek solutions. Furthermore, the subscript x denotes
differentiation with respect to the x coordinate. The boundary conditions used are
that the flow be consistent with values at some reference point we take to be x = 0,
i.e. that P̄ (0) = 1 , ū(0) = M . For details of the nondimensionalizations assumed
see Umurhan (1999b).

Equations (3a-c) constitute self-consistent steady state relationships between mean
flow quantities as was alluded to in the introduction. Finally, the solution for the ve-
locity ū(x) given the arbitrary heat release profile Q̄ is the solution to the following
quadratic equation

ū2 − 2γ(1 + γM2)
M(γ + 1)

ū+
2(γ − 1)
M(γ + 1)

Θ(x) +
2γ(1 + γM2)

γ + 1
−M2 = 0, (4a)

which is obtained by combining Eqs. (3a-c) along with the boundary conditions of
above. Furthermore we have defined,

Θ(x) =
∫ x

0

Q̄(x′)dx′. (4b)

The velocity and pressure are fully determined once the heat release profile Q̄ and its
axially integrated aggregate Θ are provided. On a practical level, both Q̄ and Θ are
obtainable from both numerical simulations and real experiments (see, for example,
Bogdan et al., 1993). Taking x derivative of Eq. (3b) and inserting the result into
Eq. (3c) and simplifying shows that, unless Q̄ goes through zero somewhere on the
domain, the mean flow remains monotonic throughout x. Finally, we note that
there exists a maximum value of Θ for which the resulting velocity ū becomes sonic
(Umurhan, 1999a),

Θmax =
γ(1−M2)2

2M(γ2 − 1)
, (4c)

Equation (4c) is simply another restatement of the Rayleigh-Juegoet sonic condi-
tion.

Assuming a Fourier temporal solution form ∼ Exp(σt), we find that the equations
governing perturbations off of steady state are

(σ + ūD)j − σρ̄u = 0 (5a)

ρ̄(σ + ūD)u+ γ
−1
DP = −jūx (5b)

(σ + ūD)P + γP̄Du = −uP̄x − γP ūx (5c)

where P , u, and j denote perturbations of pressure, velocity, and mass flux (or
current) respectively. Note that we reserve the symbol D for x coordinate differen-
tiation of perturbation quantities while the subscript x is reserved for steady state
terms. The perturbed mass-current is defined by

j = ρ̄u+ ūρ, (5d)

in which ρ is the density perturbation.
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2.1 WKB ansatz and solution method
We assume that the large parameter in our problem is the frequency eigenvalue

σ, and to ground this notion we formally write,

σ =
1
ε
σ0

where ε is small and σ0 is an order 1 quantity. We adopt the following WKB ansatz,

Φ =
(
Φ̂0(x) + εΦ̂1(x) + · · ·

)
e

1
ελ(x), (6)

where Φ is a generic designation for the mass-current fluctuation j and the pressure
and velocity fluctuations are P and u. The function λ(x) is undetermined at this
stage.

The lowest order solution unfolds by inserting the above WKB ansatz into Eqs. (5a-
c) and separating out and equating to zero each subsequent order of ε.

2.1.1 Order 1
ε calculation

At the lowest non-trivial order of this expansion, we find the following algebraic
system,

L0v̂0 =

σ0 + ūλx −σ0 ρ̄ 0
0 ρ̄(σ0 + ūλx) γ

−1
λx

0 γP̄λx (σ0 + ūλx)

 ĵ0
û0

P̂0

 = 0 (7a)

Non-trivial solutions for the disturbance vector v̂0 exist provided the determinant
of L0 vanishes, or

DetL0 = (σ0 + ūλx)
(
ρ̄(σ0 + ūλx)

2 − P̄ λ2
x

)
= 0 (7b)

The solution to Eq. (7b) admits three eigen-functionals for λ(x), namely the simple
differential equations,

λ(0)
x

= −σ0

ū
−→ λ(0) = −σ0

∫ x

0

1
ū
dx′ (8a)

λ(±)
x

= − σ0

ū± c̄ −→ λ(±) = −σ0

∫ x

0

1
ū± c̄ dx

′ (8b)

where c̄2 = T̄ . λ(±) corresponds to the usual left and right propagating acoustic
modes, and λ(0) corresponds to a hydrodynamic mode (Peat, 1994), or equivalently
an entropy mode (Bloxsidge et al. 1988, Dowling 1995, Umurhan 1999a).

From Eqs. (7a, 8a, 8b) the following relationships between perturbations are true

ĵ(±)
0

= ± c̄± ū
c̄2

P̂ (±)
0

(9a)

û(±)
0

= ± 1
γρ̄c̄

P̂ (±)
0

(9b)

while
P̂ (0)

0
= û(0)

0
= 0. (9c)

Yet, at this stage the functional forms of ĵ(0)
0

and P (±)
0

are still unknown and they
need to be determined by carrying out the analysis to the next order.
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2.1.2 Order 1 calculation and solution
We find that the equations for the first order corrections, v̂1 = {ĵ1 , û1 , P̂1}, be-

come

L0 v̂1 =

 −ūDĵ0
−ρ̄ūDû0 − γ

−1
DP̂0 − ĵ0 ūx

−γP̄Dû0 − ūDP̂0 − P̄x û0 − γūxP̂0

 = b̂0 (10)

Since by Eq. (7a) the determinant of the matrix L0 is zero, in order for v̂1 to
exist, we must require that the vector b̂0 lie in the null space of L0 for each of the
eigenvectors of L0 .

This is formally achieved in two steps. First, we determine the solution to the
homogeneous adjoint problem of the LHS of Eq. (10), or,

LT
0
v̂† = 0 (11)

where LT
0

is the transpose of the matrix L0 . Second, after obtaining the correspond-
ing adjoint solutions v†, we then require,

v† · b̂0 = 0, (12)

which enforces the condition that b̂0 lie in the proper null space. The relations that
result from satisfying the compatibility condition, Eq. (12), yield equations for the
functions P̂ (±)

0
and j(0)

0
.

In our problem we have three adjoint solutions corresponding to the left- and
right-going acoustic waves (the “±” solutions) and the hydrodynamic/entropy wave
(the “0” solution). Using Eqs. (3a-b, 8a-b) we find that that the adjoint solution
for the acoustic and hydrodynamic waves are,

v̂(±)† =

 0
γc̄
±1

 , v̂(0)† =

 1
0
− M
γP̄

 . (13)

After performing the algebra we find that the compatibility conditions Eq. (12) for
each solution type yields the following sets of relations:

• for the hydrodynamic mode we find simply,

ūDĵ(0) = 0 (14a)

implying that ĵ(0)
0

= C(0)
0

where C(0)
0

is just a constant,
• while for the acoustic modes we find

D log

[
P̂

2(±)
0

ρ̄c̄

]
= −γ + 1

ū± c̄ ūx(∓)
γ − 1
c̄

ūx (14b)

Eq. (14b) may be integrated without any explicit knowledge of the spatial de-
pendence of ū. In particular, since ū is monotonic in the coordinate x, one can
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switch from x to ū coordinates and perform the integration in the ū coordinate.
We save the reader the details and just present the final result,

P̂ (±)
0√
ρ̄c̄

= C(±)
0

e±Ψ

√
ū

c̄± ū (15a)

in which

Ψ =
1− 2γ
2
√
γ

Arctan
[
ū− α
c̄

√
γ

]
(15b)

α =
1 + γM2

2γM
. (15c)

Where α is a constant dependent on the parameters of the system and where
C(±)

0
are the arbitrary integration constants which are chosen to satisfy boundary

conditions for any particular problem.
Thus, the lowest order non-trivial solution to the acoustic perturbations is com-

plete and is given by (for example) for the pressure as

P = C(+)
0

√
Mc̄

c̄+ ū
e

1
ελ

(+)+Ψ + C(−)
0

√
Mc̄

c̄− ū e
1
ελ

(−)−Ψ +O (ε) (16a)

while for the mass-current j as

j =C(0)
0

exp
[
1
ε
λ(0)

]
+ C(+)

0

√
M

c̄3
exp

[
1
ε
λ(−) + Ψ

]
− C(−)

0

√
M

c̄3
exp

[
1
ε
λ(−) −Ψ

]
+O (ε) (16b)

2.2 Limiting form
We must verify whether or not Eq. (15a-c) recovers previously obtained results.

In particular, Cummings (1977) developed a similar WKB solution in the limit
where the mean flow velocity is zero while the axial temperature (and density)
gradient still persists, yielding the envelope structure function of

P̂ (±)
0
∼ [ρ̄(x)]1/4 (17)

(Eq. (19) of Cummings, 1977). Before evaluating Eq. (15a) in the the zero mean
flow limit, caution must be exercised. In particular, naively taking the ū → 0
limit of Eq. (15a) predicts a zero amplitude for the perturbation, which is clearly
incorrect. We show how to avoid this pitfall in the following two ways.

The first way is less rigorous but rather quickly demonstrates the recovery. In
the limit that the mean flow velocity and its is derivative is negligibly small, we find
that Eq. (14b) reduces to

lim
ūx→0

D log

[
P̂

2(±)
0

ρ̄c̄

]
= 0. (18)
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In the limit where the mean flow velocity is negligibly small, the steady state pres-
sure field P̄ is a constant, which immediately yields T̄ = 1/ρ̄. Consequently, in-
tegrating Eq. (18) and using the limiting relationship between ρ̄ & T̄ recovers the
result Eq. (17).

A second more rigorous way proceeds by observing from Eq. (15c) that as M → 0
the constant α → ∞. Thus, we alternatively rewrite the integration constants
appearing in Eq. (16a) as

C(±)
0

=
C̃(±)

0√
M

Exp
[
±
(

1− 2γ
2
√
γ

)
π

2

]
. (19)

Inserting these re-expressed integration constants into Eq. (16a) then followed
by taking the limits M, ū → 0 properly recovers the Cummings amplitude form
Eq. (17). We note that by defining the constants C(±)

0
as in Eq. (19) we are enabling

the distinguished limit (Bender & Orszag, 1978) to be taken of Eqs. (16a-b). By
distinguished limit we mean that we are taking the constant C(±)

0
to go infinite as

M → 0 in the prescribed manner above in order to recover the non-trivial result we
seek.

3. Summary and discussion
In summary, we restate the WKB solutions of the perturbed pressure and mass-

current accurate to O (ε) in the formal ε expansion,

Pn =
∑
±
C(±)
n

√
Mc̄

c̄± ūExp
[
1
ε
λ(±)
n
±Ψ

]
Exp

[σn
ε
t
]

+O (ε) (20a)

jn =
∑
±
±C(±)

0

√
M

c̄3
exp

[
1
ε
λ(±)
n
±Ψ

]
Exp

[σ
n

ε
t
]

+C(0)
n

exp
[
1
ε
λ(0)
n

]
Exp

[σn
ε
t
]

+O (ε) (20b)

in which the subscripted n quantities are meant to denote an acoustic wave of a
given particular complex frequency σn . The integration constants C(±)

n
C(0)
n

and
the eigenfrequencies are either already given or are to be obtained by solving a
particular boundary value problem. We return to this below.

Ψ =
1− 2γ
2
√
γ

Arctan
[
ū− α
c̄

√
γ

]
(20c)

α =
1 + γM2

2γM
. (20d)

The functions λ(x) are given by

λ(0)
n

= −σn
∫ x 1

ū
dx′ , λ(±)

n
= −σn

∫ x 1
ū± c̄ dx

′ (20e)
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Along with the sound speed squared, c̄2 = T where P̄ = ρ̄T̄ and where the subsonic
nondimensionalized flow quantity ū is a monotonic function of the x coordinate,
provided the heat release Q̄ is everywhere positive, and is given by the solution to
Eq. (4a). A few comments about these results and their implications are in order:

• The small parameter, ε, originally evoked to formally carry out the preceding
WKB analysis, must be properly defined in terms of familiar physical properties
of the system. Here we may easily take the “small” regime to be defined as the
ratio of the acoustic wavelength to the length scale associated with the distributed
heat release:

ε =
acoustic wavelength scale

length scale of heat release
(21)

The asymptotic solution formally assumes 0 < ε << 1, which means that the
WKB solutions developed are valid for high frequency acoustic waves. Yet, WKB
approximations have historically proven to be rather good predictors away from
their formal regimes of validity (see for example, Bender & Orszag, 1978). Setting
ε = 1 may predict relatively accurate eigenfunction profiles, though this would
have to be tested against numerical solutions.
• There are conditions in which one may be interested in solving for the acous-

tic spectrum resulting from a combustion experiment or numerical simulation
conducted in some simple geometries (combustion cans, ducted combustor, chan-
nel flow combustion). Obtaining a reasonably accurate modal decomposition of
the generated acoustics is necessary and indispensable from the vantage point
of understanding and controlling acoustic instabilities. As an applied example,
one may be interested in performing an acoustic analysis of a combustion exper-
iment (numerical or real) by spectrally decomposing the combustion generated
acoustic field into an acoustic spectrum whose basis is comprised of these WKB
eigenmodes, i.e.

P (experimental) =
∑
n

AnPn (22)

in which P is the sum total acoustic disturbances and where the sum is taken
over all possible acoustic modes n permitted by the boundary conditions of the
physical experiment. The constants An simply measure the power in each mode
n. Once obtained, a plethora of analysis can be done to further understand the
generation mechanisms which are still, to this day, unclear. This sort of analysis
has been performed in other fields including, for example, the study of acoustic
generation in turbulent compressible convection in stellar atmospheres by Bogdan
et al. (1993). An analysis procedure analogous to the one performed by Bogdan
et al. can now be applied to combustion simulations through the use of the WKB
solutions obtained in this work.
• The use of these WKB solutions as benchmarks against which to test and help

develop compressible numerical procedures is another obvious consequence. Su-
jith and Peat and their collaborators have elaborated upon this point and we
simply add here that the WKB solutions developed here now permit numericists
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to test their simulations in a multitude of differing laminar background test flows
(e.g. mean flows ū and mean temperature profiles T̄ ) by comparing predicted
acoustics against the acoustics generated in the simulations. This is in contrast
to the limited class of background mean flows and states that can be tested by
the exact benchmarks discovered and used thus far (i.e. Karthik et al.1999, and
references therein).

We have presented a critical piece needed for proper acoustic analysis of com-
bustion simulations and experiments. Immediate work to follow this effort will be
motivated by a desire to qualitatively refine these WKB solutions. One of these
courses is to include the effects of non-zero transverse wavenumber disturbances
with the acoustics along with the effects of fluctuating heat release effects. Further
work also entails checking the validity of these solutions against numerically gen-
erated ones and to perform some linear and weakly nonlinear stability analysis for
these acoustic modes.
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