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Commutation errors in Large Eddy Simulation on
moving grids : Application to piston engine flows

By V. R. Moureau f, O. V. Vasilyev { C. Angelberger § AND T. J. Poinsot ||

A theoretical framework is developed to evaluate the Temporal Commutation Errors
(TCE) in piston-engine flows. These errors occur when the Large-Eddy Simulation (LES)
filter is a function of time, implying for the temporal partial derivative not to commute
with filtering. TCE are derived for structured and unstructured grids, highlighting the
contributions of width and shape variations. Finally they are evaluated on LES sim-
ulations of a square-piston experiment and the influence of the crank speed and the
compression ratio are studied. It is found that the TCE may be neglected to first order
if the flow field and mesh deformation are generated by the same boundary movement.

1. Introduction

The design of modern combustion devices with the aim to reduce fuel consumption and
pollutant emissions is often complicated by combustion instabilities and more generally
by the intrinsic unsteadiness. This is the case of industrial or aeronautic gas turbines,
rocket engines and piston engines. Large-Eddy Simulation (LES) may become a key tool
that could give engineers the means to better predict operation ranges and specifica-
tions. Recent improvements of LES codes have shown encouraging simulations of gas
turbines (Kaufmann et al. 2002; Selle et al. 2004; Priere et al. 2004) but in spite of these
first successes further developments are needed before obtaining satisfactory results, e.g.
on realistic piston-engine geometries (Celik et al. 2001). This gap can be explained by
the fact that piston-engine flows are very confined and walls play therefore a major role.
Moreover piston-engine combustion chambers are strongly deformed while operating and
that induces big pressure variations and meshing problems.

The LES principle is to reduce the simulation time compared to Direct Numerical
Simulations (DNS) by filtering the governing equations, resulting in a reduction of the
spectral content of the flow. Then the difficulty is to model the effects of the removed
small scales on the resolved large eddies. Supposing that the filtering operator commutes
with partial derivatives, the filtered equations are similar to unfiltered ones with unclosed
extra terms. The Smagorinsky model (Smagorinsky 1963) is commonly used for turbulent
unclosed terms in the momentum equation. The assumption that filtering commutes with
partial derivatives is generally considered valid on fixed grids with uniform cell width. On
deforming unstructured grids this is not the case anymore and commutation errors may
have to be considered. In the past spatial commutation errors (SCE) have extensively
been studied with the aim to apply LES to complex geometries. The first theoretical
analysis is due to Ghosal (Ghosal & Moin 1995; Ghosal 1999) who has given the order
of convergence of SCE on structured grids. Some numerical estimations of SCE can also
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be found for turbulent channel flows (Fureby & Tabor 1997). Then the SCE derivation
formalism has been improved to deal with boundaries, and commutating filters have been
defined for structured grids (Vasilyev et al. 1998) and unstructured grids (Marsden et al.
2002; Haselbacher & Vasilyev 2003). The most recent developments have been focused on
the local spectrum of SCE (Vasilyev & Goldstein 2004) and the influence of filter shape
or width variations on spectral content has been highlighted.

Because most LES computations have been performed on fixed meshes, very few stud-
ies on temporal commutation errors (TCE) are available. Their possible importance in
piston-engine simulations has been stressed by Franke (Franke & Frank 2001) but no
evaluation on realistic geometry has been carried out. TCE are a priori increasing with
the instantaneous deformation rate of the mesh as SCE are increasing with filter-width
spatial stretching. This deformation rate is itself a function of crank speed and compres-
sion ratio.

This study aims at quantifying TCE in a piston-engine like geometry. First TCE
are derived for different grid types ordered by increasing connectivity complexity : one
dimensional grids (Section 2), three-dimensional structured grids (Section 3) and three-
dimensional unstructured grids (Section 4). Then TCE for the momentum equation are
evaluated on a piston-engine like configuration (Section 5), consisting of a square-piston
engine for which experimental data are available. Since the DNS of this type of experiment
is not feasible, the exact derivation of TCE could not be computed directly. Instead an o
priori model for TCE is proposed and evaluated in LES simulations of the square-piston
experiment for different crank speeds and compression ratios.

2. One dimensional derivation

As a first step TCE are studied for one dimensional grids. Given a function ¢ of space
and time the filtered function ¢ is defined by the following convolution product :

3ot = [ 6 (E2L 0t gy, 2.

o(x,t) = / ( ,m,t) y,t)dy 2.1
A(IL‘,t) a(t) A(Ib',t)

The filter G is assumed to have the most general form, i.e. non-uniform filter width and

shape. In Eq. (2.1) the variable filter width A has been taken out of the filter, which

thus only contains information about its shape. This is justified by the fact that width

and shape variations do not have the same influence on the local spectrum (Vasilyev &

Goldstein 2004) and that the shape is often supposed constant during simulations. Then

TCE are defined by :

9 0¢

TCE[¢]| = — — — 2.2

6= % -5 (22)

To obtain an expression for TCE it is necessary to change the non-uniform space
[a(t), b(t)] into a uniform mapping space [A(z,t), B(z,t)] with the change of variables :

_r-y _z—a(t) _x=b(t)
§= INCTk Az, t) = A )’ B(z,t) = A1) (2.3)
Then the filtering process can be rewritten :
_ B(z,t)
Bat)= [ G0 ols - Al e (2.4
A(z,t)
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And if ¢(z — A(z,t),t) can be expanded in Taylor series :

el kk k ok
bz - A, et = 3 LS @IE T, (25)

k! ik
k=0 0

Introducing the filter moments M(¥) :

B(z,t)
MOy == [ G a0 ¢t (26)
Azt)
¢ can be expressed as a series expansion of spatial partial derivatives of ¢ :
— 2 (—1)FAR (2, t ok
3ot = =y VD pw oy T (2.7

k=0

The series’ convergence in Eq. (2.5) and Eq. (2.7) has been discussed by Vasilyev (Vasi-
lyev et al. 1998). Using the fact that turbulent flows have a bounded spectrum, the au-
thors have demonstrated that the convergence of Eq. (2.5) is absolute and thus uniform
even if A is spatially varying. They have also proven that Eq. (2.7) converges for ar-
bitrary A if the filter has a finite support. If the filter has an infinite support but the
filter moments do not grow faster than factorial (e.g. the Gaussian filter) then the series
converges provided that A is less than a number of Kolmogorov scales. Finally if ¢ is
spectrally bounded then 0¢/dt is also spectrally bounded and Eq. (2.7) can therefore be
used to reformulate TCE :

0k
teelg) = -3 S (st om® e 258 - 2 (st gm0 30|
= (2.8)
ok k
TCE[) = 3 ¢ kl!) %(Ak(m,t)M(’“)(m,t)) % (2.9)
k=1

In Eq. (2.9) the filter width A(z,t) is a function of time and of the Eulerian ab-
scissa z. But A(z,t) is generally a function of the local cell volume and on deforming
grids the cells are moving and stretching. It is therefore more convenient to introduce
the Arbitrary Lagrangian-Eulerian (ALE) coordinate X (z,t) to express the filter width
Az, t) = 0(X,¢). If 6(X,t) is equal to the cell volume V,, (X, ¢) multiplied by a constant
factor then 0(X,t) can be written as a function of cell-volume spatial variations and of

the mean deformation rate V - X :

OA, 98 (X(z,t),1) 85 —
Sp@t) = Tt = Xos +6(X, )V - X (2.10)

where the mean deformation rate is defined by :

— 1 8, . 1 / oX (2.11)

VA= 5o D T om0 Ly 00

In Eq. (2.10) the first right-hand term is due to the cell translation and the spatial
stretching and the second is due to the cell contraction or dilatation. Then TCE can be
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decomposed into three different contributions :

NS o b S S WY AL
TCE[¢] = (V X)I; o) MB (z,t) 5
& k(s(k 1) 86 5k¢
#X Y S g MY e g
o (=Dkk gMB ok
+,§ A TG 212

The first right-hand term arises from the cell temporal stretching. Its sign depends on the
deformation type : contraction or dilatation. The second term is a spatial commutation
error multiplied by the translation speed of the cell. This term is zero on uniform grids
and when the mesh is not uniform it can be treated using a spatially commutative
filter (Vasilyev et al. 1998; Marsden et al. 2002; Haselbacher & Vasilyev 2003). Finally
the third term is due to shape variations. For example if during a simulation the filter
shape changes from top-hat to Gaussian it will produce TCE through this third term.
For simplicity the filter shape is assumed constant throughout the computations. The
term of interest is therefore the first one which directly depends on the deformation rate
of the combustion chamber.

3. Three dimensional derivation for structured grids

The TCE analysis of Section 2 can be performed in a very similar manner for multi
dimensional structured grids because a filter width in each main direction can be easily
defined. Then the differences come from the Taylor series expansion or from the filtering
definition that becomes :

50 = s amwd oo ¢ (Rt sty @D

where X = (71,22, 23)7. Then the same change of variable A = (A;&)Y = (z; — ;)T
for the one dimensional derivation can be carried out :

Qe(x,t)
Using the gradient operator V, the Taylor expansion of ¢(x — A€, t) reads :
1\l
o= 86,0 = (G269 66,
1=0
oo o0 oo Z+J+k . ' -
:ggkg Z' o (A16) (Ae) (Asa)* VIVAVE 9(x,0)  (33)

The 3D filter moments are defined as follows :

MU (1) = / / / ey CEXOE & ehd’e (3-4)
£\X,

Finally the 3D equivalent of Eq. (2.9) which gives the Taylor expansion of TCE is
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written :

o (CD)TTE G r ka8 i i ok
TCE[¢] = ZZZW = [A AJAE MR GivIvE ¢(x,t) (3.5)

If the commutation errors that come from grid non-uniformity and filter shape varia-
tions are neglected then TCE can be reformulated as follows to have the mean deforma-
tion rate in each direction appear :

Torl =33 > P (7 K+ 570, + KT K

i=0 j=0 k=0

5i6305 MURMVIVIVE ¢(x,1) (3.6)

and the mean deformation rate of the cell w in the direction ¢ is :

—_— 1 0X;
V-Xizi/ - dz; 3.7
( ) wi(X,1) Juix,i) O (3.7)

For symmetric filters (M(%) = 0 if 4,j or k is odd) the TCE leading terms £ of
Eq. (3.6) are diffusive or anti-diffusive depending on the cell deformation :

L= (V-X); 62 M2 v24(x,1)
+ (V- X)2 05 MO0 Vig(x, 1)

+ (V- X)s5 62 M©02) v24(x, 1) (3.8)

4. Three dimensional derivation for unstructured grids

The derivation of TCE for unstructured grids is different compared to structured grids
because generally no main direction exists anymore. Only a unique filter width can be
defined and it becomes useless to take this width out of the filter definition G. The filter
width is therefore defined implicitely and the filtering convolution reads :

a0 = [[[ o GO 90y (4.1)

Then the filter width does not appear anymore in the variable change § = x — y to
switch to the mapping space :

= [[[  cexnox-gowe (12)
Qe (x,t)
This is also the case in the Taylor expansion of ¢(x — &, t) that reads :
P XX H—J-Hc
px—&H =YY Z @' o 686 ViVIVE 6(x.1) (4.3)
=0 j=0 k=0

Considering the same filter moment definition as Eq. (3.4) TCE for unstructured grids
are finally equal to:

oo oo 0 ’l-‘r]-‘rk 8

TCE[4] :ZZZ l, & [MW’“)} ViVIVE é(x, 1) (4.4)

=0 j=0 k=0
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FIGURE 1. Square-piston experiment sketch.

It is important to note that in Eq. (4.4) the different TCE contributions from the cell
deformation or from the filter shape variations can not be analysed separately like in the
structured case. They are all included in the filter moment derivative M%) /ot.

5. Evaluation of TCE on a piston-engine like configuration

The choice of a piston-engine like configuration to evaluate the TCE magnitude has
been guided by the following considerations :

e geometrical simplicity to avoid meshing issues,

o four-stroke operating mode to have a piston-engine like behaviour in terms of pres-
sure and density variations,

e availability of experimental measurements to validate numerical simulations.

5.1. Description of the square-piston experiment

The square-piston experiment has been designed and operated at Institut de Mécanique
des Fluides de Toulouse (IMFT) to study the compression and the disruption of tumble
vortices that occur in Spark-Ignition (SI) engines (Marc et al. 1997; Boree et al. 2002).
This device has been specifically designed to validate LES computations, offering many
Particle Image Velocimetry (PIV) measurements for different piston positions. This ex-
periment consists of :

e a square piston that has a sinusoidal motion,

e a rectangular intake channel that is also used as exhaust channel,

e a guillotine that closes the intake channel during compression and expansion strokes,

e a plenum at constant pressure connected to the intake channel.
A sketch of this experiment is given on Fig. (1). The position of the intake channel
on the chamber head ensures the generation of a strong tumble motion that is then
compressed when the guillotine is closed. Because of synchronisation issues between the
PIV device and the piston position, the crank speed is very moderate at 206 rotations per
minute (rpm). The compression ratio t. is equal to 4 and the stroke is 75 mm long. The
dimensions of the piston are 100x 100 mm? and those of the channel are 300 x 96 x 10 mm?>.
PIV measurements are done in the symmetry plane of the configuration, where two
velocity components are available. For each chosen piston position more than one hundred
instantaneous PIV shots are available. Mean and fluctuating fields computed from these
are also available.
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FIGURE 2. Square-piston experiment mesh comprising combustion chamber, intake channel
and plenum.

5.2. Large-Eddy Simulation computations
5.2.1. Code description

The AVBP code (http://www.cerfacs.fr/cfd/softwares.php) is used for the following
LES computations. This tool is co-developed by CERFACS and IFP and target applica-
tions are gas turbines, rocket propellers and piston engines. AVBP solves explicitly the
full compressible Navier-Stokes equations on unstructured hybrid 2D and 3D meshes.
To better predict the combustion process in industrial applications the heat capacities
of the flow can vary in function of temperature and composition. Sensible energy and
enthalpy of each species are therefore tabulated for a wide temperature range and mean
quantities (molecular weight, mean heat capacities, mean heat capacity ratio) are cal-
culated according to the species mixing. Both second-order and third-order convective
schemes (Colin & Rudgyard 2000) are available. These schemes and the NSCBC-based
boundary conditions (Poinsot & Lele 1992) have been improved (Moureau et al. 2004)
to deal with variable heat capacities.

AVBP offers different turbulent models such as the Smagorinsky model (Smagorinsky
1963) or the WALE model (Nicoud & Ducros 1999). Flame/turbulence interactions are
taken into account by the thickened flame model (Angelberger et al. 2000; Colin et al.
2000; Légier et al. 2000).

5.2.2. Numerical set-up

3D simulations have been carried out on relatively coarse grids, i.e. between 250000
and 300000 cells for the whole device (see Fig. (2)). Because of the combustion chamber
compression the grid connectivity has to be modified during the computations to keep
a reasonable mesh quality. At several times during the simulations cells are removed or
added, the mesh is remapped and the flow is interpolated from the old to the new mesh.
The number of connectivity changes is conditionned by the compression ratio as shown
on Fig. (3). It represents a mean cell width § = V /® as a function of the crank angle
before top-dead center (BTDC) during the compression stroke. The discontinuities on

both curves correspond to connectivity changes, which occur more often for ¢, = 10.

5.2.3. Validation of LES simulations

LES simulations are validated performing the comparison with PIV data of the square-
piston experiment. LES computations have been carried out with the Lax-Wendroff con-
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vective scheme, the Smagorinsky model and a simple logarithmic wall-law model. Six
consecutive LES cycles are averaged to obtain mean and fluctuation profiles. Results at
the half of the compression stroke (—90°BT D(C) are presented on Fig. (4) to Fig. (7).
Fig. (4) and Fig. (5) show the mean velocity profiles in the middle of the symmetry plane
whereas Fig. (6) and Fig. (7) represent resolved velocity fluctuations v’ in the same lo-
cation. Mean profiles are in good agreement with experimental data indicating that the
tumble intensity is well predicted. The fact that the maxima of fluctuations occur at the
center of the rotating tumble indicates that they are mainly due to the precession motion
of the tumble. This is reproduced by the LES findings.

5.3. Estimation of TCE
5.3.1. Filter choice for the TCE evaluation

As stated in Section 4 mesh cells do not have orthogonal main directions on unstruc-
tured grids and the filter can not be written as the combination of three filters in each
main direction. Different filters for unstructured grids are found in the litterature. For
instance filters that commute with spatial partial derivatives are based on weighting
functions of surrounding nodes (Vasilyev et al. 1998; Vasilyev & Goldstein 2004). Filters
have to satisfy several properties to be usable for LES :

e integral over the domain must be unity,

o filter shape has to be well defined and not to vary too much in space

e filter support has to be as compact as possible for practical calculation issues
The simplest filter for LES computations on unstructured grids is the Gaussian filter.
This filter needs a characteristic length that can be expressed as a function of the cell
volume A(x,t) = 6(X,t) = V3(X,t):

6\ 1 G+&+8

This filter satisfies M(©9:9) = 1 and since this filter is symmetric the first non-zero
moments are M (200 = A(0:20) = A(0.02) = A2/12,

5.3.2. TCE modeling

The only mean to evaluate exactly the TCE magnitude would be to perform a DNS
of the square-piston engine experiment. Since this is not feasible a TCE model for the
momentum equation is proposed and evaluated on LES simulations. TCE are indeed ap-
pearing on the whole Navier-Stokes equations but without combustion, spatial variations
of density p and total energy pE are small compared to momentum pu variations.

The simpliest TCE modeling is to keep only the leading terms of Eq. (4.4). This
is reasonable since the main LES hypothesis requires that the filter width should be
noticeably smaller than the integral length scale. In this case the higher-order terms in
Eq. (4.4) are negligible compared to the leading terms. For the Gaussian filter defined
on Eq. (5.1) the proposed model is thus :

1  0A

Then if the filter width is a function of the local cell width it is more convenient to do
the same decomposition as Eq. (2.10) :

9
12

V- (Vo(x,1)) (5-2)

TCE[4] = (x : va)v (Vé(x,1) + f—;(éﬁ)v- (Vé(x,1)) (5.3)
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FIGURE 8. V - X as a function of crank angle. —o—: 206 rpm , t. =4 ; ——: 206 rpm ,
te =10 ; —=—: 3000 rpm , t. =4 ; —=—: 3000 rpm , t. = 10.

The first term of Eq. (5.3) is a spatial commutation error that vanishes when the cell
width § is uniform. Only the second right-hand term is of interest in this study. This

term is a diffusion or anti-diffusion term depending on the sign of the factor 62(V - X)/36
that has the dimension of a viscosity. In this factor 42 is almost constant during the
simulation thanks to connectivity changes as shown on Fig. (3). The mean deformation

rate V - X depends only on engine parameters such as crank speed and compression ratio
t.. This dependence is illustrated on Fig. (8) for a simple sinusoidal law during intake
(8 € [—360°,—180°]) and compression (§ € [—180°,0°]) strokes. This rate expressed
as a function of the crank angle scales linearly with crank speed and non-linearly with
compression ratio.

5.3.3. Ewaluation in the code

TCE are evaluated in the LES code only for the momentum equation. As seen in Sec-
tion 5.3.2 TCE on unstructured grids with a Gaussian filter are diffusive or anti-diffusive.
It means that the effective momentum diffusion in a LES simulation will be the sum of
the molecular, turbulent and TCE diffusion. Since momentum diffusion corresponds to
kinetic energy dissipation a good mean to compare the turbulent diffusion to the TCE
diffusion is to study the ratio R between the resolved kinetic energy dissipated by TCE
and by molecular plus turbulent diffusion :

P o= o
(s - (gv . X)V (Vpus))
_ 6’77'1']' _ 67?”

<uz Bzz:j + 6£L'j >

R = (5.4)

where the brackets <> correspond to the spatial averaging operator. In Eq. (5.4) the
different terms are not proper dissipation rates but the sum of kinetic energy dissipation
rates plus kinetic energy transport by momentum diffusion :
67’,’j ou; 81%777‘
i =(——Tij) + (2 5.5
< 16$j> < 81.], 1.7> < 81.], > ( )
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FiGURE 9. Ratio R of TCE and molecular plus turbulent dissipations as a function of crank
angle. ——: 206 rpm , to =4 ; —e—: 206 rpm , t. = 10 ; —=—: 3000 rpm , t. = 4 ; —=—:

3000 rpm , t. = 10.

The second right-hand term of Eq. (5.5) is a boundary term that is nearly zero and R is
therefore a dissipation ratio.

Four single-cycle simulations have been performed to evaluate TCE and the effect of
the crank speed and of the compression ratio. Results are presented on Fig. (9). The
first remark is that the TCE levels are small compared to molecular plus turbulent
dissipation. A maximum of about 1.2% for t. = 4 and 2.5% for ¢, = 10 is found at the
end of the compression stroke. The second remark is that the evaluated ratio R does only
marginally depend on crank speed. It means that TCE and physical dissipation scale in
the same manner relatively to crank speed. This is not the case for the compression ratio,
leading to some differences at the end of the compression stroke when almost all resolved
eddies have been dissipated. Compared to the numerical dissipation of numerical schemes
and other uncertainties, TCE can therefore be neglected for applications that operate in
about the same range of parameters.

6. Conclusions

TCE have been derived for structured and unstructured grids and models have been
proposed. These models have been evaluated on a square-piston experiment and it was
shown that kinetic energy dissipation due to TCE can be neglected compared to the
turbulent dissipation in piston-engine like applications. It should be underlined that in
piston-engines the flow and the mesh deformation are generated by the same phenomenon
that is the piston motion. But in some other cases as flame computations with automatic
local mesh refinement, TCE are not correlated anymore to local turbulence and they may
not remain negligible.
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