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Numerical modeling of turbulent convection and
acoustic wave propagation in the solar interior

By M. S. Miescht{, N. N. Mansour AND M. M. Rogers

The advent of helioseismology and the increasing sophistication of numerical models
have brought forth a new era in our understanding of solar interior dynamics. High-
resolution simulations of turbulent convection have become essential tools in the inter-
pretation of helioseismic data and have provided new insight into the maintenance of
large-scale flows and magnetic fields in the solar interior. Still, we can do better. One
of the largest uncertainties in current numerical models is the influence of the upper
and lower boundary regions which surround the convective envelope and which cannot
be fully resolved in a global simulation. In this summer school we began to investigate
in more detail the sensitivity of convection simulations to these boundary regions and
we found that they have a more significant impact than might be supposed. We also
initiated an investigation into the propagation of acoustic waves in the solar interior and
their interaction with flow fields, thermal inhomogeneities, and magnetic structures. This
project promises to elucidate the forward problem of helioseismology, providing essential
theoretical support to ongoing observational efforts.

1. Introduction

The sun acts as a resonant cavity. Like a bell with millions of distinct tones, the sun
rings with global acoustic oscillations. By studying subtle variations in the frequencies
of these oscillations, solar physicists have begun to infer something about the structure
and dynamics below the solar photosphere. This is the science of helioseismology, and in
the past few decades it has revolutionized the study of solar interior dynamics. This is
an exciting time to be a solar physicist.

From a dynamical perspective, the most profound achievement of helioseismology has
been the mapping of the internal rotation profile of the sun as a function of latitude and
radius. The sun does not rotate as a solid body. Rather, it rotates differentially, with a
rotational period of about 25 days near the equator and about 34 days near the poles.
The surprise from helioseismology is that this monotonic decrease of angular velocity
by about 30% from equator to pole is approximately independent of radius throughout
the convection zone (Thompson et al. 2003). Below the convection zone, the rotation
appears to be uniform within the errors of the helioseismic inversions. The transition
from differential to uniform rotation occurs across a narrow region of strong rotational
shear located near the base of the convection zone, which has been named the solar
tachocline.

Keeping pace with the dramatic progress of helioseismic investigations, dynamical
models of the solar interior are becoming increasingly sophisticated. High-resolution nu-
merical simulations have given us new insight into the nature of the solar convection
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zone, which occupies the outer 30% of the solar interior by radius and which is thought
to be highly turbulent, with Reynolds numbers exceeding 10'2.

One such numerical model is based on the ASH (Anelastic Spherical Harmonic) code,
which was developed at the University of Colorado and JILA (Clune et al. 1999). The
first scientific results were reported by Miesch et al. (2000) and since then, much progress
has been made in further developing the model and in exploring different parameter
regimes, different geometries, and different physical processes (Miesch 2000; Elliot, Miesch
& Toomre 2000; Brun & Toomre 2002; DeRosa, Gilman, & Toomre 2002; Brun, Miesch
& Toomre 2004).

Despite the success that the ASH code has enjoyed, further model development is
always warranted in a system as complex as the sun. One of the primary questions that
is still poorly understood is what effect the convection zone boundary regions have on
the global dynamics. At the bottom of the convection zone there is a stiff transition
from sub-adiabatic to super-adiabatic stratification, giving rise to a narrow region of
convective overshoot. Meanwhile, at the top of the convection zone, there is a complex
transition between the envelope where heat is carried outward by convection and the
relatively sparse corona where the heat transport is dominated by radiation. Radiative
transfer effects, coupled with the steep sub-surface stratification and the ionization of
hydrogen, drives vigorous convective motions known as granulation.

The main difficulty with these boundary regions is their relatively small scale. Dif-
ferential rotation occurs on global scales of ~ 1000 Mm and requires the full spherical
geometry to properly address. It is thought to be maintained by large-scale convective
motions which are driven by buoyancy on scales of perhaps a few hundred Mm. Granu-
lation, by comparison, occurs on scales of a few Mm, well beyond the resolution of even
the most ambitious global-scale model. Furthermore, the overshoot region at the base
of the convection zone is no more than 10 Mm thick-less than 1% of the solar radius.
Global models cannot accurately capture the complex, small-scale dynamics occurring in
these interface regions so some approximations are necessary.

In this summer school we focused on two primary objectives. The first was to investigate
in more detail the sensitivity of global solar convection simulations to the upper and lower
boundary conditions. We already know that in a global model we cannot explicitly resolve
the complex dynamics which occur in the upper and lower transition regions bordering
the solar convection zone. What we wish to understand better is: what difference does
this make? How sensitive are global features such as the differential rotation to what
occurs in the boundary layers?

Our second objective in this summer school was to begin to investigate in greater
detail the coupling between large-scale convection and the acoustic waves, known as p-
modes, which form the basis of helioseismology. Large-scale convection does not generate
p-modes; it’s Mach number is too low to be a significant source of acoustic power. Rather,
p-modes are generated in the near-surface layers by granulation and propagate downward
throughout the convection zone and deep interior.

Although p-modes do not significantly influence the dynamics of large-scale convection,
they are the primary diagnostic tool used to probe such motions. Helioseismic inversions
rely on p-modes to infer flow fields and structural information about the solar interior.
Thus, it is of great practical importance to understand how acoustic waves interact with
convective motions and other dynamical phenomena such as zonal jets and magnetic flux
tubes.

Since it makes use of the anelastic approximation, the ASH code cannot be used to
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lower boundary upper boundary

Case A penetrative moderate entropy gradient
Case B non-penetrative moderate entropy gradient
Case C non-penetrative large entropy gradient

TABLE 1. Simulation Summary

follow the propagation of acoustic waves (see §3). Thus, we have developed a separate
acoustic solver which will eventually piggyback on the ASH code. However, before we ad-
dress the acoustic probing of turbulent convection, which is a formidable problem, we will
first consider the interaction between a specified acoustic wave field and simple inhomo-
geneities such as Gaussian temperature perturbations, smooth meridional circulations,
and localized zonal jets and magnetic flux tubes.

In the sections that follow, we will say a few more words about each of these projects
in turn and where they may be heading.

2. Boundary Sensitivities

The simulations we will describe are carried out using the ASH code, which solves
the 3D equations of fluid motion in a rotating spherical shell (Clune et al. 1999). The
ASH code is based on the anelastic approximation, which is designed for substantially
subsonic motions in the presence of a background density stratification. The equations are
solved using a pseudo-spectral technique, with spherical harmonic basis functions in the
horizontal directions and a stacked Chebyshev expansion in the vertical. Time-stepping
is accomplished with an explicit Adams-Bashforth scheme for the nonlinear terms and
a semi-implicit Crank-Nicolson scheme for the remaining linear terms. The boundary
conditions used here are impenetrable and stress-free, with a fixed entropy gradient. In
the applications presented here we neglect magnetic fields.

In order to investigate the sensitivity of global-scale solar convection to the imposed
boundary conditions, we have initiated a series of simulations, three of which are sum-
marized in Table 1. Case B can be viewed as the control simulation. This case is non-
penetrative, meaning that the impenetrable lower boundary of the computational domain
is placed at the base of the convection zone, at r ~ 0.7Rg. By contrast, in Case A, the
lower boundary of the computational domain is placed well below the base of the con-
vection zone, at 7 = 0.55Rq. Thus, Case A allows penetration into a stably stratified
region below the convective envelope.

The third simulation we describe here, case C, is similar to case B, but we have
imposed a larger entropy gradient on the upper boundary, as suggested by some 1D
solar structure models (e.g. Christensen-Dalsgaard et al. 1996). The difference between
the entropy gradient in cases B and C is illustrated in Figure 1a. Each simulation begins
with a monotonic decrease in the entropy gradient from its surface value to the lower
value imposed at the bottom boundary. However, in all cases, redistribution of entropy
by convective motions produces a local minimum in the entropy gradient just below the
surface. The entropy gradient in case A is similar to that in case B except that it increases
sharply to 10~* below the base of the convection zone at r = 0.71R.
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FIGURE 1. Frame (a) shows the horizontally averaged radial entropy gradient in case B (solid
line) and case C (dotted line) late in the simulations (¢ = 2770 days and ¢ = 2860 days,
respectively). In frame (b), the volume-averaged convection kinetic energy (upper curves) and
differential rotation kinetic energy (lower curves) are plotted as a function of time for case B
(solid lines) and case C (dotted lines).

Cases A and B were initiated from static initial conditions, but case C was restarted
from case B after the latter had evolved for about 1600 days. Figure 1b shows the time
evolution of the kinetic energy contained in the non-axisymmetric convective motions
(CKE) and the kinetic energy contained in the differential rotation (DRKE), both relative
to a rotating coordinate system for cases B and C. The convection kinetic energy in case B
saturates quickly, reaching a statistically steady state within about 100 days. By contrast,
the differential rotation for the same case takes a much longer time to establish and is
still growing slowly after about 2000 days.

After the simulation is continued with a different upper boundary condition (case C),
the convective kinetic energy increases slightly because of stronger driving in the upper
boundary layer. Surprisingly, the change in boundary conditions has also produced a
substantial drop in the differential rotation kinetic energy. This decrease is apparent in
the differential rotation profiles shown in Figure 2.

Figure 2 indicates that the latitudinal angular velocity variations in cases A and C
are both much smaller than in case B. This implies that the presence of an overshoot
region and stronger driving near the top of the shell both tend to decrease the differential
rotation in the bulk of the convection zone, at least in the parameter regimes studied
here. The former conclusion is only tentative, however, because case A has only been
evolved for a few hundred days and may not have had time to establish a steady rotation
profile. The angular velocity contrast in the sun between the equator and high latitudes
is about 30%, somewhat more than that in case B. Thus, the smaller angular velocity
gradients in cases A and C are not solar-like.

Despite the divergent rotation profiles in the three simulations, the convection patterns
appear similar as shown in Figure 3. The biggest difference occurs with case C, in which
the downflow lanes appear relatively narrow and the convection network somewhat more
isotropic. This can again be attributed to the stronger buoyancy driving near the surface.
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FIGURE 2. The upper frames show the longitudinally averaged angular velocity profile in cases A,
B, and C at a time late in the evolution of each simulation. The dashed line in Case A indicates
the base of the convection zone. Corresponding radial cuts at chosen latitudes (averaged over
both hemispheres) are shown in the lower frames. The polar regions are not shown because there
the moment arm, rsin 6 (0 being the co-latitude) approaches zero and the angular velocity is
not well defined.

3. Acoustic Wave Propagation

As mentioned in §1, our primary means of probing solar interior dynamics is through
acoustic waves, which are analyzed using the techniques of helioseismology. At the heart
of this endeavor lies the so-called forward problem; for a given flow or field structure,
what acoustic signal will be manifested in the photosphere, where we can observe it?

The influence of flow fields and related structural or magnetic variations on acoustic
mode propagation depends on the nature of the modes. For global, resonant oscillations
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FIGURE 3. Snapshots of the radial velocity field are shown for cases A, B, and C at a horizontal
layer near the top of the shell. In these grayscale images, upflows appear bright and downflows
appear dark. Each image is an orthographic projection with the north pole tilted 30° toward
the observer. The dotted line indicates the outer boundary of the computational domain and
the dashed line indicates the equator.
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FIGURE 4. Initial conditions for one of our acoustic wave simulations. The density perturbation
is chosen to be a spherical harmonic mode with £ = 10, m = 5, propagating eastward (toward
the right) at a rate equal to the sound speed. The background temperature is uniform except
for a Gaussian enhancement (by a factor of two) located at a latitude of 10° N and a longitude
of 0°.

of the entire sphere, dynamical variations are manifested as shifts in the oscillation fre-
quencies. Although relatively straightforward to calculate, these shifts can be subtle and
difficult to detect. Furthermore, different dynamical processes can give rise to similar
frequency shifts, so even if a shift is detected, it may be difficult to interpret. For a local
spectrum of high-wavenumber traveling waves the forward problem becomes even more
complicated. In both the global and local cases, numerical simulations can potentially
provide much new insight.

Over the course of this summer school, we have initiated a project to investigate the in-
teraction between acoustic wave fields and inhomogeneities induced by convective flows
or other dynamical processes (e.g. magneto-rotational instabilities in the tachocline).
We have developed a numerical model that uses much of the machinery already imple-
mented in the ASH code, such as spherical harmonic transforms and radial derivatives.
However, the ASH code is based on the anelastic approximation, which effectively filters
out acoustic waves because the time derivative in the mass continuity equation is ne-
glected (V- (pv) = 0, where p is the background density). Therefore, we have developed
a distinct set of equations designed to follow the propagation of linear, inviscid acoustic
waves in a background medium that may in general possess flows and inhomogeneities
in the sound speed.

The acoustic equations are derived from the equations of mass and momentum conser-
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FIGURE 5. The density field is shown as the simulation evolves. As in Figure 4, bright areas
denote density enhancements and dark areas rarefactions. The time (in minutes) is indicated to
the upper right of each frame. The interval between frames is 400 seconds (6.66 min).

vation for a compressible fluid. As a first approximation we consider adiabatic acoustic
waves, but as the project proceeds we will incorporate thermal diffusion, buoyancy, and
rotation. With regard to the background state, we will start simple and build up to
more complex configurations. Thus, the background state, indicated by an overbar, is
for now assumed to be static: ¥ = 0. The equations for mass continuity and momentum
conservation then reduce to

op' 2
- 1
e + V=0 (3.1)
and
2V2go+v2 () =0 |, (3.2)

ot
where p' is the perturbation density, ¢, is the sound speed, and ¢ is the velocity potential,
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I 7.3

FIGURE 6. Similar to Figure 5 but with the £ = 10, m = 5 component subtracted out.

defined in terms of the perturbation mass flux m' as
m' =Vp+Vx¥ . (3.3)

The incompressible component of the velocity field, represented by the vector stream-
function ¥, does not enter into the acoustic equations. For an ideal gas, the sound speed

cs = 1/ Cp(y — 1)T, where C,, is the specific heat at constant pressure, 7 is the ratio of

specific heats, and T is the background temperature.

We solve equations (3.1)—(3.2) using a pseudo-spectral technique with spherical har-
monic basis functions and a leap-frog temporal differencing scheme. One of our first test
cases is illustrated in Figures 4-6. As a starting point we consider a 2-D spherical sur-
face and we initialize our system with a specified density perturbation represented by
the spherical harmonic mode of degree ¢ = 10 and order m = 5 (Figure 4). The initial
velocity potential is given a similar structure but with a phase lag appropriate for an
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eastward-propagating wave. Thus, if the background sound speed is homogeneous, the
“soccer ball” pattern in the left frame of Figure 4 will simply propagate to the right,
maintaining its spatial structure indefinitely.

We now introduce an inhomogeneity. The background temperature field is given a
local enhancement centered at a latitude of 10°N and a longitude of 0° as shown in the
right frame of Figure 4. The form of the enhancement is Gaussian, with an e-folding
length of 10° and a peak value which is twice the background temperature. Thus, the
local sound speed is increased by a factor of v/2 = 1.4. This can be regarded as a crude
(and exaggerated) first approximation to a sunspot or active region, which are generally
associated with localized thermal variations.

The evolution of the simulation is illustrated in Figure 5. The eastward-propagating
acoustic wave scatters off the temperature enhancement, sending out a series of circular
acoustic pulses. The distortion of the acoustic mode is apparent, but the density field is
still dominated by the £ = 10, m = 5 mode, which was imposed as the initial condition
and which drives the dynamics.

The structure of the acoustic pulses can be seen more clearly if we subtract out the
primary driving mode as shown in Figure 6. The temperature enhancement acts as a
scattering center, sending off divergent circular waves with a continually varying phase.
These waves extract energy from the primary mode, eventually causing it to decay.

4. Conclusions and Outlook

The results presented here are preliminary. Both projects described in sections 2 and
3 are ongoing and there is much work to be done. First, it must be verified that the
patterns identified in §3 are robust, particularly with regard to the differential rotation.
The existing cases must be evolved for longer durations in order to confirm that the
rotation profiles are indeed steady and new cases must be initiated in order to make sure
that our conclusions are not limited to the particular parameter regimes chosen here.

Another boundary condition that we plan to investigate was motivated in part by
discussions we had with Profs. Nordlund and Stein during the summer school. According
to their simulations of granulation in the solar surface layers, motions that possess a non-
zero horizontal divergence tend to deform the outer surface rather than turn over upon
themselves. Thus, to lowest order, the horizontal divergence is approximately independent
of depth, implying a small vertical divergence of the mass flux: 8(r?pv,.)/0r ~ 0. We have
used this result to devise open boundary conditions for the top of our domain that allow
flow through the boundary. Since our outer boundary lies within the solar convection
zone, this promises to be a more realistic treatment of the upper boundary, provided
that it is numerically stable. We implemented this new boundary condition during the
summer school but have not yet fully tested it.

With regard to the acoustic wave investigations, the results shown here are only the
beginning. Our next step is to add the radial dimension to our acoustic solver and to
implement boundary conditions which are realistic and useful from the point of view
of helioseismology. We must then incorporate thermal diffusion, buoyancy, and rotation
into our formulation. Once these code developments are finished, we will be prepared to
investigate the interaction between an acoustic wave field and a series of imposed flows
and structural variations of progressively increasing complexity. We will begin by study-
ing the response of an imposed spectrum of acoustic waves to thermal inhomogeneities
such as the Gaussian enhancement considered here. The results will be interpreted in
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a helioseismic context and applied to practical problems such as far-side imaging. We
will then investigate the acoustic signatures of flow variations such as zonal jets and
meridional circulations. Eventually we will study these same problems and more in the
presence of an evolving, convective, background flow computed with the ASH code.

We thank Juri Toomre and Sacha Brun for taking part in our continuing adventures
with the ASH code. We appreciate their insight and support. We also thank Sasha Koso-
vichev for motivating much of the work initiated here and Aake Nordlund, Bob Stein,
and Freidrich Busse for simulating discussions during the summer school. Mausumi Dik-
pati reviewed this manuscript for NCAR and we thank her for her comments. MSM
would also like to thank Parviz Moin, Nagi Mansour, and their colleagues at CTR for an
inspiring and productive program.
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