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Thermal convection in a twisted magnetic field

By F.H. Busse |

The onset of convection in a layer of an electrically conducting fluid heated from
below is considered in the case when the layer is permeated by horizontal magnetic field
of strength By the orientation of which varies sinusoidally with height. An approximate
critical value of the Rayleigh number for the onset of convection is derived. The width ¢
of the convection rolls, § ~ v/ (h;/Bo)v/puAv is found to be independent of the height of
the layer once the right hand side in this relationship is sufficiently small. Applications
to the penumbral filaments of sunspots are briefly discussed.

1. Introduction

Convection driven by thermal buoyancy in the presence of an imposed magnetic field
has been studied theoretically and experimentally for several decades. For an early review
we refer to the book of Chandrasekhar (1961). Usually the case of an imposed homoge-
neous vertical magnetic field is treated which exerts a strongly inhibiting influence on
convection. A most famous example are sunspots which appear dark because the heat
transport by convection in the solar atmosphere is almost completely suppressed at the
spot by the emerging radial magnetic field.

Homogeneous horizontal magnetic fields exert a far lesser influence on convection.
Two-dimensional convection rolls aligned with the magnetic field do not feel any effect
at all and the critical value of the Rayleigh number R for the onset of convection is the
same as in the non-magnetic case. Since two-dimensional convection rolls aligned with
the magnetic field are subject to three-dimensional instabilities, however, the effect of
the horizontal magnetic field is felt by the three-dimensional forms of convection realized
at higher values of R (Busse & Clever 1989).

Another situation in which a horizontal magnetic field affects convection in an elec-
trically conducting fluid is that of a twisted magnetic field which changes its direction
as function of the vertical coordinate. Such a field is accompagnied by a current density.
In the following we shall consider the case when the electric current is directed parallel
to the magnetic field such that a static “force-free” configuration exists. The onset of
convection in such a configuration is the topic of this paper.

It has long been known that magnetic fields of sunspots exhibit a torsion which is
equivalent to a twist in the local approximation. In the penumbra of large sunspots
where the magnetic field becomes nearly horizontal convection appears to assume the
form of thin roll like structures called filaments. The small wavelength of these rolls is
usually attributed to the influence of the vertical component of the magnetic field. But
the twist of the magnetic field may exert an even stronger effect. This possibility will be
explored in the following sections in terms of a simple model which offers the advantage
that the boundary conditions in the vertical direction do not seem to be significant.
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2. Mathematical Formulation of the Problem

We consider a layer of height d of an electrically conducting fluid heated from below
and cooled from above. The fluid is permeated by a horizontally homogeneous magnetic
field of the form

By = By (i cosyz — j sinvz) (2.1)
where 7 and f denote the unit vectors in the horizontal z- and y-directions of a cartesian
system of coordinates. The direction of the z-coordinate is opposite to gravity. Since the
field (2.1) is force-free, i.e. (V x By) x By = 0, a motionless static solution of the problem
exists.

Using d as length scale, d? /v as time scale where v denotes the kinematic viscosity of
the fluid, and (T» — T1)P/R as scale of the deviation © of the temperature from its static
distribution we obtain the equations of motion for the dimensionless velocity vector @
and the heat equation for © in the following form

By +i-V)i=-Vr+kO+V2i+B-VB , (2.2)
P(@,+@-V)O =RE- i@+ V20 (2.4)

where £ is the unit vector in the z-direction and the Prandtl number and the Rayleigh
number are defined by

P K, R= a(Ty —Th)gd?

- - (2.5)

Here k and « denote the thermal diffusivity and the coefficient of thermal expansion of
the fluid and g is the acceleration of gravity. 71 and T5 are the temperatures at the lower
and upper boundaries which are positioned at z = £0.5. In order to treat the problem
in its simplest physically realistic form the Boussinesq approximation has been assumed
in which the density p is regarded as a constant except in connection with the gravity
term where its dependence on the temperature has been taken into account. All terms
which can be written as gradients in equation (2.2) have been combined into V7.

The general representation for solenoidal vector fields in terms of poloidal and toroidal
components can be used to write the dimensionless magnetic field in the form

Bod
vy/pp

where X is the magnetic diffusivity which is defined as the inverse of the product of
the electrical conductivity ¢ and the magnetic permeability u. By taking the vertical
components of the equation of induction,

B= (fcosyz—fsinvz—}—;(Vx (Vh x k) + Vg x k) . (2.6)

%VQE =8B -V x (@ x B) (2.7)

and of its curl we obtain the equations for h and g
V2Ash = (i cosyz — j sinvyz) - Vu, (2.8)
V2Asg = (i cosyz — j sinyz) - V(dyug — dptty — yu,) (2.9)

where all terms multiplied by v/A have been neglected since we shall consider only the
limit » < X\ which is appropriate for liquid metals, but also for solar plasmas. As denotes
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the horizontal Laplacian, Ay = 92, + 97, . The term B - VB in equation ((2.2) can now
be evaluated,

B-VB = Q[(7 cosyz—j sinyz)-V(V x (Vh x k) + Vg x k) + Aghy(7 sinyz +j cosvz)] .
(2.10)
where @) is the Chandrasekhar number,

2 12
_ Bd (2.11)

VPUA

In the following we shall restrict the analysis to the linear problem of the onset of steady
convection in which case the left hand sides of equations (2.2)-(2.4) can be neglected.
Oscillatory onset of convection is possible in the presence of a magnetic field, but not in
the limit ¥ <« A when the time derivative in equation (2.7) can be dropped.

By taking the z-component of the double curl of equation (2.2), i. e. by operating with
E-V x (V x ...) onto it, we find

V4u, + A0 — Q[(7 cosyz — ] sinyz) - V(V2Agh +72A5R)] =0 . (2.12)
With the help of equations (2.4) and (2.8) © and h can be eliminated from this equation,

Véu, — RAyu, — Q[(7 cosyz — j sinyz) - V(V? = 4?)u, —
2v%[(7 sinyz + J cosvz) - V]2u, +
4y(7 cosyz — J sinvyz) - V(i sinyz + J cosyz) - VO, us)
= —Q[v'(i cosyz —  sinyz) - VAsh + 273(i sinyz + J cosyz) - VA28.h] . (2.13)

On the right hand side terms involving h are still left. We shall neglect these terms
by making the assumption that the parameter v is sufficiently small such that terms
multiplied by v with n > 3 are negligible in comparison with those with a lower power
of n.

Equation (2.13) admits solutions of the form
u, = f(z)exp{ia (i sinx — J cosx) - 7} (2.14)

where x denotes the angle by which the axis of the convection roll described by (2.14) is
turned away from the positive x-axis towards the negative y-axis. The Rayleigh number
R for onset of convection will be minimized when convection sets in at a height 2y such
that the angle x satisfies x = ~vz¢. In this case the dominant term multiplied by @ in
equation (2.13) vanishes for z = zg. It does not vanish for z # 2¢ and it is appropriate
to use a Taylor expansion, cosyz = cosyzg — (2 — 2¢)7ysinyzg + ..., and likewise for
sinvyz. Without loosing generality we may assume x = zo = 0 in which case the ordinary
differential equation for f(z),

d2 2\3 2 2 272 d2
(5 —a”)” + Ra® + Qv7a”(2 (E

2 d B
dz? —a®) +2+42—)]f(2) =0 (2.15)

dz

is obtained where terms up to the order 42 have been taken into account. In the next
section an approximate solution of this equation is derived.
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3. Derivation of an Approximate Solution

For the solution of equation (2.15) the ansatz

fz)= i 22" Aexp{—c*2*} (3.1)

n=0

will be made. It will be anticipated that the parameter ¢ can be chosen sufficiently
large such that the boundary conditions at z = £0.5 will not affect the solution. Since
equation (2.15) is linear homogeneous Ag = 1 can be assumed. The solution procedure
can be understood most readily when the crudest approximation, A, = 0 for n > 1, is
inspected. Equation (2.15) yields in this case

—12063 —36£2 — 66 — 1+ (R +2Qv%)/a*
+a?22{720&* + 144€% + 1267 — (1 4+ 106)7*Q/a®} + o(2*) =0 (3.2)

where the definition £ = ¢?/a? has been used and where terms of the order z* have not
been denoted explicitly since we shall neglect them in first approximation. The wavy
bracket yields an equation for the determination of ¢? as a function of 42@Q, while the
z-independent terms determine R in dependence on a and ¥2Q. The onset of convection
will occur when R reaches a minimum as a function of a?. This minimum is dertermined
by the relationship

603 —36—-1=0 (3.3)

which yields the unique positive root £, = 0.31961. The wavy bracket of equation (3.2)
then yields

¢ = 1/72Q/5.600 (3.4)

The corresponding critical value R, of the Rayleigh number is given by R. = 71.560c*.
This relationship shows that the onset of convection does not depend on the external
length scale d. For a fixed value of the temperature gradient, (T2 — T1)/d, a new Raleigh
number R* can be defined with the natural length scale ¢c~! of convection, R* = R/c*.
Its critical value R} is thus given by

R = R./c* = 31.356R./7*Q = 71.560 (3.5)

corresponding to the critical wavenumber o} = a./c = & 1/2 — 1.768. The result (3.5)
also demonstrates that the assumptions of small v and large ¢ can be readily satisfied
when a sufficiently large value of the Chandrasekhar number is used.

In order to obtain a more accurate solution of equation (2.15) higher order terms in
the representation (3.1) must be taken into account. Some preliminary results are shown
in table 1.

| Table 1 |

|Truncation|£c |RZ‘ |az |A1/\/72Q|Rc/’72Q|02/v ’72Q|

n>1 ‘0.31961‘71.560‘1.768‘0 ‘2.282 ‘0.4226 ‘

n E 2 0.320 |95.68 |1.769(-0.5596 1.5617 [0.3575
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4. Conclusion

Convection rolls in the presence of a twisted magnetic field in sunspots may serve as
a model for penumbral filaments. The theory does not strongly depend on the property
that the magnetic is horizontal. An extension of the analysis to the case of a moderately
inclined magnetic field should yield only minor changes in the results. Since torsions of
sunspot fields are known to vary it is tempting to predict a dependence of the wavelength
of filaments on the strength of the magnetic field and on its twist. Using the relationship
a¥ = £~/ we obtain for the dimensional width ¢ (=half wavelength) of filaments

8 = (hy m\/ppiv/Bo)'/20.632 (4.1)

where h; denotes the height in meters over which the orientation of the magnetic field
changes by 180deg. It will be of interest to look for correlations between the width of
filaments and the torsion of the magnetic field in sunspots.
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