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Hartmann effect on MHD turbulence
in the limit Rm < 1

By B. Knaepenf, Y. Dubief AND R. Moreaul

This work is an attempt to model the actual MHD flows at the laboratory scale (Rm <
1). It essentially focuses on how to take into account the influence of the Hartmann layers
on the turbulence present in the core flow, namely when the applied magnetic field is large
enough to impose a quasi-2D regime. The model studied is obtained from the classical
theory of Hartmann layers and consists in extra damping terms in the evolution equation
of the fluid. Numerical results show that the model predicts the expected behavior of the
core flow between Hartmann layers. A striking property is however that the component of
the velocity field parallel to the magnetic field does not evolve to an anisotropic state as
observed for the perpendicular components. This behavior is supported by an analytical
analysis.

1. Introduction

Most of the experiments on MHD achievable at the laboratory scale concern fluids,
such as liquid metals, whose magnetic diffusivity n = 1/(uo) (u stands for their magnetic
permeability and o for their electrical conductivity) is extremely large in comparison
with their kinematic viscosity v. This implies that the magnetic Reynolds number R,,, =
UL/n (U is a typical velocity scale, L a typical length scale) is often much smaller
than unity (typically in the range 10~4-10~2), whereas the ordinary Reynolds number
Re = UL/v is much larger than unity (typically in the range 103-10%). As a consequence,
the distribution of the magnetic field is controlled by diffusion, what means that the
actual field is negligibly disturbed by the fluid flow. Then, the magnetic field may be
considered as given, and in the following it is supposed uniform and denoted B.

Many experiments have been performed in such conditions, first in Riga and in Purdue
(see Lielausis 1975; Tsinober 1990) then in Beer-Sheva (Branover 1978) and in Grenoble
(A. Alemany & Frisch 1979; Sommeria 1986; Messadek & Moreau 2002), which have pro-
vided a fairly good knowledge of the specific properties of this kind of MHD turbulence.
The understanding of the mechanisms by which the magnetic field is influencing this
turbulence has also received significant attention (A. Alemany & Frisch 1979; Sommeria
& Moreau 1982; Davidson 1995, 1997). The numerical modeling of this kind of MHD
turbulence has also started (Zikanov & Thess 1998; Lee & Choi 2001; Knaepen & Moin
2004) but the tools to compute such flows are still far from being capable to include all
the majors effects of the magnetic field. It will be seen, later on, that one of the major
properties of this MHD turbulence is to become quasi-two-dimensional (Q2D). Then, an
inverse cascade of energy is substituted to the familiar direct cascade in ordinary turbu-
lence. As a consequence, the relevant length scales are larger than in ordinary turbulence
and the computation domain must also be larger, as well as the computation time. One
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may also notice that the small scales become less relevant and expect that this kind of
turbulence be particularly well adapted to large eddy simulations (LES).

This report is organized as follows. In section 2, the classical theory of Hartmann layers
and their influence on the core flow are outlined. The main section of our report follows
in section 3. The model describing the influence of the Hartmann layers on the core flow
is formulated and numerical results testing its predictions are presented. The emphasis is
put on the evolution of the kinetic energy of the flow and on the anisotropy that develops
in the flow. We conclude this report in section 4 and highlight indicate lines of future
research.

2. Basic ideas on the Hartmann damping

Among the effects of the magnetic field on the turbulence, the first one is the devel-
opment of an anisotropy, which becomes quite pronounced when the magnetic field is
very large. In the case of homogeneous turbulence, this anisotropy is particularly clear
in the Fourier space, since the Fourier transform of the Lorentz force is depending on the
direction of the wave vector, but independent of its magnitude (A. Alemany & Frisch
1979). Indeed, the energy carried by wave vectors parallel to B is rapidly damped out,
in a time scale of the order of 7; = p/(0B?) (p is density, 7 is usually named the Joule
time scale and B is the norm of B), whereas the energy carried by wave vectors per-
pendicular to B is not directly damped by the Lorentz force. However, inertia is capable
to withdraw some energy from these wave vectors perpendicular to B and to transfer it
to wave vectors more rapidly damped. Such inertial transfer mechanisms, between wave
vectors of similar magnitudes but different directions, are far from being well understood
as they have not been the subject of as many investigations as the usual energy transfers
between different wave numbers. What is generally accepted is that their time scale is
still the eddy turnover time 74, = [/u (here [ and u are length and velocity scales of
turbulent eddies). And the net result of the competition between the Joule damping and
inertia still leads to a time decay following a power law of the form t~" with n ~ 1.7
instead of 1.1 or 1.2 in ordinary isotropic turbulence (A. Alemany & Frisch 1979).

There is another way to understand the development of this anisotropy, without us-
ing Fourier transforms and wave vectors, which has the advantage to be valid in non-
homogeneous turbulence. It is based on the fact that, when Rm < 1, the well known
Alfven waves degenerate into a diffusion along the magnetic field lines (Sommeria &
Moreau 1982). Due to this mechanism, any initial eddy elongates in the direction paral-

lel to B according to a law

1
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So, substituting 74, instead of t, one may easily guess what the anisotropy of any given
eddy may be during its life time. One should notice that eddies with significantly large /|
may get a length scale /| of the same order as or larger than the width of the whole domain
h. Then, such eddies are column-like and one may say that this turbulence becomes Q2D,
after a duration of the order of
2
ToD = TyJg (£> . (2.2)

N

Other very important effects come from the influence of the Hartmann walls on the
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turbulence. This influence is at least twofold. First, the presence of the walls just forces the
velocity component perpendicular to them to be zero, because it cannot vary significantly
through the thin Hartmann boundary layer. Then, within the Q2D columns, the velocity
vectors tend to remain within planes perpendicular to the magnetic field. The second
influence of the Hartmann walls has its origin in one of the striking properties of the
Hartmann boundary layer, which is not a passive layer like the Blasius layer, but which
is a primary layer, capable to react on the core flow. This property is the fact that a
significant Joule damping remains present within the layer where the velocity cancels
whereas the electric field E does not. As a consequence, the balance between E and
u x B, which is present in the core and minimizes the current density, is destroyed and
the current density is locally very important (of the order of oBu, whereas it is Ha
less within the core, Ha = \/o/(pv)Bh being the Hartmann number built with the
width between the Hartmann walls h). On this basis, Sommeria & Moreau (1982) have
shown that the effective Joule damping time, which is then named the Hartmann time,
is 7y = Hary = h/B+/p/(ov). It may be much larger than 77, since it varies as B!
(not B=? as 7).

3. Damping of the homogeneous core flow in a Hartmann channel
3.1. Formulation

Since the Hartmann layers are very thin (their thickness § = B~!4/pr /o may be around
30 pm in mercury with a magnetic field of 1 Tesla), the fluid velocity is uniform in the
main part of the channel. Then, except in those layers where the shear is localized, the
turbulence may be homogeneous. According to what was described in the former section,
it is also Q2D as soon as 7op is significantly shorter than the eddy turn over time
Tt = 11 /uy . Then the velocity component parallel to the magnetic field, which may be
non-zero in the initial state, is submitted to a linear damping in a time scale of the order
of 73p. This may be easily modeled with the addition of the term —u/72p in the right
hand side of the equation for u|. The velocity components in the plane perpendicular
to B are also affected by some damping, but much less rapidly, as explained in section
2. Indeed, they are only submitted to the Hartmann damping, which may be expressed
by the addition of the term —u, /7g in the right hand side of the equation for w, . The
damping force F; associated with the Hartmann layers is therefore tentatively modeled
by

Fw = —Ux/TH, Fy = _Uy/TH; Fz = —UZ/TQD, (31)

where the z-direction has been chosen as the wall-normal direction. The form 3.1 cannot
be used as such since it would not respect the incompressibility of the flow. However it
can easily be projected on its solenoidal part F;°. Using the Fourier representation, F;°
can be written as

kikj

Ef = (i — 7 )Fj. (3.2)
Again in Fourier representation, the actual components of FiS are then,
ko k
FE:—uz/TH—}—(]./TQD—]./TH)%UZ (33)
S kyk.
F) = —uy/th + (1/72p — I/TH)k—2uz (3.4)
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Resolution 2563
Box size (I x Iy x 1) 2w X 27 X 27
Rms velocity 2.35
Viscosity 0.006
Integral length-scale (L = 37/4 x ([ k 'E(k)dx/ [ E(k)dk)) 0.944
Re =uL/v 370
Dissipation (e) 14.56
Dissipation scale (y = (v/e)*/*)) 0.0110
EmazY 1.41
Microscale Reynolds number (Ry = 1/15/(ve)u’) 72.36
Eddy turnover time (7 = L/u) 0.402
TABLE 1. Turbulence characteristics of the initial velocity field. All quantities are in MKS
units.
s k.k.
F? = —u;/mp + (1/7p — l/TH)?uZ (3.5)

Aside from a simple linear damping, incompressibility thus requires also a wavevector
dependent contribution in order to take into account the effect of Hartmann layers. In 3.5,
we see that this k-dependent contribution has exactly the same functional form as the
traditional Joule damping term. It comes however with the opposite sign. When 75p and
Ty are of the same order, the traditional Joule damping can therefore be compensated
by this extra term (since in general 7 > 7;) and it is thus expected that anisotropy in
the parallel component will remain weak in that case. Its decay will be dominated by the
simple damping term —u,/7>p at all times.

For the perpendicular components, two phases of decay have to be distinguished. In
the first one, 0 < t < m»p, the k-dependent terms will exert their effects. In the second
one, Top < t, their influence will become negligible as u, is damped very rapidly. In this
second phase, the decay will proceed as a simple damping with characteristic time 7.

3.2. Numerical results

The set of equations we are solving are:
A2
Owu; = —0;(p/p) — u;0u; — TA_I(‘L@ZW + FiS + vAu;, (3.6)

where F is given by 3.3-3.5 (here A = B//ip denotes the Alfven velocity). These
equations are solved using a pseudo-spectral code in a cubic geometry. The resolutions of
our run is 2562 Fourier modes. The initial condition for the velocity consists of a developed
turbulence field that is adequately resolved in the computational domain adopted (it is
obtained from a purely hydrodynamic case). Some of its characteristics are listed in
table 1. In order to induce a sufficient amount of anisotropy in the flow, we have chosen
a moderate value of the interaction number: N = 73, /7; = 10. Given the values of u
and L (see Table 1), this implies that the Joule time is equal to 77 = L/(ulN) = 0.0402.
In this run we also assume that 72p = 0.0402 = 7; (looking at 2.2 this corresponds to
a case where the channel width is equal to the initial /). From these values, one also
easily computes that Ha = 60.8 and 7 = 2.45.
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FIGURE 1. Evolution with time of the kinetic energy. Solid line: < ||1u.||* >; dashed line:
< ||5uz||* >; dashed-dot line: < ||3uy || >.

3.2.1. Decay of kinetic energy

At the beginning of the simulation all three components of the velocity field have ap-
proximately equal energy (the initial flow is isotropic). As displayed in Fig. 1, the energy
of the parallel component is dissipated much faster than the one of the perpendicular
components (since Top < 7). After a time ¢t = 273p, the parallel component has been
virtually completely dissipated.

3.2.2. Spectra of kinetic energy

The kinetic spectra presented in figure 2 indicate that the flow is well resolved in the
simulation. A close examination shows that the slopes of the spectra for the perpendicular
components tend to become steeper as time evolves, though this effect is small. The
slope for the parallel direction exhibits the opposite trend and this is very marked in the
different plots.

3.2.3. Anisotropy
To measure anisotropy we use the following diagnostics:
< (6i’uj)2 >

SIS (3.7)

Giju =

They measure the relative strength of velocity gradients in different directions and for
different components of the velocity field. For instance, it is easy to show that in isotropic
turbulence one should have (Pope 2000):

G121 = G131 = 0.5, Gi222 = Gi333 =2, G232 = G323 = L. (3.8)

In our simulations, the mean magnetic field is directed along the z direction (parallel
direction). If the flow becomes 2D perpendicular to this direction, then one must have:

G3j,a = 0, for (j,1)€(1,2,3) and a€(1,2). (3.9)
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FI1GURE 2. Kinetic spectra of the three velocity components at several times during the flow
decay. Dashed line: u,; dash-dot line: u,; solid line: u..

In figure 3 several of the G x; are plotted. From the figure it is clear that the symmetry
z ¢ y is well respected. Also, the component u, remains significantly more isotropic
than the perpendicular components with respect to this diagnostics, although with time
it also evolves to a state with weaker variations along the parallel direction compared to
the perpendicular directions. This behavior is well in line with the discussion contained
in section 3.1.

On dimensional grounds, all the G ;; displayed in Fig. 3 should be of the order 3 / l|2.
Here we see that this ratio depends on the component of the velocity field considere&.
The ratio is larger for the parallel component than for the perpendicular components.
As a consequence we see that eq. 2.1 becomes component dependent in the presence of
the Hartmann damping modeling 3.3-3.5.

3.2.4. 38D visualizations of the flow

The diagnostics presented in Fig. 3 provide a quantitative measure of the anisotropy
of the flow. It is also worth to examine more qualitatively how the flow structures evolve
with time. This is shown in Figs 4-6 where the energy density of the three velocity
components are plotted. These plots confirm the information provided in Fig. 3: the
parallel component of the velocity field remains more isotropic than the perpendicular
components which become noticeably elongated in the direction of the magnetic field.
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FIGURE 3. Anisotropy coefficients G;; ;. See figure for legend.

4. Conclusions

The idea of a pre-existing isotropic turbulence suddenly submitted to a uniform mag-
netic field, initially introduced by Moffatt (1967), is a purely idealized concept, since, in
any experiment, during the growth of the magnetic field, eddy currents and the associ-
ated Lorentz forces are generated, which are completely neglected in section 3. In spite
of this assumption, which would deserve quite a complex analysis and may be not justi-
fied at all in many experimental situations, following Moffatt and others, we focus on the
mechanisms by which the homogeneous turbulence tends to become 2D and decays. Con-
trary to previous numerical studies on 3D homogeneous turbulence subject to a constant
mean magnetic field, we try to incorporate the influence of distant Hartmann layers on
the flow. The spirit behind the model introduced in section 3 is to reproduce the damping
generated by the Hartmann layers though damping terms of appropriate damping times.
However, to respect the incompressibility condition, wavevector dependent contribution
to the model have to be considered. The effect of the model is therefore twofold. First, the
velocity component parallel to the magnetic field undergoes a much more rapid damp-
ing than the perpendicular components. Less obviously, this parallel component remains
largely isotropic throughout the decay due to the wavevector dependent contribution in
the model.

Because of time constraints, our numerical simulations have been limited to times
0 <t < 5mp K 7. It has thus been only possible to observe the early transition from
3D to 2D turbulence. In future work, simulation runs with ¢ ~ 7 will be performed.
These will make possible the study of typical 2D turbulence features like inverse energy
cascade and its influence on the slope of the kinetic energy spectra.

In addition to the problem described in section 3, during the summer program, an-
other study was started aiming at the simulation of the MATUR, experiment (Messadek
& Moreau 2002). This experiment, immersed in a mean applied magnetic field, uses a
difference of electric potential to force a radial flow between two discs. In this system,
anodes are located on one of the discs and the side wall closing the apparatus is the cath-
ode. The MHD equations were implemented in a second-order staggered finite difference
code in cylindrical coordinates. Several numerical difficulties were encountered due to the
extreme thinness of the Hartmann layers which must be modeled very accurately since
the whole electric current passing in the turbulent core must be close via those layers,
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FIGURE 4. 3D visualizations of the energy density of the components of the velocity field at
t = 277; ue (left), uy, (center), u. (right). Note that the colormap of the plot corresponding to
u, is not equal to the colormap in the other two plots since the level of energy in u, is much
lower. The colormaps are not provided since the figures are meant to highlight the qualitative
shapes of the turbulent structures.

FIGURE 6. See caption of figure 4. Here t = 572p.

which react on the core flow proportionally to the Hartmann current. As a consequence,
the grid must be significantly refined in the Hartmann layers yielding very small time
steps. Another important issue is the accurate representation of a series of point-like
electrodes distributed on a circle at mid way between the center of the apparatus and
the side wall (cathode). The difficulty here is caused by the singularities present in the
experiment between the insulating parts of the Hartmann wall and the electrically con-
ducting parts. The appropriate way to solve those difficulties without introducing any
significant artifact has itself been the subject of detailed investigations. The refinement
required by this set-up is very detrimental to the time step in cylindrical coordinates due
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to the small radial grid-spacing at the center. To relax such a constraint and study the
possibility of local refinement for both the electrodes and the Hartmann layers, current
investigations have shifted to the unstructured code CDP-a developed by the ASCI pro-
gram at Stanford. It is our purpose to complete this work soon and to publish the results
of this benchmark in an other paper.
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