Center for Turbulence Research 111
Proceedings of the Summer Program 200/

Adaptive LES of 3D decaying isotropic turbulence

By D. E. Goldstein}, O. V. Vasilyevi AND N. K.-R. Kevlahan?

In this work SCALES simulations of decaying incompressible isotropic turbulence are
compared to DNS and LES results. Current Large Eddy Simulation (LES) relies on,
at best, a zonally adapted filter width to reduce the computational cost of simulating
complex turbulent flows. While an improvement over a uniform filter width, this approach
has two limitations. First, it does not capture the high wave number components of
the coherent vortices that make up the organized part of turbulent flows, thus losing
essential physical information. Secondly, the flow is over-resolved in the regions between
the coherent vortices, thus wasting computational resources. The Stochastic Coherent
Adaptive Large Eddy Simulation (SCALES) approach addresses these shortcomings of
LES by using a dynamic grid adaptation strategy that is able to resolve and “track”
the most energetic coherent structures in a turbulent flow field. This corresponds to
a dynamically adaptive local filter width. Unlike Coherent Vortex Simulation (CVS),
which is able to recover low order statistics with no subgrid scale stress model, the
higher compression used in SCALES necessitates that the effect of the unresolved subgrid
scale (SGS) stresses must be modeled. These SGS stresses are approximated using a new
dynamic eddy viscosity model based on Germano’s classical dynamic procedure redefined
in terms of two wavelet thresholding filters.

1. Introduction

Turbulence is characterized by energetic eddies that are localized in space and scale,
yet most numerical methods for turbulent flow simulations do not take advantage of this
localization. In this work we explore the possibility of making use of this localization by
“compressing” the turbulence problem such that a simulation with a subset of the total
modes captures the dynamics of the most energetic eddies in the flow. A recent method for
simulating turbulence called Coherent Vortex Simulation (CVS), introduced by Farge et
al. (1999), uses a wavelet filter to dynamically resolve and “track” the energetic coherent
eddies or vortices in a turbulent flow. It has been shown that the resulting subgrid scale
(SGS) field with CVS is near Gaussian white noise (Goldstein & Vasilyev 2004; Farge
et al. 2001), which results in practically no SGS dissipation. Therefore, a CVS simulation
can be run with no SGS model if only low order statistics are required. It is important to
note that there is still significant energy transfer between the resolved and SGS modes
and visa-versa, but the statistical average or net energy transfer is zero. If higher order
statistics are required, then a purely stochastic subgrid scale stress model can be used to
reproduce the effect of the subgrid scales. One of the challenges with the CVS method is
how to determine on the fly during an actual simulation the “ideal” wavelet compression,
which results in a purely incoherent subgrid scale field. Even if it can be found in a cost
effective manner it is still likely that the associated adaptive grid will be too fine to be
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cost effective for simulating high Re number flows, since the computational cost of CVS
falls between DNS and LES.

Recently a new methodology called Stochastic Coherent Adaptive Large Eddy Simula-
tion (SCALES) (Goldstein & Vasilyev 2004) has been introduced that shares with CVS
the ability to dynamically resolve and “track” the most energetic part of the coherent
eddies in a turbulent flow field, but with the higher computational efficiency associated
with LES. With SCALES the maximum number of modes in the simulation are resolved,
given the balance between computing resources and user defined acceptable simulation
error. With a field compression in the range of that used with typical LES applications
the SGS modes are no longer near Gaussian white noise, as with CVS, so a SGS model
is required. Yet at the same field compression as LES, using a spectral cutoff filter, the
wavelet filter used with SCALES results in a significantly reduced level of total SGS
dissipation that will have to be modeled (Goldstein & Vasilyev 2004). In this work we
apply the Stochastic Coherent Adaptive Large Eddy Simulation (SCALES) method to
the problem of three-dimensional decaying isotropic turbulence.

An eddy viscosity type SGS model for SCALES is also investigated in this work. Since
the wavelet threshold filter lacks a clearly defined global filter width, an alternative model
scaling based on the wavelet threshold parameter (¢) is proposed. Results using a modified
Smagorinsky (Smagorinsky 1963) eddy viscosity SGS stress model using both a constant
model coefficient and a dynamic coefficient determined by a new dynamic procedure are
shown.

In this research the SCALES method has been implemented using a Dynamically
Adaptive Wavelet Collocation (DAWC) method (Vasilyev & Bowman 2000; Vasilyev
2003). The DAWC method is ideal for implementing the SCALES methodology as it
combines the resolution of the energetic coherent modes in a turbulent flow with the
simulation of their temporal evolution (Vasilyev & Kevlahan 2002; Kevlahan et al. 2003).
The wavelet collocation method employs wavelet compression as an integral part of the
solution such that the solution is obtained with the minimum number of grid points for
a given accuracy.

The rest of this paper is organized as follows. In section 2 background theory and
results relevant to this work are presented. In Section 3 a Dynamically Adaptive Wavelet
Collocation Solver is introduced that has been used to implement the SCALES method.
In Section 4 the implementation of SCALES along with the introduction of a new dynamic
SGS model is presented. Then in Section 5 fully adaptive SCALES simulations of three-
dimensional decaying incompressible isotropic turbulence based on the DAWC method
are presented. In the final section conclusions and discussion of future work are provided.

2. Background
2.1. General Properties of Wavelets

Wavelets are basis functions, which are localized in both physical space (due to their finite
support) and wavenumber space. A field u(x) can be represented in terms of wavelet basis
functions as
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where ¢9 (x) and 9! 7 are respectively n-dimensional scaling functions and wavelets of
different families (1) and levels of resolution (7). One may think of a wavelet decompo-
sition as a multilevel or multiresolution representation of a function, where each level of
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resolution j (except the coarsest one) consists of wavelets @bf or family of wavelets ¢}’ +J

having the same scale but located at different positions. Scaling function coefficients rep-
resent the averaged values of the field, while the wavelet coefficients represent the details
of the field at different scales. The wavelet functions have a zero mean, while the scaling
functions do not. Note that in n-dimensions there are 2™ — 1 distinctive n-dimensional
wavelets (Daubechies 1992). Also note that due to the local support of both scaling func-
tions and wavelets, there is a one-to-one correspondence between the location of each
scaling function or wavelet with a grid point. As a result each scaling function coefficient
¥ and each wavelet coefficient di”’ is uniquely associated with a single grid point with
the indices 1 and k respectively.

For this study we use a set of second generation wavelets known in the literature as
lifted interpolating wavelets (Vasilyev & Bowman 2000; Sweldens 1998). In particular,
simulations with the Dynamically Adaptive Wavelet Collocation (DAWC) solver are run
using a lifted interpolating wavelet of order 6. For a more in-depth discussion on the
construction of these wavelets the reader is referred to the papers by Sweldens (1998)
and Vasilyev and Bowman (2000). For a more general discussion on wavelets we refer to
the books of Daubechies (1992) and Mallat (1999).

2.2. Wavelet Filters

Wavelet filtering is performed in wavelet space using wavelet coeflicient thresholding,
which can be considered as a non-linear filter that depends on each flow realization. The
wavelet thresholding filter is defined by,

400 2™ —1
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The reconstruction error due to wavelet filtering with threshold € can be shown to
be (Donoho 1992; Vasilyev 2003):

llu(x) —ux>(x)|| < Ce, (2.3)

for a sufficiently smooth function u(x), where C is of order unity.

An important property of the wavelet thresholding filter is that in a dynamic simulation
the grid required to support the wavelet filtered field will be changing in time and it will
be collocated with the resolved wavelet coeflicients. Thus, the grid defined by the wavelet
collocation points will track the areas of locally significant energy in physical space.

2.3. Wavelet Compression and Wavelet De-noising

The major strength of wavelet filtering decomposition (Eq. 2.2), is the ability to compress
signals. For functions that contain isolated small scales on a large-scale background,
most wavelet coefficients are small, thus, we can retain good approximation even after
discarding a large number of wavelets with small coefficients. Intuitively, the coefficient
di”’? will be small unless u(x) has variation on the scale of j in the immediate vicinity of
wavelet 17 (x).

Another important property of wavelet analysis used in this work is the ability of
wavelets to de-noise signals. The wavelet de-noising procedure, also called wavelet-shrinkage,
originally introduced by Donoho (1993), can be briefly described as following: given a
function that consists of a smooth function with superimposed noise, one performs a
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forward wavelet transform and sets to zero “noisy” wavelet coefficients, if the square of
the wavelet coefficient is less than the noise variance 02, otherwise the wavelet coeffi-
cient is kept. This procedure is known as hard or linear thresholding. Donoho (1993)
demonstrated that hard thresholding is optimal for de-noising signals in the presence of
Gaussian white noise, because wavelet-based estimators minimize the maximal L?-error
for functions with inhomogeneous regularity. In the CVS method discussed in this work
the “noise” is actually the SGS modes.

3. Dynamically Adaptive Wavelet Collocation Method

A key component in the implementation of the SCALES method has been a Dynami-
cally Adaptive Wavelet Collocation (DAWC) (Vasilyev 2003; Vasilyev & Bowman 2000)
solver that is ideally suited to the simulation of turbulence since wavelets adapt the nu-
merical resolution naturally to the localized turbulent structures that exist at all wave
numbers in fully developed turbulence. The wavelet collocation method takes advantage
of the fact that wavelets are localized in both space and scale, and as a result, functions
with localized regions of sharp transition are well compressed using wavelet decompo-
sition. The adaptation is achieved by retaining only those wavelets, whose coefficients
are greater than an a priori given threshold (e). Thus, high resolution computations are
carried out only in those regions, where sharp transitions occur. With this adaptation
strategy, a solution is obtained on a near optimal grid that “tracks” the coherent vortices
in the field, i.e. far fewer grid points are needed for wavelets than for conventional finite-
difference, finite-element, or spectral methods. By varying the threshold parameter € this
method can be used to implement any of the wavelet based methods discussed above,
namely CVS or SCALES.

Let us briefly outline the main features of the numerical method. Details can be found
in (Vasilyev & Bowman 2000; Vasilyev 2003). In the wavelet collocation method there is
a one-to-one correspondence between grid points and wavelets, which makes calculation
of nonlinear terms simple and allows the grid to adapt automatically and dynamically
to the solution by adding or removing wavelets. Very briefly, at each time step we take
the wavelet transform of the solution, remove all wavelets with coefficient magnitude
less than a threshold €, and then reconstruct the solution. It can be shown that the
Lo, error of this approximation is O(e). To account for the evolution of the solution
over one time step the computational grid needs to be extended to include grid points
associated with wavelets whose coefficients are or can possibly become significant during
the time integration step (Vasilyev 2003). To do this we add grid points that are adjacent
in both position and scale to each significant wavelet coefficient. While the cost of this
added adjacent zone is significant at low compression ratios it becomes much less so
at higher compression ratios. This diminishing cost of the adjacent zone with increased
compression will be the case for any numerical problem that has inherent local structures
that dominate the field being simulated. Figure 1 shows the compression ratio vs. the
wavelet filter threshold e for a wavelet collocation grid adapted to a DNS field of isotropic
turbulence (Rey = 168) with and without an adjacent zone. We can see clearly that the
added overhead of the adjacent zone becomes insignificant for compression ratios over
98%. This is the case because in turbulent flows, like the one considered, the flow is
dominated by localized energetic coherent vortices. Since each wavelet corresponds to a
single grid point this procedure allows the grid to automatically follow the evolution of
the solution in position and scale. We use second generation wavelets (Sweldens 1998),
which allow the order of the wavelet (and hence of the numerical method) to be easily
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varied. The method has a computational complexity O(N), where N is the number of
wavelets retained in the calculation (i.e. those wavelets with coefficients greater than e
plus nearest neighbors).

In summary, the dynamically adaptive wavelet collocation method is an adaptive,
variable order method for solving partial differential equations with localized structures
that change their location and scale in space and time. Because the computational grid
automatically adapts to the solution (in position and scale), we do not have to know
a priori where the regions of high gradients or structures exist. In related work the
dynamically adaptive wavelet collocation method has been combined with the Brinkman
penalization method (Vasilyev & Kevlahan 2002) to define solid structures in the domain
for the simulation of complex geometry flows.

4. SCALES Implementation

The SCALES method is based on the premise that the most energetic coherent vortices
(or structures) of a turbulent flow dominate mixing, heat transfer and other quantities
of engineering interest, while the smaller incoherent background is only of interest be-
cause of how they effect the energetic coherent vortices (Goldstein & Vasilyev 2004).
The SCALES equations for incompressible flow, that describe the evolution of the most
energetic coherent vortices in the flow field, can be written as:

6U_i>€

G =0 (4.1)

6u_i>€ N a(u—i>e u—j>e) _ 1 6]_)>€ 62u_i>‘ 3 aﬁj>e

ot 8.’Ej _; 8:1:, V@mj(’)xj 63:]- ’

(4.2)
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where

= W - @3)
and wu; is the velocity field, p is density, v is kinematic viscosity, p is pressure and Ex
represents spatial filtering with a wavelet thresholding filter. As a result of the filtering
process the unresolved quantity 7;;>¢, commonly referred to as the Subgrid Scale (SGS)
stress, is introduced. Note that 7;;¢ is a function of the unfiltered velocity field u;.
However in order to close Eqgs. 4.1-4.2 and realize the benefits of SCALES, a low order

model for the SGS stress, which is based on the resolved quantities, is needed.

4.1. SCALES SGS Modeling

The standard Smagorinsky (Smagorinsky 1963) eddy viscosity SGS stress model defines
an eddy viscosity that is proportional to the filter width and the characteristic filtered
rate of strain. In the case of the non-linear wavelet thresholding filter used in SCALES
there is no clearly defined filter width, so instead the wavelet threshold (e) is used to
properly scale the eddy viscosity:

vy = csea‘?f , (4.4)
where
e 1 8u_j>€ au—j>€
i == —=—— 4.
Sz 2 ( ail':j + ail':z ) ’ ( 5)

is the strain rate of the resolved scales. We will show in Section 4.2 that appropriate
scaling is obtained with @ = 2. The new linear eddy viscosity model is then used to
define a model for the subgrid scale stress (Eq. 4.3),
M = 2w Sy (4.6)
where v is the turbulent eddy viscosity.
The new Germano dynamic formulation for the model coefficient Cy is based on the

wavelet filter threshold parameter (€). For the dynamic procedure the grid filter is defined

—>2
as ()~ and the “test” filter is defined as () . The adjacent zone is excluded in both
cases to obtain the proper model scaling. The dynamic procedure is then based on the
original SGS stress, Eq. 4.3, and an alternative subgrid scale stress,

>2€ >2€ >2e >2€

T;; =uu;”¢ —u;7 ;e R 4.7)

—>2¢
which would result from applying the wavelet thresholding“test” filter ((-) ) to Egs.
4.1-4.3. Note that the wavelet filter is a projection operator so by definition:

> —Sea>eB

O =0"" (4.8)
where ec = max(e4, eg). Filtering Eq.4.3 at the “test” filter level and subtracting it from
Eq.4.7 results in the modified Germano’s identity (Germano et al. 1991)

—>2€ —<>2e¢ ———<>2¢ —=>26 ——=>2¢€
Ti‘ - Tz'j>6 = 'u,'>€'u]'>€ - u,'>€ Uj>6 . (4.9)

Then substituting modeled SGS stresses at the two filter levels to Eq. 4.9 gives:

_ 2 —>2¢
Ty =T Cm T - (4.10)
2| 5>2€|5—>2¢ 2| a>€ —>e>26
= 205(26) S Sz'j —2Cs€°|S Sz'j
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Following Lilly’s (1992) notation we define L;; and M;; as follows:

2e >2

— € ——=>2¢
_ui>€ uj>e

Lz'j = u—i>eu—j>e> ’ (4‘11)

—>2¢
M;; = 262‘3” 5.7¢ - 2(26)2‘?26 5,7, (4.12)

where L;; is a wavelet filtered analog to the Leonard stress. This results in an overdeter-
mined system of equations that can be used to determine Cj
CsM;; = Lj . (4.13)

Following Lilly’s (1992) least square solution to this system, we obtain the following
expression for the local Smagorinsky model coefficient:

_ LijMy;

Cs = .
T MMy

(4.14)

With this model formulation Cs can be locally positive or negative allowing for local
backscatter. In practice it has been found that locally negative values of C;s cause nu-
merical instabilities in SCALES, as in LES, so we average over the domain:

(Lij Mi;)

C, = i)
(M M;;)

(4.15)

where (-) denotes volume averaging.
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4.2. Model Scaling

If we make the assumption that, with an appropriate value for «, the eddy viscosity
model (Eq.4.4-4.6) provides the right dissipation it is easy to show,

(%)
205¢" = — —=>€c| m>em>e\

FTos)
where « is the scaling law. The correct scaling is determined from a priori testing of a tur-

bulent field obtained from a 256 DNS simulation of forced isotropic turbulence (Jimenez
et al. 1993) with Rex = 168. Note that this turbulent field will hereafter be referred to

as Fbs6. In Figure 2 the scaling of — <T,-j§i>j€> / <‘§>€ §;€§;j€> is shown over a range of

(4.16)

€/ ||ul|, that corresponds to a field compression over the range of 78.5% to 99.95%. The
slope of the curve in log-log axis determines the appropriate € scaling. As can be seen,

the quantity <T,~j§i>j€> / <‘§>€
sions. However some deviation from this scaling is observed above 99.4% compression.
Based on this a priori test of scaling, the new dynamic Smagorinsky-type eddy viscosity

model (Eq. 4.4 ) has been implemented. The results of simulations with this new SGS
model are shown in Section 5.

§i>j€§i>j€> scales roughly as €2 for a wide range of compres-

5. Results

To validate the SCALES method, numerical simulations of decaying incompressible
isotropic turbulence are considered. For this work the incompressible Navier Stokes equa-
tions (Eqs. 4.1-4.3) are solved with the DAWC solver. Continuity (Eq. 4.3) is enforced
using a multi-step pressure correction time integration method (Guermond & Shen 2003).
An adaptive wavelet collocation multilevel elliptic solver is used in solving the Poisson
equation for pressure at each time step.

Results of decaying incompressible isotropic turbulence with initial Re) = 72 are pre-
sented. The simulations were initialized with a 1283 forced isotropic turbulence DNS field
from a de-aliased pseudo-spectral code. The spectral content of the initial DNS field is
fully resolved by doubling the non-adaptive field resolution to 256° in the simulations.
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This is required because the DAWC solver uses finite differencing, which is not adequate
for resolving the full spectral content of the spectral DNS field at the original resolution.
The results are compared to DNS of decaying isotropic turbulence performed with the
same de-aliased pseudo-spectral code used to generate the initial DNS field.

In these simulations a normalized wavelet threshold is specified. The wavelet threshold
is specified as relative to the Ly norm of the velocity field. During the simulation the
relative wavelet threshold €5 is specified for the whole simulation and the actual absolute
wavelet threshold used at each time step is € = €3 ||u]|,.

5.1. SCALES Constant Coefficient and Dynamic SGS Stress Model

SCALES simulations have been performed with the constant coefficient Smagorinsky
eddy viscosity model (Eq. 4.4) and the new dynamic Smagorinsky eddy viscosity SGS
stress model described in Section 4.1. The model coefficient (Cse? = 0.0001) for the
SCALEScs case was chosen to best match the DNS results. For the SCALESy,,, case
the volume averaged version of the dynamic model coefficient is used (Eq. 4.15). These
SCALES simulations, hereafter for brevity called SCALEScs and SCALESg4y, respec-
tively, are compared to DNS and LES simulations. For both SCALES¢s and SCALESgyn
cases € is set to 0.5. The LES simulation is performed in the DAWC solver with a reg-
ular 643 grid. The simulation is de-aliased by performing a wavelet transform on the
velocity field and zeroing the highest level wavelet coefficients, thus resulting in a 323
solution at the end of the time step. This is more expensive than would be required in
a spectral code using the 3/2 rule. In Figure 3 it can be seen that the resolved kinetic
energy decay for the SCALES4yn and SCALES( cases closely matches that of the DNS.
The LES deviates a small amount more from the DNS. In Figure 4 the compression for
the SCALESg4y,, SCALESqs and LES cases are shown. If we consider the overhead of
the modes used for de-aliasing, the LES could be considered to have a compression of
98.44%. The modes used for de-aliasing in LES can be considered as analogous to the
adjacent zone in SCALES so for a realistic comparison we can consider that if the LES
was performed in a spectral code, using the 3/2 rule for de-aliasing, the effective com-
pression would be 99.34% (shown in Fig. 4 as small circles). This is close to the initial
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compression of the SCALESqy simulation, but as the SCALES simulations progress the
compression increases. Therefore, it can be said that the SCALESg4y, and SCALESc; sim-
ulations were able to capture the energy decay with a compression similar to a de-aliased
LES simulation. In Figure 5 we see that the dynamic model coefficient for SCALESqyn
is more variable in comparison to the LES case. It is hypothesized that this variability
could be reflective of the sensitivity of the SCALESy,, model to actual localized events
such as energetic coherent vortex interactions that cause local high resolved stresses that
are reflective of the proper instantaneous SGS dissipation. Further research is needed
to understand this phenomenon. In Figures 6-8 the energy spectra for the two stations
shown in Figure 3 are compared to the appropriately filtered DNS for the SCALESgyx,
SCALES(qs and LES cases. It can be seen that, while there is reasonable agreement for
the LES case (Fig. 6), the agreement with the filtered DNS is significantly improved for
the SCALESc; (Fig. 7) and SCALESqyn cases (Fig. 8). At both stations, in the dissi-
pative range, the SCALEScs and SCALESgy, simulations reproduce more of the high
wave number energy. At the second station it can be seen in the inertial range that the
LES has dissipated slightly more then the SCALEScs and SCALESq4yn cases. It is of
particular interest to note that the wavelet filtered DNS in Figures 7 and 8 are closer to
the full DNS spectra over the full spectral range. Thus, the ability of SCALES to closely
recover the filtered DNS, results in a solution that has a spectral content close to the
original unfiltered DNS solution, over the whole DNS spectral range.

6. Conclusions

In this work dynamic simulation results of decaying incompressible isotropic turbu-
lence using a new methodology for simulating turbulent flows called Stochastic Coherent
Adaptive Large Eddy Simulation (SCALES) (Goldstein & Vasilyev 2004) are presented.
The SCALES method has been implemented using a Dynamically Adaptive Wavelet
Collocation (DAWC) method that is ideal for CVS, and SCALES as it combines the res-
olution of the energetic coherent modes in a turbulent flow with the simulation of their
temporal evolution (Vasilyev & Bowman 2000; Vasilyev 2003; Kevlahan et al. 2003).
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In this work a new dynamic SGS stress modeling procedure has been introduced based
on a variation of the classical Smagorinsky (Smagorinsky 1963) model formulation. In this

model the scaling of the eddy viscosity is based on €2, instead of the standard scaling, A
A priori results using forced incompressible isotropic turbulence have been presented that
show this scaling holds, for a wide range of compression. The new dynamic procedure is
similar in spirit to the classical dynamic procedure of Germano’s (Germano et al. 1991),
except that the new scaling law, based on €2, is used.

Dynamic simulations of SCALES and LES of decaying isotropic turbulence with a
Taylor Reynolds number of Rey = 72 have been compared to DNS results to validate
the SCALES method with the DAWC solver. The SCALES results with the dynamic
model are shown to reproduce the DNS energy decay with only 1 % of the modes being
initially resolved. These SCALES results are also compared to fully de-aliased LES cal-
culations. The SCALES results moderately outperformed those of the LES at a similar
field compression.

While it is expected that for Reynolds numbers higher than the ones considered in this
study the reduced SGS dissipation and increased incoherency of the SCALES SGS stress
will provide a tangible improvement in SGS model accuracy, this is not in and of itself
the greatest potential benefit of the SCALES method. Real world flows of engineering
and scientific interest occur in complex domains with great temporal and spatial varia-
tion in turbulence intensity. Therefore, an efficient simulation method must be capable
of dynamically, often with limited a priori knowledge, adapting to the local resolution
over a wide range of Reynolds numbers often including large regions of laminar flow. A
good example of this is flow over a modern aircraft that spans the gamut of flows from
a nearly laminar far field to areas of intense turbulence in the control surfaces regions.
Another area of great potential benefit is in the simulation of fluid structure interaction,
where, often no detailed a priori information to build cost effective computational grids
is available. Therefore, the trade off between costly grid refinement over regions of poten-
tially high turbulence intensity versus the loss of simulation accuracy must be weighed.
With the SCALES methodology the collocation grid automatically adapts to the local
flow in order to maintain an a priori described accuracy threshold, which is the a priori
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determined wavelet filter threshold (€). For these reasons even if the SCALES methodol-
ogy can do no better than match the cost of classical LES methods in unit test problems,
like the ones conducted in this work, there is strong evidence to believe that SCALES
will be able to outperform classical LES in many complex real world flows. To realize the
benefits of SCALES in such highly non-homogenous flows in complex geometries a local
SGS model will be required. Work on such a model is currently underway.
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