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Simulation of dispersed two-phase flow using a
coupled Volume-of-Fluid /Level-Set method

By E.R.A. Coyajeet, M. Herrmann AND B.J. Boersmat

In this paper, a coupled Volume-of Fluid/Level-Set interface advection method is con-
sidered for the simulation of incompressible two-phase flow. With this method, mass
conservation for both phases can be achieved up to specified tolerance in each computa-
tional cell. Representation of surface tension forces, however, is found unsatisfactory for
the stationary droplet (Laplace) problem, as the procedure to couple the Volume-of-Fluid
(VOF) and Level-Set (LS) functions gives rise to increased levels of spurious currents.
An attempt to improve the coupling of VOF and LS interface descriptions is reported.

1. Introduction

In many industrial flows, the size distribution of drops in a liquid dispersion is of pri-
mary importance to process performance. The size distribution is governed by continuous
break-up and coalescence of the dispersed phase. In contrast to break-up, coalescence
requires the interaction of multiple droplets. In the past, several studies of droplet in-
teraction have been conducted, e.g. Wang, Zinchenko & Davis (1994) and Loewenberg
& Hinch (1997). Most of these studies are performed in the limiting condition of Stokes
flow, i.e. occurring in emulsification and polymer blending processes. However, industrial
flows are frequently turbulent. In this case, if the droplet Reynolds number is finite, the
interaction of droplets and coalescence probability is expected to be influenced by effects
of inertia in the flow.

To perform a detailed investigation of the behavior of multiple droplets in an incom-
pressible flow at finite droplet Reynolds number, we aim to apply an appropriate numer-
ical method. In this work, the mass conserving Level-Set (MCLS) method introduced by
Van der Pijl, Segal, Vuik & Wesseling (2004) is considered for the simulation of two-phase
flows. In the MCLS method, the interface between both fluids is advected by a combined
VOF /LS approach, with the purpose of eliminating drawbacks of the individual methods
by combining advantages.

1.1. VOF method

In the VOF method the interface is represented implicitly on a fixed grid by a marker
function, commonly denoted %. Indicating the fractional volume of one of the fluids, the
VOF function in a computational cell, 2, is defined from:

_ Jo xdQ
Jod’
where Y is the characteristic function, i.e. x = 1 in one fluid and x = 0 in the other fluid.

The value of the VOF function is 0 < ¥ < 1 for cells which are cut by the interface and
0 or 1 elsewhere.

(G (1.1)
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The main advantage of the VOF method is that interface advection can be performed
such that the volume or mass of each phase is conserved. On the other hand, the location
of the interface is not explicitly defined by the VOF function. Consequently, geomet-
ric reconstruction of the interface (or its normal) has to be performed for advection
or the computation of curvature. Over the past years, reconstruction procedures have
been advanced from Simple Linear Interface Construction up to Piecewise Linear Inter-
face Construction and even piecewise parabolic approximations in Renardy & Renardy
(2002). Therefore, computation of interface normals and curvature have improved con-
siderably. The reconstruction procedures themselves however have become complex and
their implementation elaborate.

1.2. LS method

An LS approach for simulation of two-phase flow has been introduced by Sussman,
Smereka & Osher (1994). In the LS methodology, the interface is represented implic-
itly on a fixed grid by the zero-level of a marker function, commonly denoted ¢, i.e.
¢ = 0 at the interface. Away from the interface, the marker function is required to be
a distance function, i.e. ¢ < 0 in phase ’1’ and ¢ > 0 in phase '2’. Using the distance
function property, the discontinuous surface tension force and discontinuous phase vari-
ables such as viscosity and density are easily regularized and implemented according to
the Continuous Surface Force methodology (Brackbill, Kothe & Zemach 1992).

Advection of the interface is performed by advecting the LS function as if it were a
material property:

0

6—f+u-v¢=0. (1.2)
For the numerical solution of equation 1.2, straightforward methods for hyperbolic con-
servation laws are applied, which are diffusive. The diffusion changes the volume enclosed
by ¢ = 0, causing transport of mass from one phase to another. For the current objec-
tive, long-term computation of dispersed flow, mass losses would result in unacceptable

changes in the properties of droplets and their behavior.

1.3. MCLS method

To overcome the problem of mass diffusion in the LS method, the MCLS method combines
both LS and VOF approaches: The LS methodology is used for representation of the
interface, while the VOF methodology is used for volume preserving advection of both
phases. Such a combined approach requires methods to switch between LS and VOF
interface descriptions. The MCLS method uses the following relation introduced in the
coupled LS/VOF (CLSVOF) method by Sussman & Puckett (2000):

Jo H($)d2
== 1.
Ry (13)
where H(¢) is the Heaviside function, defined
1 if¢e>0
H(¢) = { 0 otherwise. (1.4)

Using equation 1.3 and assuming a piecewise linear interface in each computational cell,
Van der Pijl, Segal & Vuik (2004) propose an explicit relation between ¢ and ¢ of the
form:

¥ =f(¢, V), (1.5)
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which will be discussed further in section 3.2. In addition to equation 1.5, a coupled
VOF/LS method requires a way of computing ¢ from 1. However, no explicit inverse re-
lation of equation 1.5 seems to be available. Instead, an iterative procedure is performed
to correct an approximate solution of the LS function. Unfortunately, our tests indicate
that the corrections give rise to enhancement of the so-called spurious currents in the
stationary bubble problem. Therefore this work tries to make a contribution to improve
the coupling between LS and VOF interface representations.

The organization of this article is as follows. In the next section a set of equations is
presented for the description of multiphase flow. Subsequently in section 3, the numer-
ical method of Van der Pijl, Segal & Vuik (2004) is presented, with specific emphasis
on the inverse coupling between the LS and VOF function. In section 4, results are pre-
sented for the stationary droplet problem. Furthermore, an analysis and proposition for
improvement of the VOF/LS coupling in the MCLS method is given, followed by the
results of a number of test cases. A discussion concludes the paper.

2. Governing equations

Multiphase flow is described by a set of equations for fluid and interface motion. The
motion of the fluids is described by the Navier-Stokes (NS) equations:

0
p(9) (6—‘; tu- Vu) = _Vp+V- (u(d)) (vu + (Vu)T)) +f (2.1)
and the continuity equation for incompressible flow:
V-u=0. (2.2)
The motion of the interface is described by the following equations for the LS:
o¢
_ - == 2.
e +u-Vé=0 (2.3)
and VOF function:
oY +u-Vyp=0 (2.4)
ot - '

In equation 2.1, p, u, p, u = (u,v,w)” and f respectively represent density, viscosity,
pressure, the velocity vector and a volume force. The volume force f may represent gravity
as well as surface tension forces. A continuum description of the discontinuous surface
tension force acting at the interface between two fluids:

ok(¢)VH(¢) (2.5)
was introduced by Brackbill, Kothe & Zemach (1992) and cast into LS methodology by
Chang, Hou, Merriman & Osher(1996). Here, x(¢) is the mean curvature, defined from:

Vo

Density p(¢) and viscosity u(¢) are allowed to vary between phase ’1’ or 2’ and are
defined:

K(¢) =V (2.6)

=
&
[

p (1= H()) + p2H (0), (2.7)
p(¢) = p1 (1 — H(9)) + p2H () (2.8)
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3. Numerical method

In the method of Van der Pijl, Segal & Vuik (2004), the computational domain is a
3D rectangular box. Equations 2.1-2.4 are spatially discretized on a uniform Cartesian
mesh. A standard staggered arrangement of variables is used, i.e. velocity components
are located on the cell faces, whereas pressure, density, VOF and LS variables are defined
at cell centers.

Although the original method allows unequal densities in either phase, in this report
only fluids of equal density are considered as our focus is on the effects of the VOF/LS
coupling on computation of surface tension. The coupling itself is in no way influenced
by the density ratio, and for further details about the implementation of discontinuous
density we refer to Van der Pijl, Segal, Vuik & Wesseling (2004).

A single time-step in our code consists of the following sequence. First, for a given
interface position (i.e. LS function), the flow field is advanced to obtain the velocity at
the new time level. Second, given the velocity, the interface is advected to obtain a new
interface position (i.e. LS function).

3.1. Fluid flow

Time integration of equations 2.1 and 2.2 is performed with the second order Adams-
Bashforth method in the framework of a pressure correction method. Rewriting equation
2.1 into

ou

—=f —Vp 1

=1 (u,0) - 5, (3.)

where p = p/p denotes the reduced pressure, the integration scheme is given from:
u* —u” _ 3 n o..n 1 n—1 .. n—1 ~n—1/2
T = S () — 5 (£ un ) + v, (3:2)
V2 = LV.ur (3.3)
P= At ’ '
Vptt2 = vpnT? 4 v, (3.4)
u"t = u* — AtVp*. (3.5)

Due to the assumption of uniform density, we can use a direct Poisson solver to obtain
the pressure from equation 3.3, making the code very efficient. For spatial discretization
of equations 2.1 and 2.2, central second order finite differences are used. Finally, the
following regularized Heaviside function is used for the computation of the surface tension
volume force.:

0 if ¢ < —«
Ho(¢) = §(1+2+ Lsin(ng/a)) if[g|<a , (3.6)
1 ifop>a

where « is chosen as a = 3/2.

3.2. Interface advection

The interface advection procedure in the MCLS method is the following:
1. Given ¢", compute ™;
2. Advect ¢ toward ¢mtH1;
3. Advect ¢™ toward ¢*;
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4. Correct ¢* to obtain ¢"t1, such that [y"+! — f(¢"+!, Vo™ t!)| < € in each compu-
tational cell.
This procedure will be explained in the following sections.

3.2.1. Computation of VOF from the LS function

As discussed in the introduction, a direct relation is used to compute the VOF from
the LS function in 3D:

v =1($,V9). 3.7

In the MCLS method, the interface is assumed to be piecewise linear in each computa-
tional cell. As a consequence, the interface is a 2D plane, which can be described by a
normal vector and a distance to some position along the normal direction. The normal
to the interface is simply described by:

V¢
n=——~V¢ (3.8)
IVl
as the LS function is maintained a distance function in our computations (see section
3.2.3), for which |V¢| = 1. In the actual implementation, V¢ is estimated using central
second order finite differences. The description of the interface is completed by the local
value of the LS function, describing the distance between the interface and the cell center.

With the assumption of a piecewise linear interface, equation 1.3 is simplified to:

Jo H(dk + Vér - (x — xi)) dQ
T, 40 ;

where ¢ and V¢j, are the discrete values of the LS function and its gradient in a
computational cell, 0, and x; denotes the position of the cell center. Now, at the
piecewise linear interface, described by the local values ¢ and V¢, the value of the
LS function is known: ¢ = 0. Then, from the location of the planar interface and the
local gradient of the LS function, any distance between the interface and the faces of
the computational cell can be computed. Therefore, it is possible to determine the VOF
value in a computational cell from a geometric computation of the volume for which
H(¢) =1, in accordance with equation 1.3. For the complete mathematical formulation
of equation 3.8, we refer to Van der Pijl, Segal & Vuik (2004).

Y= (3.9)

3.2.2. VOF advection

The VOF advection is performed by means of an operator-split method. To this aim,
equation 2.4 is rewritten into:

o0, ) _ ou
ot (Bz' ) T oz

oY Owy)  Ov

YN + o = Yoy (3.10)
op  Owy) _  dw
ot + 8z ¥ 0z’
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its donating region uAtAyAz. The interface is and ¢ for V¢ = (%\/5, %\/5, %\/5)

indicated by a patterned surface.

A conservative numerical approximation of equation 3.10 is obtained by considering fluxes
of fluid, denoted F', flowing through the boundary of a cell during time-step At:

¢*_,¢n _ Fwn_i__an_ f U+ —U—

At T AzAyAzAt V' Az
P = _ By By w**”+_”—

At AzAyAzAt Ay (3.11)
vt ouFR R e —w

At AzAyAzAt Az
n+1 ok ok
Y A—t¢ — U+A— U U+A— Vo g w+A_ w-
T y z

where subscripts indicate the corresponding face of a cell. The discrete flux is defined:

F= H(¢)dQ, (3.12)
Qp

where Qp is the donating region, which contains the fluid that will flow through a face
during a time-step At. An example of a discrete flux, F, 4, and its donating region is
displayed in figure 1. To compute the magnitude of the particular flux in figure 1, the
VOF within the donating region of size: uAtAyAz needs to be considered. To compute
the discrete fluxes, equation 3.7 can be used as its formulation enables the computation
of a fluid fraction in any rectangular domain.

3.2.3. LS advection

As a final step in the interface advection procedure one would like to obtain ¢™*! from
yp™+1 directly. Unfortunately, no explicit inverse relation of equation 3.7 appears to be
available and a different strategy needs to be applied. Although interface advection of
the LS function is not preferred as the solutions are not strictly mass conserving, ¢™ can
be advected to obtain an approximate solution of the LS function.

The preliminary update of the LS function, denoted ¢*, is obtained by solving equa-
tion 2.3. Subsequently, reinitialization is performed to keep the LS function a distance
function as in Sussman, Smereka & Osher (1994). First order discretization is used for
both advection and reinitialization procedures. Obviously, first order methods suffer from
considerable numerical diffusion, resulting in transport of mass from one phase to an-
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FI1GURE 3. Droplet falling into a free surface. Simulation of an air-water flow without surface
tension. Courtesy of Sander van der Pijl.

other. However, as mass conservation is ensured by the correction procedure described
in the next section, Van der Pijl, Segal, Vuik & Wesseling (2004) argue in favor of a low
order method because the diffusion provides a smooth approximate solution for the LS
function.

3.2.4. Correction of the LS function

Finally, ¢* is corrected, providing a solution ¢™*! which satisfies:
[ttt — FRt, Vert) | <e V k=1,2,....K (3.13)

where K is the total number of computational cells and € a tolerance. In this work we
use e=1-10"*

The main idea of the correction procedure is as follows: Keeping V¢ at a constant
value, the interface equation 3.7 gives a one-to-one relation between the LS and VOF
function:

¢ =9, Vo). (3.14)

Figure 2 shows an example of the graph of such a relation between the LS and VOF
function for V¢ = (3v/3, 13, 24/3). From figure 2 it will be clear that, while assuming
a constant gradient of the LS function, the local value of the LS function in a cell can
be adjusted such that the required local value of the VOF function is obtained. We
found this procedure similar to the one in Sussman & Puckett (2000), in which a linearly
constructed piece of interface is shifted along its normal direction to minimize a mass
error. Here, the assumption of a constant gradient is equivalent to solving a linearized
problem.
Using equation 3.14, the following iterative procedure is executed to correct the pre-
liminary LS function:
° ¢0 _ ¢*
o & = |vpt = F(6R, VAR)l;
e Repeat until &)y, < € Vk
gt = { g™, Vo) if Gy > €
k o if & < €
&/Jk — |,¢n+1 (¢m+1 v¢m+1)|

° ¢n+1 ¢m+
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Case|l |2 3 |4 |5 |6 |7 |8 |9 |10 |11 |12
o |1 01 ]0.01 [0.001 |1 0.1 |0.01 |0.001 |1 0.1 [0.01 |0.001
po|1 1 1 1 01 |01 |01 |01 [0.01 |0.01 [0.01 |0.01

TABLE 1. Parameter combinations of surface tension o and viscosity p for the Laplace problem.

FIGURE 4. Laplace problem: Velocity vectors and interface over a cross-section (y = 0) of the
droplet at time ¢ = 0.1. MCLS method used for case 7 with A = 1/32.

4. Results

Figure 3 shows three images of a simulation of a droplet falling into a free surface. The
maximum relative mass error during this computation is less than 1.6-10~*. Considering
the complexity of the interface motion, this result clearly shows the capability of the
MCLS method to conserve mass. Nevertheless, the simulation of figure 3 is performed
without the surface tension force in equation 2.1. To investigate the surface tension rep-
resentation in the MCLS method, the Laplace or stationary droplet problem is simulated
in this section.

4.1. Laplace problem

The Laplace or stationary bubble/droplet problem is considered an important test case
for implementation of surface tension forces (Renardy & Renardy 2002). Here, the Laplace
problem is simulated in a computational domain of dimensions 1 x 1 x 1. Boundary condi-
tions are periodic in all directions. Initial conditions are u = (0, 0, 0) for the fluid velocity
and R, = 0.25 for the radius of the droplet. Computations have been performed using
p = 1 and various combinations of o and u, listed in table 1. For a grid refinement study,
uniform meshes are used with h = 1/16,1/32,1/64,1/128. The time-step is At = 2-1075.
In the simulations, the magnitude of the parasitic currents is monitored by measuring
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the maximum norm of the error in velocity, defined fromf:

Lo = 1I§I}caéxK(|u|k7 |v]k, [w]k)- (4.1)

Simulations have been run for all mesh sizes and combinations of parameters up to
t = 0.1. At this time, the spurious or parasitic currents (displayed in figure 4) are found
to have saturated toward a maximum level. This behavior is similar to the behavior
found in Renardy & Renardy (2002). Also in accordance with other authors we find that
Lo (t = 0.1) increases linearly with the ratio o/u (figure 5). Nonetheless, the spurious
currents seem rather high. To compare, we have recalculated all cases using only first
order LS advection, i.e. disregarding the coupling between the advected VOF and LS
functions in the simulation. The results are also given in figure 5 and reveal lower levels
of parasitic currents.

From the comparison of results of the LS and MCLS methods, we conjecture the
enhancement of spurious currents is caused by the inverse coupling between the LS and
VOF functions. In the procedure of section 3.2.4, corrections are only introduced in cells
where the local mass error is larger than a certain tolerance. As the corrections are only
applied locally, problems may arise in the computation of curvature which involves second
order derivatives of the LS function. We have done an analysis of a singular perturbation
in ¢ on the curvature, i.e. introducing ¢ = ¢(x) + ¢ to the discretized curvature x(¢). For
a singular perturbation € = O(h), the resulting error in curvature is found to be O(1/h).

The previous analysis, which suggests that the corrections act as a singular perturba-
tion on the smooth initial LS function, is confirmed by the results of our simulations.
Figure 6 shows results of a grid refinement study of the maximum norm for case 7, both
for LS advection and the MCLS method. The magnitude of the spurious currents in the
MCLS method is found to increase approximately proportional with 1/h, whereas first
order convergence is found for LS advectioni.

t Note that, since the exact solution for the fluid velocity in the Laplace problem is zero
velocity everywhere, any velocity measured is equal to an error in the velocity.

1 For h = 1/16 results are identical for both methods. This is due to the fact that hardly
any corrections need to be performed for this mesh, as the displacement of the interface is very
small in the relation to the mesh width.
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4.2. Regularization of the corrections

The analysis of the previous section indicates that local corrections to the LS function
introduce undesirable errors in the curvature. A possible improvement would be to reg-
ularize the corrections and retain a smooth spatial representation of the curvature.

In the current method, the surface tension force is treated as a volume force. This
requires the curvature to be computed in a small ’band’ surrounding the interface. The
curvature is defined as the divergence of the normal vector to the interface (equation 2.6).
To compute a valid representation of the curvature in a region surrounding the interface,
the gradient of the corrected LS function should be constant along the direction normal
to the interface. Therefore, the first step in the proposed regularization procedure is to
extend the local corrections, defined & = ¢! — ¢*, along the direction normal to the
interface by solving the following equation in pseudo-time 7:

9% o VO _
W+S(¢ )|V¢*|V&l)—0, (4.2)
where S(¢*) is the signum function defined:
1 if¢* <0
S(@*)=¢ 0 if¢g*=0 (4.3)
1 if¢*>0

For numerical implementation of equation 4.2, a first order method is used as described
in Peng, Merriman, Osher, Zhao & Kang (1999).

In addition to the extension procedure, a filter is applied to smooth the corrections in
the direction tangential to the interface. The following interpolation function is applied to
the corrections, consecutively in each coordinate direction, to attenuate high-frequency
components:

8= 5 (<80 + 488, + 108 + 468, — 3h_,) (44)

with &ﬁ the filtered corrections.

After treating the initial correction with the additional extension and filtering proce-
dures, modified corrections are obtained and added to the initial approximation of the LS
function. Due to the regularization, the effect of the initial correction procedure is altered
and equation 3.13 may not necessarily hold. Therefore, the local correction, extension
and filtering procedures are repeated iteratively in the following test case.

In our test case, the LS function of a perturbed spherical interface:

' = R(1—X) — /22 + 92 + (2/(1— N))? (4.5)

is corrected back to a spherical interface of radius R, whose VOF function is represented
by ¢™*+1. The perturbation X is proportional to the mesh width, A o h, and of such
magnitude that the maximum volumetric error in each computational cell &k is approxi-
mately 10%, i.e. max |7,[},’§+1 — (95, V)| = 0.1. After each iteration cycle of the modified
correction procedure, the maximum relative error in curvature:

*
K — — Kg

e (4.6)

max
k
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| Max. relative error k | Relative mass error
Mesh width |1/32 |1/64 |1/128 |1/32 |1/64 |1/128
Local method 7.87-107" | 1.64 3.60 4.77-1075|2.77-107%]1.24 - 1075
Regularized method |2.48 -10~* |3.67-107* | 7.89-107*|6.08 - 107° | 1.85-107¢|9.17 . 10"

TABLE 2. Comparison of maximum relative curvature and relative mass errors for the local
and regularized correction methods. For the latter, only results after 24 iterations are shown.

1 T T T T 0-01 T T T T
¢ * +
— X
§ 01 b<*x ] g 0.001 X, E
5] tx Xy 5} %
2 B £ 00001 | "%, .
3 001 F +%, ™ E g Koty
T;ﬁ +i><>< *x 4 1le-05 *%;X +++++++++++++
% 0.001 *ixxxxxi** Kk 5 ****%xxxixwxxxxx
g 3 + Xx *x1 o) L KKKk
= +4 +++++iiif§ ~ 1e-06 K% ¥+
0.0001 L L L L 1e-07 L L L L
0 5 10 15 20 25 0 5 10 15 20 25
iterations iterations
FIGURE 7. Maximum relative error in curva- FIGURE 8. Relative mass error as a function
ture as a function of iterations. (+) h = 1/32, of iterations. Symbols as in figure 7.
(x) h =1/64 and () h = 1/128.
and the relative mass error
n+1 n+1 n—+1
n+1 .
k Tk

are computed and stored.

In table 2, results are compared of the local and regularized correction method, show-
ing significant reduction of error in curvature for the new method. Figures 7 and 8
display successful convergence of errors with increasing number of iterations in case of
the regularized method for each individual grid size. However, figure 7 also shows that
for identical number of iterations, no convergence upon grid refinement is obtained for
the maximum relative error in curvature. Furthermore, similar tests for less smoothly
perturbed ¢* (not shown here) indicate unsatisfactory convergence of the mass error.
Therefore actual implementation of the regularized correction procedure is not pursued.

5. Discussion

From the results presented in this work, we conclude that the coupling of LS and
VOF interface descriptions by applying local corrections to the LS function should be
avoided. The local corrections introduce non-smooth errors in the curvature and therefore
surface tension force, because its computation involves second order derivatives of the
LS function. As a result of these errors, spurious currents are enhanced, which limits
the range of parameters (surface tension coefficient and viscosity) to be used for the
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simulation of droplets. Moreover, the errors in surface tension force are shown to grow
linearly upon grid refinement, which may affect the convergence and stability of the
numerical method in general. Finally, the presented non-localization scheme is insufficient
because, although it reduces the magnitude of the error in curvature, still does not
guarantee convergence of the error upon grid refinement.

Instead, a global correction procedure could be applied, providing a LS function which
is sufficiently smooth. Our proposition is to enforce two conditions on the LS function
simultaneously:

v =f(¢, Vo) (5.1)

and
Vgl =1 (5.2)

to obtain a mass conserving distance function to the piecewise linear interface. Currently,
a variational LS method is considered, which reinitializes the LS function to accomplish
equation 5.2 under the constraint for volume fraction, equation 5.1.

Although a priori estimation is difficult, a variational VOF /LS coupling procedure will
be an additional effort in the code. Nonetheless, use of the LS function for the computa-
tion of the VOF advection has shown to be highly efficient in the MCLS code. Therefore,
we still consider the combined VOF/LS approach an appropriate one to pursue.
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