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Temperature and pollution control in flames

By L. Debiane, B. Ivorra, B. Mohammadi & F. Nicoud 7
A. Erni, T. Poinsot § AND H. Pitsch

Controlling flame shapes and emissions is a major objective for all combustion en-
gineers. Considering the complexity of reacting flows, novel optimization methods are
required: this paper explores the application of control theory for partial differential
equations to combustion. Both flame temperature and pollutant levels are optimized in
a laminar Bunsen burner computed with complex chemistry schemes. The optimization
procedure is coupled with mesh adaptation to provide grid-independent results. Finally,
a recursive semi-deterministic global optimization approach is tested.

1. Introduction

Control of temperature and species in flames is an important challenge for industrial
and environmental issues. Many studies exist on numerical simulation of pollutant for-
mation in flames (Peters & Donnerhack 1981; Warnatz 1981; Williams 1985; Pitsch et
al. 1996; Poinsot & Veynante 2001; Pitsch 2002). This paper is to apply control theory
for PDEs (Lions 2003) to flames.

We focus on a laminar bunsen Hy-Air flame simulated with detailed chemistry and
multicomponent transport (Burman et al. 2004). We concentrate on the reduction of
the Zeldovich-NO, also called thermal NO. This is the major NO source in a bunsen
Ho-Air flame. We also study the control of temperature distribution in flames, which is
of importance in combustion engine design. Finally, we pay attention to the control of
flame length at given fuel rate in the flow. These formulations are alternative approaches
to consider pollutant control in flame (Peters & Donnerhack 1981) and also have natural
applications in the design of combustion chambers.

To keep the computational cost low we test here if it is possible to use approximate
state and sensitivity evaluations (Mohammadi & Pironneau 2001) during optimization.
Once the optimization is achieved, the final design is a posteriori validated by accurate
calculation. In this sense, different discretizations are used for the computation of the
state and gradient, and an unstructured mesh adaptation strategy is applied to adapt
the mesh to the solution during optimization process (Frey 2001; Frey & George 2001;
Debiane 2004).

As the functionals are not necessarily convex, we use a new recursive semi-deterministic
global optimization approach. This algorithm permits to escape from local minima but
has a lower cost than a genetic algorithm (Goldberg 1989; Ivorra 2005) because the
nondeterministic features of the approach have been reduced. Randomness is introduced
only when the deterministic part fails. In addition, in cases where the algorithm fails,
the construction can be used together with a genetic algorithm to improve population
selection and reduce the size of the sampling needed.
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2. Semi-deterministic recursive optimization

Most deterministic minimization algorithms can be seen as discretizations of the fol-
lowing dynamical system (Attouch & Cominetti 1996; Mohammadi & Pironneau 2001;
Mohammadi & Saiac 2002) where = denotes the vector of control parameters belonging
to an admissible space Q44. € is a fictitious parameter. M is a local metric transformation
and d a direction in Q4.

M(Q)re = —d(a(0)
{2 (2.1)

For example if d = V J, the gradient of the functional, and M = Id, the identity operator,
we recover the classical steepest descent method while with d = VJ and M = V2J
the Hessian of J, we recover the Newton method. Quasi-Newton methods can also be
recovered using approximate Hessian definition (Vanderplaats 1990).

In this work, the following assumptions for our optimization problem are made (Ivorra
2005):

e Hl: J € Cl(Qad,IR).

e H2: the infimum J,, is known. This is often the case in industrial applications.

e H3: the problem is admissible: the infimum is reached inside the admissible domain:
Az € Qag, st J () = T

e H4: J is coercive (i.e. J(z) = oo when |z| = 00).
We consider that system (2.1) has a solution if for a given 2o € Q,4, we can find a finite
Zyo such that J(2(Z4,)) = Im:

M(Q)z¢ = —d(z(())
z(0) = o (2.2)
J(@(Z4,)) = Im

This is an over-determined boundary value problem which can be solved using classical
techniques for BVPs (e.g. shooting, finite differences,...). Because we are interested in
constrained global optimization we prefer to express the condition at Z,, on the func-
tional instead of its gradient. Indeed, in our context a first order optimality condition is
usually not satisfied at the infimum.

This over-determination is an explanation of why we should not solve global optimiza-
tion problems with methods which are particular discretizations of first order differential
systems. We could use variants of classical methods after adding second order derivatives
(Attouch & Cominetti 1996):

nree + M(Q)ze = —d(2(()),
.’17(0) = Xy, .’17(0 = .fi]o, (23)
J(2(Zz,)) = Im

To avoid introducing too much perturbation in the method, we consider, in pratice,
In| << 1.

The over determination can be removed, for instance, by considering zo = v for
(2.1) (resp. #(0) = v for (2.3)) as a new variable to be found by the minimization of
h(v) = J(z,(Zy)) — Jm, where z,(Z,) is the solution of (2.1) (resp. (2.3)) found at
¢ = Z, starting from v.

The algorithm A; (vq,v2) reads:
o (v1,v2) given,
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o Find v € argmin,co(w.,)h(w) where h(w) = J(24(Zy)) — Jm,
with .4, (Zy) solution of system (2.1) found at ( = Z,, starting from w, and O(vs) =
{to103,t € R} N Qqq-

o return v

The line search minimization might fail. For instance, a secant method degenerates on
plateau and critical points. In this case, we add an external level to the algorithm A,
keeping v; unchanged, and looking for v, by minimizing a new functional h? defined by
h?(v3) = min,z h(v3) by algorithm A, (vi,v3).

This leads to the following two-level algorithm A (vy,v3):

o (v1,v3) given,
o Findwvy € argminweo(vg)hz(w) where h?(w) = h(A1(vi,w))

and O(v3) = {tvvs,t € R} N Qpq.
o return vs

The choice of initial conditions in this algorithm contains the non-deterministic fea-
ture of the algorithm. The construction can be pursued building recursively hi(vi) =
min,; h*~*(v3) using A;—1(v1,v5), with h'(v) = h(v) where i denotes the external level.
Mathematical background for this approach and validation on academic test cases and
solution of nonlinear PDEs are available (Mohammadi & Saiac 2002; Ivorra & Moham-
madi & Redont 2004; Ivorra 2005).

In practice, this algorithm succeeds if the trajectory passes close enough to the infimum
(i.e. in Be(zym) where € defines the accuracy in the capture of the infimum). This means
that we should consider for A a functional of the form

T
h(v) = / (J(2o(1)) = J)?dr, for 0<T) <7<T
T:

where z,(7) is the trajectory generated by (2.1) and 77 = T'/2 for instance. Also, in the
algorithm above, z,,(Z,,) is replaced by the best solution found over [0, Z,].

In cases where J,,, is unknown, we set J,, = —oo and look for the best solution for a
given complexity and computational effort. This is the approach adopted here where we
predefine the effort we would like to make in each level of the algorithm.

3. Functionals and parameterizations

The symbols of this section are illustrated on figure (1), which shows the computational
domain Q. A section I', through which we would like to reduce the NO flux, is defined
at z = 1.5em.

Optimization control parameters are:

e the inflow velocity of the premixed mixture v, taken as

=|ro — 7|

v1(T1, p1,p2) = V(1 — exp( )) + S(p1,p2) with ro = 0.2, r; =0.05

T
with
r r—r
—) 2 sin(par) sin( %)
To To

S(p1,p2) = p1(



370 L. Debiane et al.

(d) ©

N\

F1GURE 1. Computational domain for the bunsen flame and illustration of the parameterizations:
(a) is the premixed mixture Hy, Og, Ng injected with velocity v; shown on (b), the coflow
velocity v2 (c) and the length of the flame (d).

e the coflow velocity vs of the form

—|ro +r3 — 7|

)) with r3 = 0.05
T

v2(T2) = T2(1 — exp(

Two of the following molar fraction quantities:

o the molar fraction of species Hg in the premixed mixture xm.,,

o the molar fraction of species O9 in the premixed mixture xo,,

o the molar fraction of species N9 in the premixed mixture xn,,
the third one being deduced from x g, + X0, + x5, =1
The control space has therefore six degrees of freedom. We introduce two nondimensional
numbers:

e ¢, the equivalence ratio, defined by:

XHQ/XOZL-,"J- _ XH;
(XHs /X0 ) stoich  2X0,

where inj means injection and stoich means stoichiometric.

= %, the dilution factor.

The vector of control parameters is z = (v1, p1,p2, V2, 9, ) € [50,200] x [—25,25] x
[—10,10] x [50,200] x [4,10] x [0,10]. It should be noticed that a constraint on the fuel
rate in the flow implies a compatibility relation between p;, ps and 7.

The first cost function we consider aims to reduce the NO flux through I" and at the

same time achieve a target temperature profile:

Jl(x) =M / PYNoOU T + ’72/(T - Ttarget)2
r T

¢ =

where p is the density, yno the mass fraction of NO, v the flow velocity, T the temperature
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FIGURE 2. NO reduction functional Ji1 evolution vs. accumulation of optimization iterations.
The two-level algorithm permits to escape from local minima: a first plateau is reached in first
level and the second level permits to reach a second plateau with a global reduction of 90 percent
in the functional while the original algorithm alone (i.e. with only one level) only leads to 60
percent reduction in the functional.

and Tiorget a target temperature profile. 1, 2 are given positive scalars and n the normal
unit vector to T'.
The second cost function aims to control the flame length at a given flow rate:

Jg(a:):/ YH, Wwith fyl/ PYH, v - M = const.
r=0 z2=0

We observed that these functionals are not necessarily convex (Debiane 2004).

4. State equations

The hydrogen mechanism can be described using nineteen elementary reactions and
nine species Ho, Og, H, O, OH, HO9, H9O, HypO9, No. The flame is simulated with an
axisymmetric bunsen laminar flame code (Ern & Giovangigli 1994; Burman et al. 2004).
Governing equations are discretized by a finite element method, which is an extension
to chemically reacting flows of the streamline diffusion method, including least squares
stabilization of the pressure gradient and the low-Mach continuity equation as well as a
shock capturing term designed to control temperature and species mass fraction under-
shoots near flame fronts. The species NO and Ny are added to the mechanism in order
to simulate the formation of the Zeldovich-NO (Williams 1985).

5. Numerical results

As combustion computations are quite expensive, we will analyze the feasibility of in-
complete state and sensitivity evaluation during optimization with intermediate accurate
validation of the optimal configurations. This means that during optimization we mostly
achieve suboptimal search and analysis (Mohammadi & Pironneau 2001). This is possi-
ble because the semi-deterministic algorithm above requires less accuracy in sensitivity
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FIGURE 3. Left: initial (upper curve), target (lower) and optimized (middle) temperature profiles
(K) along z = 1.5¢cm (r-axis in em). Right: NO flur (gem~2s™') through z = 1.5¢m before
(upper curve) and after (lower) optimization. The NO fluz has been drastically reduced and the
temperature target almost achieved.

definitions. Also, during intermediate sensitivity and state analysis the previous states
are used to define a suitable initialization for the solver. In addition, gradient computa-
tions are made on a coarser mesh than the one used for state evaluations. On the other
hand, to monitor the accuracy of state calculations, and therefore the functional, at each
iteration of optimization an unstructured solution-based mesh adaptation is performed
(Frey & George 2001; Frey 2001; Debiane 2004). Using these ingredients, the cost for
optimization is only 30 percent of the overall flame calculations.

The optimizations shown here have been performed with two levels of the algorithm
presented above. The effect of each level can be seen in figure 2: a first plateau is reached
and the algorithm permits to reach a second plateau with a global reduction of 90 percent
in the functional.

Optimization results for functional J; are shown in figure 3. We can see that the target
temperature is almost achieved and that the NO flux is drastically reduced. Initial and
final temperature and NO mass fraction distributions are shown in figure 4.

Optimization results for functional J, are shown in figure 5. We show the maximum and
minimum flame lengths which can be obtained with the current parameterization. There
is a difference of 30 percent in flame length between the two configurations. Figure 6 shows
a Delaunay type adapted mesh based on solution-based metric control which permits
to monitor numerical errors during simulation and optimization. The injection profiles
obtained from maximizing and minimizing the flame length at a given flow rate are quite
counter-intuitive (see Figure 7) as the maximum injection along the symmetry line leads
to a minimum flame length. The explanation of this phenomenon, which requires more
investigations, is probably linked with the diffusion of the dihydrogen. This optimization
clearly shows the correlation between flame length and pollutant production.
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FIGURE 4. Optimized and instial temperature (left) and NO mass fraction (right) distributions.

6. Conclusions

A global optimization algorithm, based on the solution of boundary value instead of
initial value problems, has been applied to the control of pollution, temperature and
flame length in a bunsen flame simulated with complex chemistry making the problem
stiff. It has been shown that controlling the fuel rate and the velocity profiles in both
the premixed flow and the coflow is enough to achieve the targeted temperature, NO
flux and flame shapes. Future investigations will concern shape optimization for such
configurations in order to impact the design of combustion chambers.
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FIGURE 7. The injection velocity (cms™ ") profiles are quite counter-intuitive (r-azis in cm) as the

mazimum injection along the symmetry line leads to a minimum flame length. The continuous
profile minimizes the length of the flame and the dash profile mazimizes it.
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