Center for Turbulence Research 353
Proceedings of the Summer Program 200/

Radiative transfer modeling of a large pool fire by
discrete ordinates, discrete transfer, ray tracing,
Monte Carlo, and moment methods

By K. A. Jensent, J.-F. Ripoll, A. A. Wray}{, D. Josephy AND M. El Hafiq

Five computational methods for solution of the radiative transfer equation in an
absorbing-emitting and non-scattering gray medium were compared on a 2 m JP-8 pool
fire. The temperature and absorption coefficient fields were taken from a synthetic fire
due to the lack of a complete set of experimental data for fires of this size. These quanti-
ties were generated by a code that has been shown to agree well with the limited quantity
of relevant data in the literature. Reference solutions to the governing equation were de-
termined using the Monte Carlo method and a ray tracing scheme with high angular
resolution. Solutions using the discrete transfer method, the discrete ordinate method
(DOM) with both Sy and LCj; quadratures, and moment model using the M; closure
were compared to the reference solutions in both isotropic and anisotropic regions of the
computational domain. DOM LC(C1; is shown to be the more accurate than the commonly
used Sy quadrature technique, especially in anisotropic regions of the fire domain. This
represents the first study where the M; method was applied to a combustion problem
occurring in a complex three-dimensional geometry. The M, results agree well with other
solution techniques, which is encouraging for future applications to similar problems since
it is computationally the least expensive solution technique. Moreover, M; results are
comparable to DOM Sj.

1. Motivation and objectives

Accurate prediction of the heat flux to an object exposed in a large fire is important
for consideration of the thermal hazard to engineered systems, personnel, and facilities.
Such fires could potentially occur from a transportation accident. Fires of this scale
have relatively low velocities and high temperatures, and therefore the majority of heat
transfer to an object is dominated by the radiative emission from high-temperature soot
(Gritzo et al. 1998). The computational cost for solution of the radiative transfer equa-
tion (RTE) is quite high for simulations of fires of this scale. In addition to the common
three-dimensional space variables and time, the governing equation also requires integra-
tion over all directions of propagation at each point in the domain, adding two angular
variables. The challenge, therefore, is to choose a numerical solution method which pre-
dicts the radiative flux to objects in fires with sufficient accuracy. Moreover, the radiative
source term, which is coupled to the hydrodynamics, must be computed with low cost
and sufficient accuracy to ensure a correct prediction of the evolution of the fire.

In this study, five common numerical methods to solve the radiative transfer were
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compared when applied to a realistic, full-field three-dimensional fire data set. The five
methods include:

1. Ray tracing: straightforward integration of the integral equation by tracing a spec-
ified number of rays originating from each point through the domain. The method is
accurate but costly since it normally requires a large number of angles.

2. Discrete transfer method: similar to ray tracing technique, but works in reverse by
tracing rays throughout the domain and adding their energy contribution to each cell it
passes through.

3. Discrete ordinate method: solution of the transport equation by finite volume meth-
ods. The angular integration is performed using selected numerical quadrature schemes.
The two quadrature shemes used were Sy (24 angles) and LCq; (96 angles).

4. Moment method with the M closure (Maximum entropy closure): uses moments of
the governing equation to convert the angular dependence into a hyperbolic set of four
equations for three-dimensional problems. A closure model is required for the radiative
pressure term.

5. Monte Carlo, Net Exchange Formulation: statistical Monte Carlo method formu-
lated in terms of net exchange and choosing a form of the probability density function
for efficient computations. The cost is normally high due to the number of realizations
required for good accuracy.

Of these methods, the M; method has theoretically the lowest cost because the angular
dependency is handled analytically. However, the accuracy of the M; method in complex
three-dimensional cases remains unknown. The main questions addressed in this study
are: How does each method perform with low angular resolution? How many angles are
required for an accurate solution? What is the accuracy of moment methods for fire
problems? Which method is most appropriate for a fire?

2. Synthetic fire

The radiative heat transfer in large pool fires is dominated by the thermal emission of
high-temperature soot and is gray in nature. Solution of the RTE in the participating
medium thus requires knowledge of the gray absorption coefficient and emission temper-
ature throughout the medium. Ideally, a complete, highly-resolved set of experimental
measurements would be available for this purpose. However, due to the complex fire dy-
namics (Tieszen et al. 1996), as well as difficulty in instrumenting diagnostics in high
temperature, sooting environments, relevant data for large scales fires are not available.

Given the lack of available and relevant data, a synthetic 2-meter JP-8 pool fire was
created with the Vulcan fire simulation tool from Sandia National Laboratories. Vulcan,
and its predecessor (Holen et al. 1990), has been successfully used in recent years for
simulating such pool fires which resemble those in the Fire Laboratory for Accreditation
of Models and Experiments (FLAME) facility in Albuquerque, New Mexico (Brown &
Blanchat 2003). Figure 1 shows, from left to right: the exterior of the FLAME facility,
a contour along the centerline plane of the facility showing the fuel pan in the center
and the inlet air ring at the bottom of the facility; and the temperature profile of the
synthetic fire along the central plane. The facility was discretized with a 92 x 92 x 120
three-dimensional Cartesian grid. The full-field data is axially symmetric with the center
defined by the fuel pan. In order to compute the fire, the fluid conservation equations
are solved using a Reynolds Averaged Navier Stokes (RANS) approach, with sufficient
iterations from ignition to reach a steady-state solution.
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FiGURE 1. The FLAME facility (left), a contour plot of the center plane (center), and the
synthetic fire temperature contour (right).

The absorption coefficients calculated by Vulcan depend on contributions from soot as
well as from carbon dioxide and water vapor. The model for this coefficient assumes that
the medium is gray since soot is the dominant absorbing and emitting species. When
the domain of computation is as complex as the FLAME facility (see Fig. 1), prescribing
common boundary conditions for five different codes can become problematic. Here, using
a ghost cell technique, the walls, the pan, and the fuel source were prescribed a very large
constant opacity on the order of O(10%) and ambient temperature 293 K. At the exhaust
opening at the top of the chimney, it is assumed that all energy leaves unimpeded.

3. Solution methods for the radiative transfer equation
3.1. Problem definition

The gray radiative transfer equation (RTE) describes the change in radiation intensity,
I, through an absorbing and emitting gray medium along a path of length ds in a solid
angle dQ2 (Modest 2003),

dI(s)
ds

where I, = oT* /7 is the blackbody intensity at temperature T, o is the Stefan-Boltzman
constant, and k is the absorption coefficient.

For most heat transfer applications, the primary engineering quantities of interest are
the net incident radiation G, the radiative heat flux (q,.) and the divergence of the heat
flux (V - q,), also called radiative source term. These quantities can be derived from the
following integrals of the intensity over solid angle

= kI — kI(s) (3.1)

G=[ I()d q = / I(Q)QdQ and V-q, = k(4T - G) (3.2)
4

4T

Solution of the RTE, as well as solutions of Eqgs. (3.2), using each solution technique is
outlined in the following subsections.
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3.2. Discrete transfer method (DTM)

The discrete transfer method (DTM) used in Vulcan is an enhanced version of the original
model proposed by Shah (1979). The enhancements were selected to obtain an acceptable
compromise between accuracy and calculation speed. This will be tested by comparing
the results obtained herein with those obtained from verified and highly accurate Monte
Carlo and ray tracing techniques.

Within the computational domain a radiation boz is defined to speed the calculation by
focusing on the region with high thermal emission. This box defines where rays originate
in the tracing technique. For this study, the box was defined as the smallest grid-conformal
parallelepiped encompassing all control volumes with a temperature greater than 800 K.

For each node on the boundary of the box, a specified number of rays are emitted over
a hemisphere and followed to the boundary of the calculation domain; a corresponding
ray is followed back from the boundary to the original point. Along these traces, the
change of intensity from absorption and emission is calculated over each control volume
in the path with proper weighting given to the solid angle and the originating projected
area.

The change of intensity for the ray within a control volume is found from a recurrence
relation obtained from analytical integration of Eq. (3.1),

In1 = I, exp(—kds) + I(1 — exp(—kds)) (3.3)

where Js is the distance over which the beam passes through the control volume.

The source term for the energy equation, Eq. (3.2), is found by summing the net
gain or loss of radiation energy in each control volume intersected during a ray trace.
The contribution to the source term from one beam 4 passing through a control volume
n is given by: Sp; = (Iny1 — )2 dAdSY, where dA is the area from the element at
the ray origin boundary and ; is the solid angle represented by the beam. The total
radiant source term for the nth control volume is found by summing over N total beams:
Qr dv = Zi:l,N Sn,i

The heat flux to a surface is not calculated throughout the field of Vulcan, but rather
at selected surfaces (e.g., cell faces). The hemispherical flux in W/m? is derived from
this model by integrating all incoming rays on a surface. This integration requires a large
number of rays to be traced from each node of the radiation box to be accurate, but from
experience it has been found to be quite fast when a limited number of selected surfaces
are used. To compare to the other methods, the hemispherical fluxes to the common
surface shared by two adjacent cells were summed for the equivalent of a 47 integration.

3.3. Discrete ordinates method (DOM)

The DOM is based on the discretization of the RTE (see Eq. (3.1)) over a chosen number
Ny of discrete directions, s;(ui,ni,&;), contained in the solid angle 47 and associated
with weights w;. Koch & Becker (2004) compare several types of angular quadratures,
two of which are used here: the S4 (24 directions) for its efficiency and the LCy1 (96
directions) for its accuracy.

The RTE is solved for every discrete direction s; using a finite volume approach. The
integration of the RTE over the volume V of an element limited by a surface ¥ with
outer unit normal n, and the application of the divergence theorem yield:

/ Is-nd¥ = / (kIpy — kI(s))dV (3.4)
b v
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The domain is discretized in control volumes (in this study regular hexahedrat). Taking
I; to be the average intensity over the j* face, associated with the center of that face,
and taking I p and Ip to be the average intensities over the volume V', associated with
the center of the cell, P, Eq. (3.4) can be discretized as follows:

Nyace
Z I] (Si . l‘lJ)AJ = RV(Ib’p — Ip) (35)
j=1
The scalar product of the i** discrete direction vector with the normal vector of the ;"
face of the considered cell is defined by D;; =s; -0 = p;ng; + niny; + &inj.

I; is assumed to be constant and equal to I p over the volume V', and I; is taken
constant over each face. For each cell, the incident radiation G, given in Eq. (3.2) is
evaluated at the center by

Nyir

For a gray medium, one obtains the divergence of the radiative heat flux using Eq.
(3.2). To solve Eq. (3.5), a spatial differencing scheme based on the mean flux (DMFS),
proposed by Strohle et al. 2001, is used. This scheme uses the following decomposition:

1— 1—
IP = iIout + iIzn (37)
where I;,, is the weighted average of the intensities at the entering faces of the cell and
I, the weighted average of the intensities leaving the cell. Substituting I,,; from Eq.
(3.7) into Eq. (3.5) and after some algebra (see Joseph et al. 2003 for more details), one
obtains-

Ip = ( nVIb Z Di; A;I;) / &V + Y D) (3.8)
D,'j<0 D.i_;'j>0

After the calculation of Ip from Eq. (3.8), the radiation intensities at those cell faces at
which D;; > 0 are set equal to I,y, obtained from Eq. (3.7).

3.4. Monte Carlo method - net exchange formulation (MCM-NEF)

Monte Carlo Methods (MCM) have been often used to produce highly accurate solu-
tions in the process of validating other numerical methods (Coelho et al. 2003; Perez
et al. 2004). They first appeared in the literature as strict numerical implementations of
stochastic photon transport models (Hammersley & Handscomb 1967). The very large
number of realizations required to achieve convergence shows the limitations of the clas-
sical Monte Carlo algorithms, particularly when optically thick media are encountered
(Farmer & Howell 1994). To overcome these difficulties, a mathematical formulation us-
ing the Net Exchange Formulation (NEF) (Cherkaoui et al. 1996), together with adapted
probability density functions, have been proposed to improve the variance reduction pro-
cedures (de Lataillade et al. 2002). Taking P; as a point within the volume V; and P;
within Vj, we denote the position vectors of P; and P; as rp, and rp;. The net radiative
exchange between two volumes V; and Vj, ¢(v;,v;), or a volume V; and a surface Sj,
©(vi,s;)> or two surfaces S; and Sj, ¢(s; s;), is expressed as follows for black walls and

t the formulation provided here is also valid for non regular mesh.
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non-scattering media

k(rp ) k(rp, ) T(Si;
SO(Vi,Vj) :/ / (Pz) (2PJ) ( J) [Ib(rPi)_Ib(er)] dV—de—] (39)
Vi Vi 54
n(rp,) - s| k(rp; Sij
w(w,sj)=/s ; n(rp) |32(. ) 7( J)[Ib(rpi)_z,,(rpj)] dv; dS; (3.10)
j i 17

P(5:,5;) :/S/s |n(rp")'SHn(;Pj)'S|T(s“)[Ib(rpi)—I,,(rpj)] ds;ds; (3.11)

Sij

where
g — (er - rPi)
b

- |er — I‘pi

, and 7(sy) = e;vp[— /sJ fc(s)ds] (3.12)

Sij = 85 — 8 = |I‘p]. —rp

with n the normal vector to the surface S, k the gray absorption coefficient, and 7(s;;)
is the spectral transmittance along a straight line between P; and P;.

The radiative source term for a volume V; and the net heat flux at a surface S; are
computed by taking into account their radiative exchanges with all the other volumes
and surfaces:

N, N,
Sp(rp,) = / V.-q,dV; = Z(P(V,-,Sj) + Z<P(V,-,Vj) (3.13)
Vi j=1 j=1
and
N, N,
qunet’i = Z (p(ShSJ') + Z CP(S,,VJ) (314:)
j=1 j=1

where N; is the number of surfaces and N, the number of volumes.
One way of evaluating the multiple integrals in the expressions for the net exchange
rates, Egs. (3.9), (3.10), (3.11), is to use a Monte Carlo Method, which is now described.
Considering that each radiative exchange can be represented as an integral Z, of a
function f, over a domain D: Z = | p f(@)dz. An arbitrary probability density function
(pdf), p, defined and strictly positive on the integration domain D is introduced. The
weight function W (z) = f(z)/p(z) is used to write
7= . %p(w)dm = /DW(m)p(m)dm
Given a random variable X, distributed according to p, and a function of that variable,
9(X), we let Z represent the expectation of g(X). Estimating 7 with N samples g(z;),
where z; is the ith realization of the random variable X gives

N

1 .
I =E[g(X)] ~ N ;_1 9(x;) =< 9(X) >n, where T = 1\}1_{1(1)0 <g9(X)>n (3.15)
Then the standard deviation of the estimate is calculated as o(< g(X) >n) = LNJ(g(X ),

where o(g(X)) is the standard deviation of g(X). It will be approximated by

o< 9(3X) >) ~ —/[< 93 > = < 9(X) >} (3.16)

In this last expression the variance depends on the function g which itself depends on the



Radiative transfer modeling of a large pool fire 359

pdf. To perform efficient MC simulations, the choice of the pdf is crucial. More details
are described in (de Lataillade et al. 2002; Eymet et al. 2004). The results presented in
this paper have a standard deviation of about 1 percent.

3.5. Ray tracing method

This method treats the RTE as a set of first-order ODEs, with one ODE for each spatial
point and directional angle. At each spatial point x, a set of rays is considered to project
inward toward the point, with the set being chosen to sample solid angle space in such a
way as to allow accurate integration over that space to compute the net incident radiation
and the heat flux. For the fire problem, the rays are followed outward from the chosen
point until they intercept a wall or the exit of the chimney. At such a boundary point the
initial value of the incoming radiative intensity is set to equilibrium (I = I3). From this
initial value, the RTE is integrated forward along the ray to the chosen spatial point,
and the value at that point is saved for inclusion in angular integrals involving I(x, Q).

The method of integration along a ray assumes that, within each step of the quadrature,
the source I; and opacity s are constants equal to their interpolated values at the center
of the step. With this assumption, I(s,{2) can be advanced from one end of the step, sg,
to the other, s;, according to the following rule

I(s1,9Q) = I(sg, Q) exp(—kls1 — so|) + Ip(1 — exp(—&|s1 — so)) (3.17)

Once the full set of angular values I(x,() is obtained at the point x, angular integrals,
such as those in Egs. (3.2), are performed to compute quantities of interest.

3.6. Moment methods and the My closure

A system of equations for two moments, the net incident radiation G and the radia-
tive flux q,, can be extracted from the gray RTE, Eq. (3.1), by integrating it over all
directions. The system is given by

%@G +V-q = K(4oT* - G) (3.18)
1
“9a, +V (D, G) = 0 ar (3.19)

The M, closure (Levermore 1984; Fort 19977) is given by the following Eddington tensor
D.,. It is computed from the Eddington factor x and the anisotropic factor f = q, /G as
follows

1 fef 4f?
3X Of  Gith y(f) = — Y (3.20)

5+2/4—-3f2

where Id denotes the identity matrix, f the euclidian norm of f, and ® the dyadic
product. The Eddington tensor D,, which plays the role of a flux limiter, comes from
an underlying radiative intensity which is able to describe both a beam (by a Dirac
function) as well as isotropic radiation (by a Planck function). Hence, the M; model is
able to predict radiation in opaque, semi-opaque or transparent media and, as we show
below, is particularly suited for the computation of radiation in fires. The numerical
scheme used to solve this model is given in Ripoll et al. 2002.

1-x
D,=—21d
r 5 + =5 7

t more references concerning this model can be found in Ripoll 2004.
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FIGURE 2. Radiative source term (W/m?2) at r = 0.43m (left) and radial heat flux (W/m?)
at 7 = 1.03m (right) as a function of elevation from the fuel pan computed by ray tracing for
several angular resolutions (6, ¢).

4. Results and discussion
4.1. Angular resolution and coupling

In this section, the number of angles (or rays) needed for the fire computation is investi-
gated using the ray tracing code, which helped define the required angular resolution and
quadrature schemes for comparison of the solution methods. Figures (2) and (3) (left)
show the radiative source term and radial heat flux profiles calculated at various angular
resolutions. It is found that a low resolution, less than 50 angles, leads to poor results
both inside and outside the fire. When only 5 or 10 angles are used, a hot source might
be hit or not according to the angles chosen, in other words, ray effects are dominant
and the results vary greatly based on this choice.

Inside the fire, it is found that at least 50 rays are needed to get a solution close to
the converged onef (see Fig. 2). However outside the fire, Fig. 3 (left), it is found that
350 angles are needed to get an acceptable solution and to reduce ray effects. Hence,
because such resolutions are needed for accuracy, a high computational cost is expected.
Nevertheless, these results must be balanced by the fact that neither special quadratures,
nor particular choices of angles have been used herein to try to improve the accuracy
of the results for low angular resolution. In the ray tracing solver, angles are uniformly
distributed in g = cos(#) and ¢, which is not the optimal choice. Undoubtedly a better
choice of angles and/or quadratures would decrease the number of angles needed to get
accurate resultsi.

In Fig. 3 (right), it is shown how the angular resolution does affect the time-dependent
coupled problem. Here, radiation and hydrodynamics are solved coupled by Vulcan and
evolve in time. Radiation is solved by the DTM method. It is found that 24 angles do not
lead to an accurate solution and induce strong temporal variation of the radiative flux,
which leads to fluctuations in the hydrodynamic quantities. Moreover, since the coupling
between radiation and hydrodynamics is very strong in fires, a poor computation of the

t Angular convergence was obtained with 20,000 angles (100 x 200). All results presented
with the RTE ray tracing solver in this study were obtained with this resolution.

1 The reader might be interested in seeing which angular quadrature is needed for radiation
in a solar atmosphere: Stein et al. in this volume.
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FIGURE 3. Left: Radial component of the radiative flux (W/m?) as a function of elevation from
the fuel pan computed by ray tracing for different resolutions (0,¢) at r = 2.55m from the
centerline of the fuel pan. Right: time evolution profiles of the radial component of the radiative
flux at » = 0.5 and z = 0.5 m inside the fire for several angular resolutions using DTM.

radiation can, for instance, lead to extinction or to an over/under-estimation of soot
formation.

Starting from 80 angles, which seems to be a good compromise between speed and
accuracy, the Vulcan results are close to convergence, but the fluctuations are still signif-
icant. Results are considered converged for a resolution of 350 angles. As a result of these
observations, the code is usually run with 80 angles to quickly obtain a fully developed
fire. The results are converged afterward using 350 angles over a smaller time interval.

4.2. Radiative source term

A comparison of the radiative source terms (div(q,)) obtained by all methods} is now
provided. Since this quantity is the coupling term used by the hydrodynamics solver,
its accurate computation is mandatory to compute the correct final fire profile. The
ray tracing code and the Monte Carlo code are used for the reference solutionsq. Both
codes find similar solutions at all points in the facility. In Fig. 4 (left), the results are
presented for points inside the fire. Good global agreement is found between all methods,
though the DTM profile is slighty shifted from the ray tracing reference solution; DTM,
M, and DOM S, slightly overestimate the maximum value, and DOM LCY; slightly
underestimates it. These small differences of less than 3% are sufficiently small to not
have strong effects on the coupled energy equation. The accuracy and general agreement
between these results is expected for this case where the radiation field inside the fire is
mainly isotropic, f < 0.2, making it less sensitive to angular resolution.

For points outside, but still adjacent to, the fire, at = 1.15m (see Fig. 4 (right)),
more discrepancies are seen among the methods||. The DOM S; method is found to be
less accurate, though still acceptable, compared to the DOM LC4; because the angular

t All results presented here with the DTM have been obtained with 350 angles.
1 when this term is positive (negative), net emission (absorption), is occurring.

§ The Monte Carlo code was primarly used to ensure that the solution given by the ray
tracing was fully correct. It has been applied only at selected positions and not for all nodes of
the domain.

|| alarge error far outside the fire would not affect the dynamics of the fire and is hence not
damaging.
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FIGURE 4. Radiative source term (W/m?3) as a function of elevation from the fuel pan. Left at
r = 0.29m and right at » = 1.15m from the centerline of the fuel pan.

variation is not fully captured by S4 and ray effects occur. The M; model gives results as
accurate as those of the DOM Sy, which is encouraging. These methods slightly under-
estimate absorption while the DTM method overestimates it. Despite the discrepancies,
the magnitude of the source term is sufficiently small compared to that inside the fire
that less accuracy is acceptable.

4.3. Radial heat fluz

Since the Monte Carlo code, by its formulation, does not allow the computation of the
radiative fluxes which are compared herein, the ray tracing results are used as the ref-
erence. In Figs. 5 and 6, net radial heat flux inside the fire are compared. All methods
qualitatively agree and predict the same trends. Higher up, for z > 1.5m, all methods
fully agree since strong temperature and opacity gradients are absent. The three meth-
ods, My, S4 and LC4; are in good agreement with the reference solution, but slightly
underestimate the flux. The DTM method agrees globally with the other methods and
the reference solution, but overestimates slightly, similar to LC11, fluxes close to the outer
edge of the fuel pan at r = 1 and z = 0m. Similarly to the source term computation,
the M; and S4; methods give comparable results. No noticeable difference is observed
between Sy and LC1, whose results agree well with those of the ray tracing method.

The fact that Sy computes both flux and source terms relatively well, when linked
with the angular studies of section 4.1, implies that 24 angles should be enough inside
the fire provided that the Ss set of angles is chosen. This constitutes an improvement
by a factor of two of the number of angle needed, compared to the use of uniformly
distributed anglest.

In Fig. 7, the fluxes outside the fire are compared. The DTM method gives results
in agreement with the ray tracing solver. The DOM LC}; gives similar results, which
suggest that approximately a hundred angles should be enough to compute radiation
at 1 or 2 diameters away from the fire provided an accurate quadrature is chosen. This
constitutes an improment by a factor 3 compared to a uniformly spaced angular set which
apparently needs 350 angles (see section 4.1). The DOM S does not have enough angular

t It should be noted that the 24 angles of DTM used in the time evolution computation are
uniformly distributed. This explains the inaccurate results of the time dependent problem for
this angular resolution.
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FIGURE 5. Radial component of the radiative flux (W/m?) as a function of elevation from the
fuel pan. Left at r = 0.29 m and right at » = 0.42 m from the centerline of the fuel pan.
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FIGURE 6. Radial component of the radiative flux (W/m?) as a function of elevation from the
fuel pan. Left at » = 0.7m and right at » = 1.03 m from the centerline of the fuel pan.

resolution to provide accurate results at 1.42m nor at 2m away from the fire. LC1; thus
constitutes an accuracy improvement compared to Sg. Globally, this method is found to
give the closest results to the ray tracing values for all positions shown here. The M;
model is found here to not be accurate enough: results at 1.42m could be admissible,
but the fluxes are certainly overestimated 2m away from this 2m pool fire, by almost
a factor of 2. There, the closure fails to model the anisotropy of the radiation. At 2m,
DOM S4 computes the maximal values more accurately than M7, but does not find the
correct overall shapef, whereas M; does.

5. Conclusions

Five different methods have been used to compute the radiative field of a synthetic
2-meter JP-8 pool fire: Monte Carlo, ray tracing, DOM S, and LC;1, DTM, and the M;
moment model. Particular interest has been given to the M; method which is applied
for the first time to a combustion problem occurring in a complex three-dimensional

1 aray effect can been seen at z = 0.1 m due to the pan.
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FIGURE 7. Radial component of the radiative flux (W/m?) as a function of elevation from the

fuel pan. Left at 7 = 1.42m and right at 7 = 2m from the centerline of the fuel pan.

geometry. Theoretically, this model should have the lowest computational cost of the
five, since the directional integration has been modeled.

An angular resolution study has shown that roughly 50 angles inside and 350 outside
the fire are needed to accurately compute radiation when a uniformly distributed set
of angles is chosen. This choice of angles is not optimum, however, and the number of
angles needed can be reduced to 24 inside and to roughly 100 outside when an optimum
set is chosen, as is the case for both the Sy and LCj; quadratures. Unfortunately, these
numbers are still too high to guarantee a low cost computation. It has also been shown
that if an insufficient angular distribution is used, then significant changes to the time
dependent solution occur. It is thus not possible to accurately compute a time-evolving
fire if the aformentioned angular requirements are not satisfied.

The ray tracing and Monte Carlo methods, which are the most accurate methods when
their convergence is ensured, and the results of which were found to be consistent, were
used to compute the reference solutions. Both of these methods, which need, respectively,
a large number of angles or a large realization sample, are too costly to be used for a
three-dimensional time dependent fire. The goal was then to quantify the accuracy of the
four other methods, compared to the reference solutions, and to assess their usability.

The five methods were compared first through the computation of the radiative source
term. It was found that, inside the fire, all methods correctly compute this term, which is
needed for coupling with the hydrodynamics. Close to the fire, this term is underestimated
by S, and M; and overestimated by DTM, but these deviations of less than 3% are quite
admissible.

The computation of the radiative flux brought other conclusions. Inside the fire, all
methods agree pretty well. Once again, M; gives a comparable solution to the DOM
methods. However, outside the fire both Sy, and M; methods inaccurately compute the
flux: S, suffers from ray effects and M, overestimates, by almost a factor two, the maximal
value region. These two methods are thus not effective far away from the fire. On the
other hand, LCy; and DTM give an accurate solution far away the fire, but deviate
slightly close to the outer edge of the fuel pan.

Overall, it is found that M; gives results similar to DOM Sy, in the sense that its
results are accurate in regions where Sy is accurate. The DTM and DOM L(C; methods
were found to give results very close to the Monte-Carlo and ray tracing codes. The
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comparison of the accuracy and speed of the five solution methods suggest that the M;
model is a good alternative to S4 when solving the RTE in complex cases such the large
pool fire in this study. For the limited case where highly-accurate heat flux in the highly
anisotropic area, e.g., the flux to an object a few diameters away from the fire, better
accuracy is only achieved with higher angular resolution offered by DOM LC}; or a large
number of angles using ray tracing or the DTM method.
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