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Direct numerical simulation of turbulent
premixed flames with a marker field and
application to RANS and LES

By R. W. Bilger {, S. H. Kim AND S.M. Martin

Direct numerical simulations of turbulent premixed combustion in isotropic homoge-
neous turbulence have been carried out. The simulations incorporate solutions for the
marker field produced for a scalar having a simple source term proportional to the mean
density. The mapping of the reaction progress field from this marker field is investigated
at low to moderate Damkohler number and the results suggest that this could be a fea-
sible way for closing the progress variable field in RANS and LES. Preliminary results
for RANS calculations for a combustor with a backward-facing step are presented.

1. Introduction

Recently, methods of generating a simple marker field in turbulent premixed combus-
tion have been proposed by Bilger (2004). In turbulent nonpremixed combustion, the
mixture fraction has been a very powerful concept - its conservation equation is read-
ily modeled and solved to give fields for its mean and variance in approaches involving
Reynolds Averaged Navier Stokes (RANS) equations, see Bilger (1980) and Peters (2000).
These fields provide a marker for the mixing, with reaction occurring near the instan-
taneous surfaces having the stoichiometric value of the mixture fraction. The progress
variable, C, has been widely used in studies of turbulent premixed combustion (Peters
2000). While conceptually an ideal marker in turbulent premixed combustion, equations
for its mean and variance have proved difficult to model satisfactorily in RANS and in
Large Eddy Simulation (LES); it has the difficulty that its filtered values tend to be zero
or unity everywhere in the flow except for a single surface of grid cells.

The new marker field, S, obeys the simple conservation equation Bilger (2004)

oS
pE—FpU-VS—V-(pDVS) = p/7s (1.1)
where the constant time scale, 7g, may be arbitrarily chosen - it merely sets the scaling
for S. Equations for the mean and variance of S are obtained for stationary flow as

pU -VS + V- pus = p/7s (1.2)
pU-V(s')2 +V - pus? + 2pus - VS = —2pN, (1.3)

where
S=p5/p;S=8+s (1.4)

t The University of Sydney
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N, =DVS-VS;N, =pN,/p (1.6)

It may be noticed that there are no unclosed chemical source terms in Eqgs. 1.2 and 1.3.
It is expected that standard RANS closures for the turbulent fluxes and for the scalar
dissipation will be satisfactory, but this needs to be investigated.

It is conjectured in Bilger (2004) that for a statistically stationary one-dimensional
turbulent premixed flame in homogeneous isotropic turbulence that the C field will be
able to be mapped non-linearly from the S field at low to moderate Damhohler Numbers
(Da). This is investigated here using 3D Direct Numerical Simulations (DNS). The DNS
is described in the next section. The mapping of the C' and S fields is investigated in
Section 3, including conditional moment closure for obtaining C' statistics from the S
statistics. Application of the approach to a premixed combustor with a backward facing
step is described in Section 4.

2. Direct numerical simulations

Direct numerical simulations of one dimensional premixed flames are carried out. The
fully compressible Navier-Stokes equations with single step chemistry are solved:

Op  Opu;
ot on 0 (2.1)
6pu,~ 6 Ly ap 6T,~j
ot tag, ) = "5 oy, (22)
Ope 0 1 anTij 0 oT
5 + oz, [(pe + p)u;) = o2, + oz, (z\axi) + Qw (2.3)
OpYr 0 0 OYr
5 T %j(pquR) = oz, (pD 6:1:1-) w (2.4)
where
1
pe = 5 puitli + 1 (2.5)
Ou; Ou; 2. Ouy
Tij ”(ax] or; 3 Uamk> (2.6)
T,
w= ApYg exp(—T) (2.7)

p is pressure, e is the internal energy and ) is the heat of reaction per unit mass of
fresh mixture. A is the pre-exponential factor. T, is the activation temperature. The
gas mixture is assumed to be a perfect gas with a specific heat ratio of y=1.4. Yy is
the normalized mass fraction of the deficient reactant. The reaction progress variable is
defined here as C' = 1 — Yg. The thermal conductivity, A, and the diffusion coefficient,



DNS of turbulent premized flames with a marker field 257

Case u'/sr li/lr pu/pp To/T» Da Re,
I 16.7 0.87 4 4 0.05 47
II 12.9 1.23 4 4 0.1 47
111 6.8 2.29 4 4 0.34 47

TABLE 1. Characteristics of the premixed flames

D, are given as
A = pcp/Pr and D = p/(pSc) (2.8)

The viscosity, p, is given as

p = pu(T/T0)*" (2.9)

The Prandt]l number, Pr, and the Schmidt number, Sc, are set to be 0.7. This formulation
corresponds to a very lean fuel-air mixture (Trouve & Poinsot 1994).

The computation domain is a cube with inflow and outflow in the z; direction and
periodic in the z5 and x3 directions. The equations are integrated using a low storage
fourth order Runge Kutta method with a sixth order compact finite difference scheme for
spatial discretization (Kennedy et al. 2000; Lele 1992). A nonreflecting boundary condi-
tion is used for the outflow boundary (Poinsot & Lele 1992). The equations are solved
on a 178 x128x 128 grid. Initial and inflow turbulence is homogeneous and isotropic. The
characteristics of the premixed flames are shown in Table 1. The larminar flame thick-
ness, [r, is based on the maximum gradient of the progress variable. The results in Figs.
1-5 are those at 7 =~ 1.5, where the nondimensional time, 7, is normalized by the initial
eddy turn over time of the fresh mixture.

3. Mapping of the C' and S fields

The conditional average of the reaction progress variable can be defined as

Q(x,t,¢) = (C(x,1)[S(x,1) = ) (3.1)

where ¢ is the sample space variable of the marker, S. When the C and S fields are
well correlated, the conditional fluctuations, ¢ = C' — @, will be small enough for the
conditional moment closure (CMC) model to be applied for the closure of the nonlinear
chemical reaction rate. Once the solution for () is obtained, the statistics of C' can be
deducted from those of S, e.g.,

¢= [ Pencione (3.2)

where P(y) is the Favre probability density function (PDF) of S. In this section the
mapping of the C' and S fields will be investigated using the 3D DNS data. Figure 1 shows
the conditional average, @, and r.m.s. fluctuations, {c?|p)'/?, for Case I. The maximum
(c*|p)'/? is about 0.08, which occurs at ¢ ~ 1.6. Figure 2 shows spatial distributions of
C and S for Case I. The contour steps in S are uniform, while those in C' are taken from
the corresponding conditional average, @), in Fig. 1. Note the strong similarity between
the C' and S fields mapped in this way.

The @ equation (derived below) involves the conditionally averaged reaction rate of
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FIGURE 1. Conditional average and r.m.s. fluctuations of the reaction progress variable for
Case I.

the progress variable, C'. Conditional averaging suppresses fluctuations of reactive scalars
when a proper conditioning variable is chosen. In the CMC model the nonlinear chemical
reaction rates are closed using the conditional moments. First-order closure estimates of
the conditional mean reaction rate in the conditionally averaged equation for the reaction
progress variable using the conditional averages of reactive scalars:

(w(p, YR, T)lp) = w(py, (Yrlp), (Tlp)) = w(@Q) (3.3)

This closure is limited to 1-step chemistry. The closure model of Eq. (3.3) is tested in
Fig. 3 giving excellent results for low Da.

Figure 4 shows the conditional average, @, and r.m.s. fluctuations, {c?|p)'/2, for higher
Da cases, Cases II and III. As Da increases the slope of () with respect to S increases
so that the flame is in a narrower region of ¢ space. Also, the r.m.s., (c|¢)'/?, increases
with Da so that the mapping between the C and S fields is not as good. This can also
be seen from the contour plots in Fig. 5. The structures of the C' and S fields are still
similar for Case II. For Case III, however, the similarity between the S and C fields is
not as good as in the lower Da cases, while the S and C fields are likely to have similar
large scale wrinkling,.

Figure 6 shows the conditional mean reaction rates for Cases II and III. The CMC
closure for the reaction rate remains quite good, while the correlation between the C' and
S fields is not as good. It is not as good as at lower Da, but may still be sufficiently good
for modelling purposes.

Next the @ equation is derived following Bilger (2004). Using the decomposition
method described in Klimenko & Bilger (1999) the progress variable is split into a con-
ditioned average and fluctuating component.

C(.’L‘,t) = Q(S(-’L’,t),.’l},t) + C(SL',t) (34)

Derivatives are taken of this equation with respect to time and space and substituted into
the conservation equation for the progress variable (given below), which after rearranging
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FIGURE 2. Distributions of C' and S in a x1-z3 plane for Case I (a) S (b) C
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F1GURE 3. Conditional mean reaction rates for Case I(symbol: DNS, line: CMC).

gives

. oS
pQ +pU -VQ — pN,Q" + logy +PU-VS-V- (pDVSIQ" =
dc
P ot
N, = DVS-VS is the scalar dissipation rate of S. Here the Q' signifies a derivative with

respect to S. The fourth term on the LHS of Eq. 3.5 is simplified using Eq. 1.1 and the
entire equation is divided by the density to give

Q+U-VQ—-N,Q" +[1/7)Q = W./r. — % —U-Ve+V-(pDVe)/p  (3.6)

(3.5)

oW/, — —pU-Ve+ V- (pDVe)
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FIGURE 4. Conditional average and r.m.s. fluctuations of the reaction progress variable (a)
Case II (b) Case IIL

The equation is conditionally averaged following Bilger (2004) to give

Q + (Ulp) - VQ — (N5 |0)Q" + Q' /75 = (We|p)/7e + e 3.7)
€c = (—% —U-Ve+ V- (pDVe)/p|e) (3.8)

The boundary conditions are ) = 0 at S = —oo and @ = 1 at § = oo. To make the
solution more tractable several simplifying assumptions are made. First only steady state
problems are addressed, so the time derivatives drop out. Based on a first order closure
it is assumed that the first and third e, terms are negligible. The reaction rate term is
closed using Eq. 3.3. The S time scale is closed by 7, = L/U,,, where L and U, are the
inlet characteristic length and velocity, respectively. For 2D flow Eqgs. 3.7 and 3.8 become

P

(ulph - 52+ (vl 52— (NLlQ" + U/ 2Q' = W@}, — - 5P
A model is required to close the conditional velocity terms. Next the premixed CMC is
derived and solved with Eq. 1.2 and 1.3 in a RANS model to show how C and S are
related when Reynolds averaged. Solving Eq. 3.9 is left to future work.

(3.9)

4. RANS application to a combustor

The premixed CMC method was originally proposed by Bilger (1993) and Smith (1994)
and first implimented by Martin et al. (2003) and Martin (2003). The premise of the
theory is that most of the fluctuations of the reactive scalars are correlated with a progress
variable. The conservation equations for the species and energy are derived conditioned
on the progress variable. This increases the dimensionality of the problem by one, while
providing an improved closure for the reaction rates over other methods.

Next an outline of the derivation and the closure assumptions are given, followed by
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(c) (d)

FIGURE 5. Distributions of C' and S in a z1-z3 plane (a)S for Case II (b) C for Case II (c) S
for Case III (d) C for Case III

the marker field implimentation for RANS. Results are presented and future work is
discussed.

4.1. Derivation of the Premizxed CMC Method

The premixed CMC method can be derived by two methods, following the non-premixed
CMC. The first is the joint PDF method of Klimenko and the second is the decomposition
method of Bilger, see Klimenko & Bilger (1999) for the details of the non-premixed
derivations. Here the decomposition method is used. See Martin (2003) for a detailed
derivation of both methods.

The derivation starts with the Favre averaged conditional expectation of the reactive
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F1GURE 6. Conditional mean reaction rates (a) Case II (b) Case III(symbol: DNS, line: CMC).

scalar defined as

(p(z,t)Yi(z,t)|C(x,t) = ()
(p(z,1)|C(z,t) =)

Here Y is the species mass fraction and ( is the sample space variable corresponding

to the progress variable C. The mass fractions are made up of the conditional averaged
component and the fluctuation about this averaged value, shown below.

Yi(z,t) = Qi(C(z,1),2,1) + yi(z, 1) (4.2)

This equation is substituted into the conservation equation for the species mass fractions
shown below.

Qi(¢ @, t) = (4.1)

9Y;

ot

After simplification and employing the conservation equation for the progress variable
the premixed CMC equation is obtained, shown below.

(PIOQi + (pul¢) - VQi = (pwilC) + (pDiVC - VOIOQY = (pSc|()Q; +eq + ¢y (4.4)

+pU-VY; = V- (pDVY)) = pw; (4.3)

eQ ={[V - (pDiVQ:) + pDiVC - VQ; + Q;V - (p(Di — D) VC)][C) (4.5)

ey = {02+ pu- Vi~ V- (2D V][0 (4.6

—p Y wihyg;
S, = & Tt 4.7
e (4.7)
Here the gradient operator signifies derivatives in real space, the primes indicate deriva-
tives in C space and the dot indicates a time derivative. Note that S, used here is the
source term for the equation and is not the S from the marker field used above. Equation
4.4 is similar in form to the non-premixed CMC equation, with the third term on the
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RHS of the equation the main difference. This term comes from C being a non-conserved
scalar and can be thought of as a convective velocity in C' space. This term makes the
premixed equations stiffer then their non-premixed counter parts. In Eq. 4.7 hy; is the
heat of formation for the i th species and h® is the sensible enthalpy. The ad subscript sig-
nifies adiabatic equilibrium conditions and the u indicates unburned conditions. Eq. 4.4
is in non-conserved form, the conserved form is obtained from the joint PDF derivataion.
The transport equation for the PDF of C' can be used to convert between the two for-
mulations.

To make the above equations more tractable several simplifying assumptions are made.
The first is to assume steady state, so the time derivative terms drops out. The next
assumption is that the conditioned mass fractions are constant in physical space, this
eliminates the second term on the RHS of Eq. 4.4. This avoids the need for a closure
model for the conditioned velocity. It is assumed that all diffusivities are constant and
equal. The remaining terms in Eqs. 4.5 and 4.6 are assumed to be negligible for high Re
flows. Klimenko & Bilger (1999) and Martin (2003) give a more detailed discussion on
the magnitude of these terms. This gives the simplified premixed CMC equation as

(pDVC - VCIOQ: = (pSc|Q)Qi + (pwil¢) =0 (4.8)

This equation is decoupled from the flow field equations, with the conditioned scalar
dissipation rate, pN, = (pDVC - VC|(), the only value needed from the flow field (the
dimensionality of the equations are reduced). This allows the simplified premixed CMC
equations to be solved offline and saved in tabular format, greatly reducing the compu-
tation time. This is a system of ns+1 equations, where ns is the number of species in the
system, the extra equation is for the enthalpy. The equations reduce to a set of second
order ODE’s of the boundary value type, with the values at C' = 0 set to the unburned
values and at C' = 1 set to the adiabatic equalibrium values. For adiabatic problems the
enthalpy equation is not required.

4.2. Closure Assumptions for RANS

The progress variable, C, is defined as the non-dimensional sensible enthalpy.

h® =B,

CEth_hZ

(4.9)
Using the sensible enthalpy instead of the temperature accounts for non-constant spe-
cific heats. The conservation equation for the Favre averaged C' comes from the energy
equation and the above definition.

opC o -

S+ V- (pUC) = V- (u/0eV C) = S, (4.10)
o, = 0.7, is the turbulent Schmidt number. S, is the conditioned source term as defined
in Eq. 4.7. Similarly the conservation equation for the variance of the progress variable
is derived.

dpe2
ot

+ V- ﬁﬁcNQ -V (ut/achE) = Cclut(V5)2 - CQﬁ%CNZ - 2/3:9\';' (4].1)

A closure for the fluctuation of the source term, the last term on the RHS of Eq. 4.11 is
obtained by doing a Taylor series expansion, see Martin (2003) for the details. C5 = 100,
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other values were tried with little affect on the solution.

c? —~

T(C + =)

Toa—Tu

The conditioned scalar dissipation is approximated by the unconditioned value as.
(N[Q) =~ N = 2%(,3 (4.13)

The solution procedure is to solve the simplified premixed CMC equations for a range of
scalar dissipation values and store the density, source term and species mass fractions in
a table. Fluent ver. 6.1.22 (Fluent 2004) is used to solve the fluid equations along with
the RNG turbulence model for the 2-dimensional backward facing step of El Banhawy et
al. (1983). Premixed methane and air are flowed over the step and the flame is stablized
in the recirculation zone. The equivalence ratio is 0.9 and the full GRI2.11 mechanism is
used (Bowman et al. 1998). An initial mesh of 300 x 80 cells is used with grid adaption
in the flame zone and along the wall to meet the log-wall criteria for the wall bound-
ary conditions. Equations for the progress variable and its variance are added as scalar
equations to (Fluent 2004) using its user defined function (UDF) capabilities. The inlet
values are zero and the outlet and walls are set to zero gradient for the scalars.

At each computational cell, the mean progress variable and scalar dissipation is used
to retrieve the conditioned density, reaction rate source term and mass fractions from
the table. The progress variable and its variance are used with an assumed shape beta-
function PDF to obtain the non-conditioned values, which are used in the next iteration
of the CFD code. This process is continued until steady state is reached.

4.3. Marker Field Implimentation

Here a comparison is made between the C field using Eq. 4.8 and the S field, without
using Eq. 3.9. Future work will calculate the C field using Eq. 3.9.

Equations 1.2 and 1.3 are also added to (Fluent 2004) as additional UDF’s. The inlet
values for S are —20(1 — y/h), where y is the vertical coordinate of the step and h is the
step height. Standard RANS closure is used for the turbulent fluxes. There is no feed
back from the marker field equations to the other equations. The scalar dissipation of S
is calculated as follows.

(N[() ~ N = 2%52 (4.14)

4.4. RANS Results

Figures 7 and 8 show the progress variable and its variance, showing the location of
the flame front. Figure 9 shows the scalar dissipation of the progress variable. The large
values in these figures at the tip of the step are due to limitations in the turbulence model
and are not physical. Figure 10 shows the marker field. The contours in the flame zone
are nearly parallel with the progress variable contours, indicating a potential mapping
between the progress variable and the marker field. Figure 11 shows the variance of
the marker field, which is very different then the variance of the progress variable. The
variance of the marker variable was nearly zero until reaching its peak at the flame zone,
then slowly tappering off. The variance of the marker field is largest prior to the flame
and tappers off as the flame zone is approached. Figure 12 shows the scalar dissipation of
the marker field. The peak values are in the flame zone, as was the case with the progress
variable, but it also has large values prior to the flame zone.
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FIGURE 7. Progress variable, C.

FIGURE 9. Progress variable scalar dissipation.

5. Concluding remarks

Here 3D DNS using 1-step chemistry was used to show the mapping between the
progress variable and the marker field for a 1D flame. At low Damkohler number the
marker field equation provided a good closure for the conditioned reaction rate term. At
higher Damkohler numbers the closure was not as good, but may still be good enough for
RANS and LES modeling. The premixed CMC method was incorporated into a RANS
model along with the mean and variance of the marker field. This showed that the
progress variable and marker field look similar in RANS providing further evidence that
the marker field may provide a viable closure. Next steps include generating a 3D DNS
database with more realistic chemistry and incorporating the conditioned marker field
into RANS and LES.
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