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Filtered particle tracking for dispersed two-phase
turbulent flows

By J. Pozorski 1, S. V. Apte AND V. Raman

Turbulent particulate flows are considered in the Eulerian-Lagrangian approach where
the large-eddy simulation of the carrier phase is coupled with the particle tracking.
The issue addressed here is the impact of the subgrid scale turbulence on the statistics
of particle motion, including preferential concentration. This is accomplished through
a priori analysis of DNS data in the case of forced isotropic turbulence. A model for
filtered particle tracking (FPT) is then proposed. The model aims to reconstruct the
residual (subgrid scale) fluid velocity along particle trajectories. The computation results
serve to appraise the model through comparisons with available DNS reference data on
preferential concentrations for a selection of particle inertia parameters.

1. Introduction

Study of two-phase flows with dispersed droplets or solid particles constitutes an im-
portant activity in the realm of turbulence. There are variety of theoretical and modeling
issues regarding this class of flows, both in the two-fluid and the trajectory approach (e.g.,
Simonin 1996; Minier & Peirano 2001). Practical applications involve environmental stu-
dies, chemical and process engineering, as well as power engineering, including wet steam
flows and combustion of solid or liquid fossil fuels. A relevant industrial example is fuel
injection in Diesel engine or a gas turbine combustor where the dispersed phase is present
in the form of small droplets (Apte et al. 2003). In the paper, the dispersed phase will be
assumed dilute; consequently, the one-way momentum coupling is adequate and particle
collisions can safely be neglected. Yet, for a sufficiently high load of the dispersed phase,
the two-way coupling needs to be accounted for in the momentum and energy equa-
tions; moreover, for high particle number densities, the interparticle collisions will affect
their dynamics. Additional complexity to the physical picture will be added through the
interphase mass and energy transfer in the case of evaporating droplets or volatilizing
solid particles. Here, we concentrate on the dynamical aspects only, and precisely on the
impact of turbulence on the statistics of the dispersed phase.

The Lagrangian stochastic approach has initially been proposed in its natural context
for modeling and prediction of turbulent diffusion and dispersion. In the framework of
statistical RANS (Reynolds-averaged Navier-Stokes) description of turbulence, various
random walk models for the diffusion of fluid particles and the dispersion of solid particles
in two-phase flows have been proposed since then, cf. Stock (1996), Pozorski & Minier
(1998), Mashayek & Pandya (2003) and references therein. Following rapid progress in
large eddy simulation (LES), the method has also been used with success to compute
two-phase dispersed flows. The feasibility of LES to study preferential concentration
of particles by turbulence (Wang & Squires 1996) and to compute flows with two-way
momentum coupling (Boivin et al. 2000) has been reported.
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Generally speaking, some terms in the filtered LES evolution equations have to be
modeled altogether, because relevant physical processes occur at unresolved scales; an
example is the source term, due to chemical reactions, in mass and energy balance equa-
tions. Some other are partly resolved source terms due to the presence of particles: mass
transport (evaporation/condensation), momentum coupling, and energy balance (heat-
ing, latent heat of evaporation). The issue of residual (unresolved, subgrid scale) velocity
field and its influence on the statistics of particle motion and their preferential concen-
tration has received only limited attention in the literature. It is revisited here with a
priori tests using filtered DNS velocity fields.

The first aim of the paper is to study the impact of LES filtering on the particulate
phase. It will be shown to be non-negligible for a sufficiently coarse LES mesh (judged by
a residual kinetic energy content). A quantitative assessment of this effect is accomplished
through the statistics of preferential particle concentration: the probability distribution of
particle number density and the radial distribution function of the interparticle distance.
The second aim of the paper is to develop a filtered particle tracking (FPT) model for the
LES of the dispersed phase. The model is meant to reconstruct statistically the residual
flow field along particle trajectories. First computation results are reported for the forced
isotropic turbulence case.

2. Turbulent dispersion of particles

To determine the evolution of a set of non-interacting solid particles in turbulent flow,
particle location x, and its velocity U, should be known. Another variable of importance
for further considerations is the fluid velocity U* “seen” or sampled by the particle as
it moves across the flow. In terms of the instantaneous Eulerian velocity field U(x,t)
of the carrier (fluid) phase, we have U* = U(x,,t). Respective governing equations for
particles are:

dxp

—=0U 2.1

dt D> ( )
du, U*-1U,

= . 2.2

dt Tp te (2:2)

In general cases (Maxey & Riley 1983), the particle equation of motion (2.2) includes the
pressure-gradient, drag, added-mass and Basset forces. Yet, for particles much heavier
than the carrier fluid, p, > ps (ps and p, stand for fluid and particle densities), an
acceptable approximation is to retain only the aerodynamic drag and external force
terms g (if relevant). The drag term is written using the particle relaxation time 7.

Obviously, modeling of the fluid velocities sampled by particles is no longer needed
when the carrier phase is fully resolved, possibly with source terms that represent the
exchange of mass, momentum, and energy between the particles and the flow. This is the
DNS with particle tracking where U* is simply the instantaneous fluid velocity interpo-
lated at the point-particle location. Since the number of degrees of freedom in turbulent
flows scales as Re®/4, this approach is feasible only for simple flow cases at relatively
small Re. Nevertheless, the DNS studies are extremely valuable for model testing, as
evidenced in the following sections: preferential concentration patterns, first observed
in experimental studies, are investigated (Sec. 3.3); the impact of filtering on particle
statistics is assessed (Sec. 3.4). For a finite-size particle (comparable to the Kolmogorov
scale i or larger), its dynamics, fluctuating lift and drag forces can be computed from
“true DNS” studies (Bagchi & Balachandar 2003; Burton & Eaton 2003).
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Despite the growing importance of DNS, a reduced (or contracted) description involv-
ing far less degrees of freedom is still used for practical, “real-life” flow cases. In particular,
RANS remains a standard engineering approach. One of the difficult modeling aspects of
turbulent dispersion in RANS is the account of the fluid velocity statistics seen along the
solid particle trajectories. They unavoidably differ from the “pure” Lagrangian statistics
because of the particle inertia and the external force (such as gravity) effects. Stochastic
models based on the Langevin equation have been proposed to account for these effects
(Pozorski & Minier 1998; Minier et al. 2004). Alternatively, the PDF formalism, initially
developed in turbulence modeling (cf. Pope 2000), and particularly useful in turbulent
combustion (Fox 2003), has been extended to turbulent dispersion issues, starting with
the kinetic equation of Reeks (1992) and further developed by Pozorski & Minier (1999).

In general terms, a physically-sound reconstruction of instantaneous fluid velocity
“seen” by the particles U* has to be performed out of limited information available (such
as the fluid mean velocity (U) or its turbulent kinetic energy). A classical approach goes
through the decomposition U* = (U) 4+ u* with the mean fluid velocity at the particle
location, {(U)(x,,t), determined from the Eulerian RANS solver for the carrier phase.
Various stochastic models have been proposed to represent the fluctuating fluid velocity
u* sampled by particles. They often are extensions of fluid diffusion models, developed
in the context of environmental and atmospheric studies, but can suffer from spurious
drifts if improperly devised (MacInnes & Bracco 1992). A sound alternative seems to be
a stochastic model for U* (Pozorski & Minier 1999; Minier et al. 2004).

In the context of RANS, there are no instantaneous flow structures resolved; conse-
quently, there is no preferential concentration (which, by definition, denotes correlation
of particle locations with certain flow structures). In RANS of non-homogeneous turbu-
lence, spatial gradients of particle number density can develop (even for initially uniform
particle distribution) because of the so-called turbophoresis effect. It consists in the net
particle displacement in the direction of decreasing turbulence intensity (for pp, > py).

In LES, the resolved (large-scale) part of the instantaneous flow field can readily be
interpolated to particle locations. The major issue is now to determine whether the re-
maining (residual or subgrid-scale) part of the flow velocity field can have a noticeable
influence on the particulate phase. In most studies reported so far, this influence has been
neglected and justified by a low residual energy content. A LES study of particle-laden
channel flow was reported by Wang & Squires (1996). Analysis of their data (Fig. 4 there)
shows that the ratio of kg to u? remains small throughout the viscous sublayer (roughly
10%). Armenio et al. (1999) computed channel flow with the one-way momentum cou-
pling. Particles were tracked in a fully-resolved (DNS) velocity field and in filtered fields
where up to 20% of the turbulent kinetic energy remained unresolved depending on the
filter size; however, there was no filtering in the wall-normal direction. They performed
then a corresponding LES with the same filter width. In all cases, the r.m.s. particle
dispersion was found to be only slightly affected by the incomplete resolution.

Okong’o & Bellan (2004) performed an a priori analysis of a dispersed two-phase flow.
They distinguished four possibilities for the reconstruction of SGS fluid velocities “seen”:
ideal model (velocity U; from DNS data), baseline model (velocity U; from LES), random
model (velocity reconstructed as U; + o0& where &; are Gaussian random numbers) and
deterministic model (not explained here). The eddy life-time and interaction-time model
known in RANS has been extended to LES by Oefelein (cf. Segura et al. 2004) and
successfully applied to the channel flow. Also Sankaran & Menon (2002) proposed a
simple FPT model, yet its impact on final LES results has not been reported.
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FIGURE 1. Computing the particle number density and the radial distribution function.

3. Preferential concentration of particles in turbulent flows
3.1. Effect of turbulent structures on particles

Instantaneous structures of the turbulent velocity field influence the motion of heavy
particles (droplets), depending on their inertia. A convenient definition of the Stokes
number goes here through the normalization with the Kolmogorov time scale: St = 7, /7.
Particles of St = O(1) tend to correlate with certain eddy structures and this leads to
the effect of preferential concentration, i.e. accumulation of particles in flow regions of
low vorticity and high rate of strain (streams, convergence zones); cf. Eaton & Fessler
(1994) for review. Studies reported in the literature include DNS of isotropic turbulence
(Squires & Eaton 1991; Wang & Maxey 1993) as well as LES (Wang & Squires 1996).

The preferential concentration changes the physical picture of particulate flows in
several ways: it affects the particle deposition on walls (Uijttewaal & Oliemans 1996); it
leads to an increase of interparticle collision rates and, possibly, coalescence in a dense
two-phase flow regime (Reade & Collins 2000); it influences the particle settling velocity
in an external (gravity) field (Wang & Maxey 1993).

3.2. Quantifying preferential concentration

Various measures of preferential concentration have been established in the literature,
cf. Hogan & Cuzzi (2001) for a comparative study and sensitivity tests with respect to
the Reynolds number and bin size. Preferential concentration can be quantified by the
PDF of particle number density based on bin counting, cf. Fig. 1(a). The distribution of
particle number n = Np¢ per bin (or per cell), fg(n), will depend on St and on the bin
size. For a random (uncorrelated) distribution of particles in the domain, the PDF is the
discrete Poisson distribution, fp(n), with the parameter being the mean of the number
density (exactly: the average number of particles per cell, (Npc))

e~ A

A natural measure of the non-uniform particle concentration is the deviation of the

actual (measured) number density from the random one (Wang & Maxey 1993):

D=7 [fa(n) - fem)] . (3-2)
n=1

Another measure of preferential concentration is
sS—S8p

D =
A
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FIGURE 2. Snapshots of particle positions from DNS; runs with various values of the particle
inertia parameter: a) St = 0.01, b) St = 0.2, ¢) St =0.7,d) St =1, e) St =2, f) St = 4.

where s is the standard deviation of the actual number of particles per bin, and sp = A!'/2
is the standard deviation of the corresponding Poisson distribution; normally, D > 0.

Yet another possibility to quantify the non-uniform particle concentration comes from
the two-point spatial distribution function. For a statistically isotropic and homogeneous
system of particles, Reade & Collins (2000) introduced the radial distribution function
(RDF) of particle location, g(r), derived from the two-point RDF f()(r) where r =
|x2 — x31| for particles located at points x3 and x;, cf. Fig. 1(b). Basically, g(r)dr is
the number of particles located in a spherical cell (r,r+dr) around x;, divided by the
expected number of particles if their distribution were uniform, and averaged over first-
particle locations x1. The RDF is close to unity for a uniformly distributed particle
system. Moreover, g(r) can provide a clear estimation of the characteristic length scale
of preferential concentration (if any).

3.3. DNS of particle-laden, forced isotropic turbulence

The DNS of forced isotropic turbulence at Rey = 40 has been undertaken on a 963 grid.
The particle tracking has been performed in the DNS velocity field with the assumption
of one-way momentum coupling. This has been done for a selection of particle inertia
parameters (the Stokes number). The resulting snapshots of particle locations are shown
in Fig. 2. As readily noticed, the preferential concentration of particles is most visible for
0.2 < St < 2, in agreement with earlier observations of Squires & Eaton (1991).

The bin counting has been applied to particle locations in 3D with the bin size varying
from the cell size of the DNS (Apin = A) up to 1/6 of the domain size (Apin = 324).
As evidenced by the profiles of fp in Fig. 3, the random particle pattern (the Poisson
distribution) is noticed for the smallest particles tracked (St=0.01) for all bin sizes. Also
for the largest particles (St=4) the pattern is basically random, specially for smaller bin
sizes. Intermediate-size particles tend to deviate most from the random distribution. As
noticed from Fig. 3(d), the limit behavior for large (Np¢) (larger bins) is well reproduced,
i.e. the Poisson distribution, Eq. (3.1), tends to the Gaussian PDF, N/(\, A1/2).

For particles in isotropic turbulence, D computed from Eq. (3.2) is shown in Fig. 4(a);
the profile of D, Eq. (3.3), is shown in Fig. 4(b). Both confirm the visual impression from
Fig. 2 that the maximum of preferential concentration occurs for particles of St = O(1).
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FIGURE 3. PDF of particle number density for different bin sizes: a) A, b) 2A, ¢) 4A, d) 16A.
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FIGURE 4. Measures of preferential concentration: a) difference of PDF's of particle number
density (actual and Poisson), Eq. (3.2); b) difference of standard deviations, Eq. (3.3).

To illustrate how the RDF g(r) works in practice, we considered three simple, predeter-
mined particle patterns in 3D (Fig. 5): random, ordered with a short length scale [, and
ordered at a larger scale L (resulting in a checkered pattern). As quantified by the RDF
in Fig. 6(a), neither random nor short-scale ordered pattern (I < Ay;,) exhibit any pref-
erential concentration. For the checkered pattern (L > Ap;,), the non-uniformities are
reflected in the RDF; moreover, the characteristic scale of the pattern (~ L) is retrieved
from the plot. Then, we repeated the procedure for the particles moving in the DNS flow
field. The plots in Fig. 6(b) show a departure from the uniform (random) distribution of
particle locations in space, most pronounced for 0.2 < St < 2. The characteristic length
scale of the pattern is about 107.
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FIGURE 7. RDF of particles tracked in a filtered DNS field. (a) St = 0.7; (b) St = 2.0 .

3.4. A priori tests of preferential concentration: particle tracking in filtered DNS field

To the best of the authors knowledge, the effect of LES filtering on preferential par-
ticle concentration has not been studied so far. An interesting finding results from an
a priori test as follows. The instantaneous DNS velocity field has been filtered so that
kaitered = 0.65kpns- Then, the particles have been tracked in a smoothed velocity field.
To determine the impact of smoothing on preferential concentration, the statistics of the
particle number density in the physical space have been gathered. The pattern of prefer-
ential concentration is indeed modified by filtering. As noticed from the computed RDF
of particle locations (Fig. 7), in filtered velocity field particles behave as though their ef-
fective Stokes number were larger; yet, short-scale correlations remain strong. This gives
us some hint as to the construction of a FPT model. The snapshots of particle locations
moving in the smoothed (LES-like) velocity field are shown in Figs. 8(b) and 9(b).
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4. Reconstructing residual fluid velocity field along particle paths
4.1. Reasons behind FPT modeling

In LES, by definition of the method, a major part of the turbulent kinetic energy should
be resolved (say, 80%, Pope 2000). Yet, this can be estimated only in simple cases where
there is a DNS study at hand. For practically-relevant computations, the resolution often
varies in space. The LES is known to face particular difficulties in wall-bounded flows,
since the complete near-wall resolution becomes costly as the number of grid nodes scales
roughly as Re!® (cf. Pope 2000) and wall-modeling (or hybrid RANS/LES approach) is
preferred. Also in this case, the SGS energy content may be considerable.

Regarding the LES of two-phase dispersed flows, several new issues appear. A concern
about LES with the two-way coupling (of mass, momentum, energy) relates to the mod-
eling of carrier phase source terms due to particles. Another concern, of importance here,
is the impact of unresolved (subgrid-scale) flow quantities on particles: their dispersion,
preferential concentration, deposition on walls. It can vary depending on the particle in-
ertia parameter. In particular, for evaporating spray flow, the droplets unavoidably enter
the size range where there is an impact from the flow SGS. In a numerical study of near-
wall turbulence, Uijttewaal & Oliemans (1996) pointed out to the significant deviation of
their LES results on particle deposition on the wall with respect to reference data. The
LES predicted the particle deposition coefficient to be one order of magnitude smaller
than the value found in experiment and DNS. A probable reason was the insufficient
resolution of near-wall eddies responsible for deposition of smaller particles, and a need
of a model to account for subgrid scale effects on particles was suggested.

4.2. Requirements for a FPT model

To specify criteria of a good SGS dispersion model, let us start from the well-established
case of single-phase LES. Arguably, a sound model for the SGS stress should simulate the
effects of small eddies without altering the motion at large-eddy scales. For particle-laden
turbulent flows, but still with the one-way coupling of mass, momentum, and energy (i.e.,
no evaporation/condensation, light loading, no heat transfer), a pre-requisite for a good
SGS dispersion model, suitable for FPT, is that particle characteristics should remain
close to those from a fully-resolved computation. They include the statistics of instanta-
neous particle locations (preferential concentration, if any), averaged locations (e.g., the
r.m.s. particle position in line-source dispersion, the concentration profile in jet or mixing
layer), and velocities (turbulent kinetic energy, Lagrangian velocity autocorrelation).

The constraints to be satisfied by a FPT model are: (i) in the limit of fully-resolved
computation (LES becomes then DNS, ks; — 0), the model should have no effect on
particle motion; (ii) in the limit of small particles (7,/7y — 0) the model should boil
down to the prediction of fluid diffusion; the velocity filtered density function approach
(VFDF) of Gicquel et al. (2002) may possibly serve as the limit case to compare with;
(ili) in the limit of large particles (7,/7y — oo) the model should have no short-time
effect on particle motion; (iv) in the presence of external force field (gravity), the model
should possibly take it into account; (v) in the limit of under-resolved velocity field (LES
becomes then RANS, ks, — k), the particle turbulent dispersion should be fully modeled;
(vi) for pairs of neighboring particles (located within the same cell or closer to each other
than O(Ay)), the model should possibly account for relative dispersion effects.

Yet, we perceive the constraints (i)—(iii) as really important for FPT models in the
context of LES. The effects of external fields (iv) are, apparently, not well known; the
limit of RANS (v) is unlikely to be approached in real-life LES computations. Concerning
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the relative dispersion issue (vi), it cannot be accounted for in the one-point approach
that is of interest here because of computational efficiency.

An essential ingredient of FPT models is the residual kinetic energy, ksz say. It de-
termines the level of residual velocity fluctuations, also those “seen” by particles. In a
particular test case considered here (forced isotropic turbulence), kg, can readily be found
from the DNS data (raw and filtered). In general case, the subgrid kinetic energy of the
flow can be estimated from its transport equation. Wang & Squires (1996) and Sankaran
& Menon (2002) recall the kg; equation based on the Schumann non-equilibrium model.

4.3. Simple FPT model for locally homogeneous and isotropic turbulence

A reasonable assumption about LES is to consider the residual turbulent motion as locally
homogeneous and isotropic. Then, the fluid velocity “seen” by particles is computed as
U = Ui(xp,t) + u?, i.e. the sum of the filtered LES velocity U; interpolated at the
particle location and the residual velocity ”seen” by the particle.

Crucial ingredients of an FTP model are the SGS turbulent kinetic energy of the fluid
and a SGS time scale. By analogy to modeling turbulent diffusion of fluid elements in
the context of statistical (RANS) description (Pozorski & Minier 1999), we assume that
u* is governed by the Langevin equation

* 202
duj = — 2L dt + | = dWw, (4.1)
TL TL

where o, and 77 stand for the respective velocity and time scales of residual motions
“seen” by the particle; moreover, let 75z denote the time scale of residual motions. They
are estimated from

g

2

Osg = 1/ sksg » 7L = f(Tog: 79, 0sg/9) , Tsg =C

3 f_ . (4.2)

ks

)
5]

The model constant C' = (O(1) accounts for the uncertainty concerning the time scale of
the residual velocity autocorrelation. The prediction 77 = 7y, is expected to work well for
small St (also in the limit case of fluid diffusion). For larger St, we tentatively propose an
extension of the model for RANS particle dispersion (Pozorski & Minier 1999) drawing
on the Csanady expressions to account for the crossing-trajectory effect. The time scale

will now differ in the directions parallel and perpendicular to the relative velocity U—U,

* Tsg * Tsg
T = —e———, T[ =
Ll 1+ p2e2 Lt /1+ 4522

where ¢ is the normalized drift velocity determined from ¢ = |U — U,|/os,. In the
context of RANS, 3 is the ratio of Lagrangian to Eulerian time scales § = T, /Tg; for
SGS velocity field we assume g = 1.

In practical implementation, a discrete version of the model (unconditionally stable,
first-order accuracy in time) becomes

(4.3)

wf ) = ™ 4 obg (4.4)

where At = t(»+1)—¢(") i5 the time interval and &; are random numbers from the standard
Gaussian distribution, & € N(0,1). The coefficients a and b are given by the explicit
solution of the stochastic differential equation (SDE), Eq. (4.1), with frozen coefficients
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FIGURE 8. Snapshots of particle positions; runs for particles of St = 0.7. a) DNS; b) a prior:
LES with with no FPT model; c¢) a priori LES with FPT model and C=0; d) with C=0.05.

over a time step At:
a=e AL b=ogV1—e 2AUTL (4.5)

In the particular example of Eq. (4.1), which is a SDE with constant coefficients, the

solution provided by Egs. (4.4) and (4.5) is exact. However, the construction of higher-

order numerical schemes for general (variable coefficients) SDEs remains an open issue.
Equation (4.4) can be further simplified to the Euler scheme

) (1__:5) W™ g |22 e (4.6)
TL TL

Yet, in contrast to formulation (4.4)—(4.5), discretization (4.6) does impose a time step
restriction At < 77 because of stability concerns.

It may be interesting to note that in the limit of At > 77 the scheme (4.4) boils down
to generating a series of independent successive velocities u*, i.e.

wr(n D) — Ose - (4.7)

However, for a physically-consistent use of Eq. (4.7), it is imperative that the time inter-
vals for generating a series of independent velocity realizations be 277 in order to preserve
the correlation time scale (cf. Pozorski & Minier 1998).

4.4. First results of the FPT model

We have tested the FPT model (4.1) in a priori LES computations of forced isotropic
turbulence for the same conditions as those described in Sec. 3.3. The computational
results for two values of the Stokes number and some choices of the model constant are
shown in Figs. 8 and 9. The impact of the residual velocity field, reconstructed in FPT,
is readily noticed. As expected, the one-point stochastic model introduced here has a
“randomizing” effect on particle locations. For particle sizes larger than that of maximum
preferential concentration effect (roughly St &~ 1 in our case) the randomizing effect of
small scales is lost (the picture of preferential concentration becomes overly sharp), so
the model is meant to restore it, cf. Fig. 9. In the case of smaller particles that are most
influenced by smaller eddies and correlated on a shorter length scale, it is shown in Fig.
8 that the filtering does an inverse effect, i.e. it partly kills this short-scale preferential
concentration (the picture of preferential concentration becomes somewhat “blurred”),
so a potentially successful model for this case should rather be of an “antidiffusive”
character (arguably, scale-similarity arguments can be used for its construction).
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FIGURE 9. Snapshots of particle positions; runs for particles of St = 2. a) DNS; b) a priori
LES with no FPT model; ¢) a priori LES with FPT model and C=0.05; d) DNS for St = 4.

5. Conclusion and future plans

In the present paper, we have shown the impact of LES filtering on particle motion
in turbulent flows. In particular, the particle preferential concentration patterns change.
A stochastic model has been proposed to reconstruct the residual velocity field along
particle trajectories. First results with the model seem encouraging. A lingering question
as to FPT is that it is only a single-realization (one-particle) approach. The statistical
interpretation of the model has to be thought over, also in the context of parcels (rep-
resenting many solid particles). Further developments are warranted for more general
flow fields. Arguably, an improved model should consist of a random ingredient (since
the details of residual fluid motion are unknown) and possibly also of a deterministic
ingredient, dependent on the structure of the resolved field and justified by the hope
that the largest unresolved scales are in a sense similar to resolved ones.

A further-term objective is to unify the LES/FPT approach for the dispersed flows,
presented above, with the LES/FDF approach for flows with scalars, possibly reactive,
developed by Colucci et al. (1998). This should ultimately provide a physically-sound, yet
efficient, tool for the computation of dispersed turbulent two-phase flows with chemical
reactions (spray combustion). In this formulation, the vector of stochastic variables as-
sociated with particles will include x,, U,, U*, dp, T, and chemistry-related quantities.
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