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Combining eddy-viscosity models and the
algebraic structure-based
Reynolds stress closure

By G. Kalitzin, G. Iaccarino AND C. A. Langer, S. C. Kassinost

Two linear eddy-viscosity models, the v2-f and k-w models, have been combined with
an algebraic structure-based algorithm for the evaluation of the Reynolds stresses. This
closure was originally designed as an integral part of the algebraic structure-based model
(ASBM) to capture the turbulent anisotropy occurring in rotating wall bounded flows.
It is shown that the algebraic structure-based evaluation of the Reynolds stresses can be
used directly with conventional turbulence models sensitizing them to rotation. Signifi-
cant improvement in the prediction of anisotropic turbulent flow can be achieved without
an additional tuning of the closure coefficients.

The models are evaluated for spanwise rotating channel flow. The sensitivity to the
Reynolds and Rossby numbers is investigated. The results are compared with DNS data.

1. Motivation and objectives

Linear eddy-viscosity models are known to be inaccurate in predicting the effect of
strong streamline curvature and frame rotation. There is no shortage of modifications
and adjustments proposed in the literature to correct their behavior. For example in
the work by Shih et al. (1995) the k-e model is modified by introducing a coefficients
in the e-equations that depend on the shear rate and frame rotation. A more consistent
redesigning of the € equation for flows with rotational effects has been proposed by Haire
& Reynolds (2003). Another recent attempt by Durbin & Pettersson Reif (2001) consists
in the modification of the eddy-viscosity coefficient (again by introducing dependency
on the shear rate and frame rotation). In the latter case the justification for the choice
of the selected functional dependency comes from the study of close form solutions of
second-moment models in the case of homogeneous rotating shear. Although these mod-
ifications are shown to provide encouraging predictions for simple flows with rotation
(namely channel flows), their accuracy for more complex situations remains unclear. Dif-
ferential Reynolds stress models, on the other hand, possess the obvious advantage that
the turbulence production terms and the stress anisotropy are automatically accounted
for. Unfortunately, the difficulties in modeling the stress redistribution terms and their
inherent numerical stiffness make them not amenable to mainstream use in engineering
calculations.

Algebraic Reynolds stress models have received a substantial amount of attention given
the potential benefit of introducing stress anisotropy in the controlled environment of an
eddy-viscosity closure. Several models have been devised with various degree of success
(Gatski & Speziale 1993; Wallin & Johansson 2002). The basic idea behind these models
is to express the Reynolds stress tensor as a function of one or more (up to ten) differ-
ent tensors. This is not different from what is used to derived the so-called non-linear
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eddy-viscosity models where additional (high-order) terms are added to the Boussinesq
relationship between mean strain and Reynolds stresses. Reynolds and coworkers (e.g.
Reynolds 1994, Kassinos & Reynolds 1994, Kassinos et al. 1993) have repeatedly argued
that for adequate modeling and description of rotating turbulence, information about the
turbulence structure is crucial. The Reynolds stresses only characterize the componen-
tality of turbulence, i.e., which velocity components are more energetic. The turbulent
field has much more information than that contained in the Reynolds stresses, which is
important in presence of rotation, and which is described by the turbulence structure.
For instance, the dimensionality of the flow is important. This carries information about
which directions are favored by the more energetic turbulent eddies: if the turbulent ed-
dies are preferentially aligned with a given direction, then the dimensionality is smaller
along that direction. Here hypothetical turbulent eddies are used to bring awareness
of turbulence structure into the turbulence model. Averaging over an ensemble of ed-
dies produces a set of one-point statistics, representative of the eddy field, and a set of
equations of state relating the Reynolds stresses to these statistics.

The structure-based approach to build the Reynolds stress closure has lead in Langer
& Reynolds (2003) to the development of the Algebraic Structure-Based Model (ASBM)
in conjunction with a novel two-equation model based on the transport equation for
turbulent kinetic energy, k, and large scale vorticity w?. The model has been calibrated
for channel flow simulations and the results have shown excellent agreement with available
DNS data.

The primary objective of this research project was to implement ASBM in a three-
dimensional Reynolds-Averaged Navier-Stokes (RANS) solver to perform simulations of
complex flows. In this report, we describe the combination of the ASBM Reynolds stress
evaluation with conventional turbulence model, namely the k-w and v?— f models. Results
are presented for channel flow with and without spanwise rotation. For the primary
objective some modifications to the original ASBM formulations have been developed to
ease its numerical implementation. In particular, a scalar diffusivity has been introduced
to the transport equations of the turbulent scalars and a new definition of the length
scale that identifies the near-wall viscous dominated region has been introduced.

2. The structure-based algebraic stress model

The eddy-axis concept Kassinos & Reynolds (1994) is used to relate the Reynolds stress
and the structure tensors to parameters of a hypothetical turbulent eddy field. Each eddy
represents a two-dimensional turbulence field, and is characterized by an eddy-axis vector,
a;. The turbulent motion associated with this eddy is decomposed in a component along
the eddy axis, the jetal component, and a component perpendicular to the eddy axis, the
vortical component. This motion can be further allowed to be flattened in a direction
normal to the eddy axis (a round eddy being characterized by a random distribution
of kinetic energy around its axis). Averaging over an ensemble of turbulent eddies gives
statistical quantities representative of the eddy field, along with constitutive equations
relating the normalized Reynolds stresses and turbulence structure to the statistics of
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the eddy ensemble.
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The eddy-axis tensor, a;; =< V2a;a; >, is the energy-weighted average direction cosine
tensor of the eddy axes. The eddy-axis tensor is determined by the kinematics of the
mean deformation. Eddies tend to become aligned with the direction of positive strain
rate, and they are rotated kinematically by mean or frame rotation.

Motion around the eddy is called vortical, and motion along the axis is called jetal.
The eddy jetting parameter ¢ is the fraction of the eddy energy in the jetal mode, and
(1 — @) is the fraction in the vortical mode. Under irrotational mean deformation, eddies
remains purely vortical (¢ = 0). Shear produces jetal eddies, and in the limit of infinite
rapid distortion ¢ — 1 for shear in a non-rotating frame. For shear in a rotating frame,
¢ ranges from 1 for zero frame rotation to 0 for frame rotation that exactly cancels
the mean rotation in the frame, for which the mean deformation in an inertial frame is
irrotational.

The eddy helix vector ~y; arises from the correlation between the vortical and jetal
components. Hence v, = 0 for purely vortical turbulence (¢ = 0) or for purely jetal
turbulence (¢ = 1). Typically ~ is aligned with the total rotation vector Q. The eddy-
helix vector is the key factor in setting the shear stress in turbulent fields.

Flattening is used to describe the degree of asymmetry in the turbulent kinetic en-
ergy distribution around an eddy. A round eddy has no preferential distribution. If the
motion is not axisymmetric around the eddy axis, the eddy is called flattened. The
eddy-flattening tensor, b;;, is the energy-weighted average direction cosine tensor of the
flattening vector. The intensity of the flattening is given by the flattening parameter,
X- Under rapid irrotational deformation in a fixed frame eddies remain axisymmetric.
Rotation tends to flatten the eddies in planes perpendicular to the rotation direction.

Following Reynolds et al. (2000), the eddy-axis tensor, a;;, is computed on the analysis
frame, where the turbulence might be at equilibrium or very close to it. The eddy-axis
tensor is computed with no reference to the frame rotation, as it is only kinematically
rotated by it (Kassinos & Reynolds 1994, Haire & Reynolds 2003). The evaluation is
divided in two parts. Initially a strained eddy-axis tensor, aj;, is evaluated based on the
irrotational part of the mean deformation. Next a rotation operation is applied, sensitizing
the eddy-axis tensor to mean rotation. This procedure produces eddy-axis tensor states
that mimic the limiting states produced under RDT for different combinations of mean
strain with on-plane mean rotation, while guaranteeing realizability of the eddy-axis
tensor.

The strained aj; is given by

[
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where S}, = Sij — Skrdij/3 is the traceless strain-rate tensor with S;; = (Ou;/0z; +
Ou;/0x;)/2, T is a time scale (Eq. 3.4), and ap = 1.6 is a “slow” constant. This gives
realizable states tor the eddy-axis tensor under irrotational deformations.
The final expression for the homogeneous eddy-axis tensor, a;; (for near-wall regions

(2.2)
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see Equation 2.13), is obtained by applying a rotation transformation to the strained
eddy-axis tensor, aj;,

ai; = HiyHjay, Hij =6+ h—=+h ik "kj
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require
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hi = \/2hy — h2/2. (2.4)

hy is determined with reference to RDT for combined homogeneous plane strain and
rotation (see Reynolds et al. 2000, Haire & Reynolds 2003),
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The flattening tensor b;; is modeled in terms of the mean rotation rate vector, €2;, and
the frame rotation rate vector, Qf ,
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The helix vector - is taken as aligned with the total rotation vector,

Q% v=3 M

Ye =7 )
1+
Jarar X

Modeling ¢, 8 (see Eq. 2.7), and x is a crucial part in the construction of the model. The
equations for these scalars are found by analyzing target turbulent states corresponding
to a mean deformation. Throughout the model development there is a strong effort to
make it consistent with RDT solutions, aiming to improve model dependability and
realizability for a wide range of mean deformations, as well as to obtain guidance in the
functional shape chosen for the structure parameters. Tentative functional forms for the
structure parameters are thus chosen with reference to RDT. A set of parameter values
is chosen to mimic the isotropic turbulent state (the eddy structure is expected to consist
of axisymmetric (x = 0), vortical (¢ = 0) eddies). Finally interpolation functions (along
with model constants) are chosen to bridge these limiting states (isotropy and RDT).
They are selected specially to match a canonical state of sheared turbulence, observed in
the log region of a boundary layer.

The structure scalars are parameterized in terms of 7.,, 7y, and a?, representatives
of the ratio of mean rotation to mean strain, frame rotation to mean strain, and a
measure of anisotropy respectively. These in turn are defined in terms of Q2 7% Q%72
and $272; measures of the strength of the mean rotation, total rotation, and mean strain
respectively. 7 represents a time scale of the turbulence (Eq. 3.4).

C, = —1.0. (2.6)

ij =

(2.7)
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In order to evaluate the structure parameters, they are first defined in a generic a?
plane, along the mean-shear line, n,,, = 1, and along the plane-strain line, 7,, = 0. They
are then interpolated or extrapolated in the same a? plane, depending on the flow location
in this a? plane, specified in terms of 7y and 7,,. The structure parameters are then
sensitized to the degree of anisotropy of the turbulence, measured along the a? direction.

In the following, the subscripts “0” and “1” applied to ¢, 38, and x, refer to values
along the lines 7,,, = 0 and 7, = 1, respectively. The superscript “*” is used to denote
values on the a? plane where 7,, = 0 and 7,, = 1 were evaluated.

The structure parameters are then defined with help from the auxiliary functions given
by Tables 1-3.

% (nm_nf)2 |7)m_77f| 3(a? — 1
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As a no-slip wall is approached, the velocity is driven to zero through the action of
viscous forces. Furthermore, the velocity vector is reoriented into planes parallel to the
wall through an inviscid mechanism (wall blocking) which acts over distances far larger
than the viscous length scale. Thus the velocity component normal to the wall is driven to
zero faster than the tangential components. In the structure-based model it is postulated
that the eddy orientation shall also be parallel to the wall. A wall-blocking procedure
is then introduced to reorient the eddies into planes parallel to the wall. The structure
parameters are also sensitized to wall blocking, such that the modeled Reynolds stresses
are consistent with the expected near wall asymptotic behavior.

Following Reynolds et al. (2000), the homogeneous eddy-axis tensor, a?j, is computed
based on the homogeneous algebraic procedure, Equations 2.2 and 2.3 (note that the
superscript “h” has been added in the current section). It is then partially projected
onto planes parallel to the wall,

aij = Hyp Hjal, Hy, = Di(&'k — Bir), D? =1—(2— By)al,,Bym, (2.13)
a
where H;j, is the partial-projection operator, and D? is such that the trace of a;; remains
unity. The blockage tensor B;; gives the strength and the direction of the projection.
If the wall-normal direction is x2, then By is the sole non-zero component, and varies
between 0 (no blocking) far enough from the wall, to 1 (full blocking) at the wall. B;; is
computed by

D ;P
Byi==-2"2% if &,d 0. 2.14
() (p,k(p,k 1 kL k > ( )
If all gradients of ® vanish, the denominator in (2.14) has been clipped setting effectively
B;; to zero.
The blocking parameter, ®, is computed by an elliptic relaxation equation
, 0%®
22 s Yoo (2.15)

Oz 0y, ’ v
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TaBLE 1. Turbulence structure scalars: a® plane, 7, =1 line
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TABLE 2. Turbulence structure scalars: o> plane, 7, = 0 line

| 7 | oy | B* | X

do(ns) + [%(Té*) )— ¢>ti (/%*))]nfn
1(nf) —
V3H T (o — DL~ %)

Bo(n) + [B1(n+) — Bo(n:)]mm,
Bi(ny)
1+ (m —1)/(1 —a?)

x0(n+) + [x1(n+) — x0(n:)]1m,
x1(ny)

1 TF (gm — 1)/(1 — )

TABLE 3. Turbulence structure scalars: a® plane, interpolation along the (1, 7y) directions.

N = —0m + [4/V3 + (2= 4/V3)m]ny.

with @ =1 at solid boundaries, and & , = 0®/0x, = 0 at open boundaries, where z,, is
the direction normal to the boundary.

To recover proper asymptotic behavior of the Reynolds stresses, 115 o< O(z3) and
ro2 o< O(x3), as the wall at x5 = 0 is approached, the homogeneous jetal, ¢”, and helix,
+", parameters are modified using

¢=1+(¢"—1)(1—-Bu)’, (2.16)
v=7"(1—B). (2.17)

A consequence of this approach is that realizability is automatically satisfied for r;;.
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3. Rotating channel flow computed with conventional turbulence models
combined with ASBM

The steady RANS equations governing the motion of an incompressible viscous fluid in
a Cartesian rotating frame of reference are given by conservation of mass and momentum
as Greenspan (1968):

aui
oo =0, (3.1)
611.,' f _ oP 62u,~ 0 —
’U/Ja—wj + 26”190]-’11/]9 = _6_% l/m 8—1'1 <—Ui’ll/]-) . (32)

where u; is the mean velocity measured in the coordinate system rotating with constant
angular velocity Q{ , and zj, P, p, and v represent respectively the position vector,
reduced pressure, density and kinematic viscosity. The reduced pressure is given by

1
P= % +U - i(eljkﬂfmk)(elpqﬂgmq)a (3.3)

where p is the thermodynamic pressure, U is such that a conservative body force per
unit mass (e.g. gravity) is given by Ol /Ox;, and the last term represents the centripetal
acceleration.

For fully-developed channel flow in a spanwise rotating frame the mean velocity is
given by u; = u(y) where y is the wall normal direction. The frame rotation rate vector
is given by Qj = Qf with z being the spanwise direction. The wall-normal mean velocity
component vanishes by continuity for a fully developed channel flow with zero velocity
at the walls. This simplifies the momentum equation; only the momentum equation in
streamwise direction x needs to be solved and the term containing the angular velocity
QO is zero.

The Reynolds stress in equation (3.2) is obtained with the algebraic structure-based
procedure described in Section 2. The complete ASBM model, described in Langer &
Reynolds (2003), includes two scalar transport equations for the turbulent kinetic energy
k and the large-scale turbulent enstrophy w?. The purpose of these two quantities is to
provide the field distribution of £ and of the turbulence time scale 7. The latter has the
following relation to k and e:

2= (92 + (2.0\/2)2. (3.4)

In this work, field distributions of ¥ and 7 have been obtained from the k-w model by
Wilcox (1993) and v2- f model by Lien & Durbin (1996). In addition, low-Re modifications
given in Wilcox (1993) for the k-w model have been considered. For the k-w model, the
time scale is computed as 72 = 1/(8*w)? + 4.0v/(kwB*) while equation (3.4) is used
directly for v-f which includes transport equations for k£ and e.

The time scale is used to scale the vorticity 2;; and strain S;; tensors that are obtained
from the mean flow velocity distribution. The blockage tensor B;; is obtained as described
above from an elliptic equation. The tensors 75;;, 7(};; and B;; as well as k and 7 and
the frame rotation vector TQ; provide the necessary information for the ASBM Reynolds
stresses 7;; = —u;T

Following equation (3.2), the Reynolds stress enters only the diffusion term in the mo-
mentum equation. In an incompressible RANS flow solver based on a standard SIMPLE
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algorithm the diffusion term is usually treated implicitly for stability. This is straight-
forward when the Reynolds stress is computed over the Boussinesq approximation and
an eddy-viscosity is used. With the ASBM procedure the Reynolds stress is computed
explicitly and an explicit correction to the momentum equation is used. For the imple-
mentation of the ASBM procedure in the IBRANS code by Kalitzin & Iaccarino (2003)
the last two terms in equation (3.2) have been re-written as:

d oy Oul o ,our Th
%[(V + i) oz, ] - 8—%[% oz; 7] (3.5)

where n is the current iteration. The terms with the eddy-viscosity are equal to each
other when the solution is converged. The eddy-viscosity used is as defined by the k-w
or v2- f model.

The Reynolds stress enters only the production term Py, = 7;;0u; / Oz; in the transport
equations of the turbulence models. The eddy-viscosity is retained in the diffusion terms
and no additional modifications of the turbulence equations have been performed in
respect to the frame rotation.

Haire & Reynolds (2003) also looked at using alternative scale equations along with
an earlier version of the ASBM, for free shear flows. A few distinctions are present in
the current investigation. Briefly, (i) the turbulent transport term in the scale equations
has a tensorial form in Haire & Reynolds (2003), whilst here a scalar diffusion model
is investigated, for its simplicity makes it possible to use the ASBM in available CFD
packages. (ii) Haire and Reynolds concentrated on free shear flows. The analysis here
regards wall-bounded flows, and (iii) the algebraic equations that constitute the current
ASBM formulation are different from the earlier version explored by them.

The channel flow computations have been performed as streamwise periodic flow with
one cell in flow direction. The pressure and velocity components at the outflow have been
copied to the inflow and a source term has been added to the momentum equation to
account for the pressure loss.

4. Numerical results

Channel flow simulations in orthogonal mode rotation have been performed for a va-
riety of Reynolds and Rossby numbers. The first objective of these simulations is to
identify the steps necessary to combine the ASB Reynolds stress evaluation and a con-
ventional eddy-viscosity model. As shown earlier the RANS equations are closed when
the eddy-viscosity is introduced; therefore, the first, preliminary, step is to use the ASB
procedure as a post-processing tool to evaluate the Reynolds stresses. Successive steps
consist of introducing different levels of coupling between ASB and the overall solution
procedure; first, only the mean equations are modified by discarding the eddy-viscosity
and evaluating the divergence of the Reynolds stresses directly. Finally, a fully coupled
solution is obtained when the Reynolds stresses are also used to close terms in the equa-
tions for turbulent quantities. The results obtained are summarized in Fig. 1 for the k-w
and the v2- f models in a channel flow without rotation. Not surprisingly, the best match
with the experiments is obtained when the full coupling is employed; it is also very inter-
esting to note that the use of ASB as a post-processing is already sufficient to obtain the
correct level of anisotropy as opposed to the standard application of the eddy-viscosity
models. This situation is clearly a peculiarity of this specific test case because the stress
anisotropy does not affect the mean flow transport. Another important observation is
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FIGURE 1. Channel flow at Re = 395 computed with low-Re k-w (upper half) and v2-f (lower
: Reynolds stress computed from Boussinesq approximation for linear

half) models as:

model, — — : ASB Reynolds stress from linear model, : ASB Reynolds stress used only
in the mean flow, —--— : ASB Reynolds stress used in the mean flow and in the production
term of models, o : DNS by Moser et al. (1999).
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FIGURE 2. Channel flow at Re = 395 (upper half) and Re = 180 (lower half).
: ASB low-Re k-w,

2
U'f:

: ASB

that the inclusion of the ASB stress evaluation in the turbulent kinetic energy produc-
tion is necessary to obtain accurate results. It must be noted that in the original ASBM
approach by Langer & Reynolds (2003), a tensorial turbulent diffusivity is also included
whereas in the present implementation a scalar coefficient is used.

Fig. 2 shows the effect of the Reynolds number for flow without rotation. In this case
the high- and low-Re ASB k-w as well as the ASB v2-f models are reported. Here we
added the ASB prefix to the models to indicate that the Reynolds stresses are evaluated
with the ASB procedure. The latter two produce results that are satisfactory for both
Reynolds numbers whereas the high-Re ASB k-w under-predicts the peak of the w5 in
particular for Re = 180.

The application of the fully-coupled approach for the flow in a channel with rotation
is reported in Fig. 3 and Fig. 4 for a channel flow at two different Rossby numbers. The

Rossby number is defined here as Ro =

Qf2n
u,

where Q7 is the magnitude of the frame

rotation rate, h is the half-height of the channel and up is the bulk velocity in the channel.



180 G. Kalitzin, G. Iaccarino, C. A. Langer €& S. C. Kassinos
U/,
1 .
0
4
0 1
FIGURE 3. Rotating channel flow at Re = 180 and Ro = 0.22. : ASB v*-f, — — : ASB
low-Re k-w, ——-- : ASB high-Re k-w, —--— : ASBM, o: DNS by Alvelius (1999).
u/u, <uv>
15 =
;
':I.é LI L B B | T
0 1 2 -1 0
FIGURE 4. Rotating channel flow at Re = 180 and Ro = 0.77. : ASB v*-f, — — : ASB
low-Re k-w, ——-- : ASB high-Re k-w, —--— : ASBM, o: DNS by Alvelius (1999).

In these plots DNS data and the original ASBM are compared to ASB k-w and ASB v2-f
predictions. The asymmetry in the mean velocity profile is properly captured even for the
high Rossby case. In addition, the Reynolds stress anisotropy is remarkably close to the
DNS results at the turbulence-enhanced side of the channel. Notice that at the pressure-
side of the channel (lower side in the Fig. 3 and Fig. 4) turbulence intensity is reduced
and, eventually, the turbulent stresses are negligible with respect to the viscous stresses.
The correspondence between mean flow predictions and correct level of anisotropy is very
encouraging. The difference between the full ASBM approach and the current combined

approach is also very small especially when v2-f is used.

Further simulations have been performed at a variety of Rossby numbers in the [0 —
0.77] interval. The results obtained using the v?-f and the ASB v?-f are presented. The
mean velocity profile and the turbulent kinetic energy are reported in Fig. 5 and Fig. 6,
respectively. As expected from the results previously shown, the current model and the
DNS agree remarkably well.
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0.22

14

F1GURE 5. Velocity profiles for channel flow at Re = 180 and Ro = 0.,0.055,0.11, 0.22,0.43 and

0.77; ———— : v2-f, : ASB v2-f, o: DNS by Alvelius (1999)
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1 #Ro=0 0.055 /011

] |
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FIGURE 6. Turbulent kinetic energy for channel flow at Re = 180 and Ro = 0.,0.055,0.11,
0.22,0.43 and 0.77; ———— : v°-f, : ASB v’-f, o: DNS by Alvelius (1999)

5. Conclusions and future plans

The algebraic structure-based model has been used in this work in combination with
conventional linear eddy-viscosity models to evaluate the Reynolds stress in the RANS
equations. This approach has proven to be very accurate in predicting the mean flow and
the stress anisotropy in rotating channel flow as opposed to the baseline eddy-viscosity
predictions that are typically insensitive to frame rotation. Several modifications, that
have not been reported in this paper, have been introduced to the ASBM model in
order to facilitate its application to more general flow problems. In particular, a scalar
turbulent diffusion coefficient is introduced in lieu of the original tensorial diffusivity
and a modified formulation for the blockage effect that includes a new definition of the
relevant length scale has been derived.

The current combination of the ASB Reynolds stress evaluation with the v2-f and
k-w models is carried out in a full three-dimensional flow solver. However, only channel
flow simulations were performed. Preliminary computations of flows in square-ducts ap-
peared encouraging. Convergence for this flow was poor indicating that further work on
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the numerical scheme and the ASB algorithm is needed. Current work focuses on the
clarification of this issue.
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