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Toward improved boundary conditions for the
DNS and LES of turbulent subsonic flows

By R. Prossert{ and J. Schliiter

A procedure is outlined for the specification of time dependent boundary conditions,
suitable for viscous, conducting flows. The method is based on a low Mach number
asymptotic expansion of the governing equations and the characteristics derived from
them. By consistent matching of the terms in the expansions, it is possible to develop
inflow and outflow conditions that are transparent to acoustic waves, yet retain the
flexibility to allow for complex flow structures such as turbulence to enter or leave the
computational domain. The boundary conditions developed here represent a midway
point in the evolution of this approach, which was originally developed for Euler flows,
and which is evolving toward treatment of fully reacting viscous simulations.

1. Introduction

The specification of appropriate boundary conditions for compressible, turbulent re-
acting flows is an open problem. Even for simplified flows, such as those without thermal
conduction or chemical effects, the structure of a turbulent flow is complex. The specifi-
cation of time dependent boundary conditions for such flows poses a challenge to many of
the currently available methods, which themselves are essentially based on the linearized
Euler equations.

Broadly speaking, boundary conditions fall into two categories: global methods and
local methods. In the former category transforms are taken of the governing equations,
and the boundary conditions are expressed in terms of a non-local asymptotic expression
designed to admit the passage of wave-like phenomena (Tsynkov 1998). The family of
global methods are difficult to implement in general flows however, and there are still
significant uncertainties regarding their application to flows with chemical reactions and
heat release. The second family of methods obtain boundary conditions by exploiting
information derived from the local behaviour of the flow. A number of authors have used
local methods to derive non-reflecting boundary conditions, such as the PML approach
(Hu 1996; Hesthaven 1998) and the family of schemes based on the method of charac-
teristics. This latter class is particularly popular, and although originally designed for
the linearized Euler system (Thompson 1987; Vichnevetsky 1986; Hedstrom 1979; Rudy
& Strikwerda 1981; Rudy & Strikwerda 1980), the methods have been developed con-
siderably. The culmination of these efforts is found in the Navier-Stokes Characteristic
Boundary Conditions (NSCBC) and the Local One Dimensional Inviscid (LODI) ap-
proaches developed by Poinsot and Lele (Poinsot & Lele 1992). This method has been
demonstrated in a number of challenging flow cases, such as the free shear layer simula-
tions of Grinstein (Grinstein 1994), for the short time integration of low Mach number
flows. The NSCBC approach has been further modified for reacting flows by Baum,
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Poinsot and Thévenin (Baum et al. 1994; Thevénin et al. 1996), and more recently by
Sutherland and Kennedy (Sutherland & Kennedy 2003). Recently, Nicoud (Nicoud 1999)
has developed the LODI approach to provide a promising avenue toward the generation
of acoustically transparent inflow conditions. In the LODI approach, the hyperbolic com-
ponents of the governing equations are decomposed into characteristics at the computa-
tional boundary. If the required boundary specification is to be non-reflecting, then the
amplitude time variation of the incoming characteristics are set to zero (Hedstrom 1979).
The LODI mechanism provides a means of specifying Dirichlet or Neumann boundary
conditions via the balancing of the incoming and outgoing characteristics. While ele-
gant, the LODI/NSCBC approach has the drawback that (at this time), the scheme still
prevents the specification of acoustically transparent, non-trivial inflow boundary condi-
tions. Simultaneously, the method has some difficulty in representing the pressure field
accurately when turbulence crosses the computational domain (Prosser 2004). The work
described here builds on results obtained previously for inviscid flows (Prosser 2004), and
aims to produce non-reflecting boundary conditions for non-reacting viscous, conducting
flows. The extension of the method to the viscous reacting flow case will be described in
a future paper.

2. The governing equations

In a domain 2 C R", the compressible Navier-Stokes equations can be written as
- n
) (U) +3 8, (F) =C, (2.1)
i=1

where U is the n+2 dimensional vector of conserved variables, F; is the n+2 dimensional
flux vector and C is a vector containing diffusive fluxes, reaction rates and other algebraic
terms.

For a boundary whose normal points in the x, direction, the NSCBC approach de-
composes the a—direction flux term into

8, (6) + PSS A0Sads, (U) + éa@. (F;) = C. (2.2)
i:,a_éa

In equation system 2.2, U is a (non-unique) vector of primitive variables, P =Uy, A, is
the diagonal matrix of eigenvalues of P ((Fy)y;) , and S, is the matrix of left eigenval-
ues of P71 (Fy)y; - There is no summation over Greek indices. The equivalent primitive
formulation to equation system 2.2 is

n
0, (U) + 87" AaSads, (U) + Y P~ (Fi)y 05 (U) =P~'C. (2.3)
2

In the literature on NSCBC boundary conditions the nomenclature L, = A,S,, is often
used, with L, referred to as the vector of characteristic wave amplitude variations (or
amplitudes hereafter). In the following, we extend the treatment developed by Prosser
(Prosser 2004) for Euler flows, to include the effects of molecular transport on the spec-

ification of these amplitudes.
We begin by considering a two-dimensional problem (n = 2). We non-dimensionalise
equation systems 2.2 and 2.3, and introduce a low Mach number expansion for each
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of the dependent variables (McMurtry et al. 1986) i.e. the pressure is written as p =
O + MpM® + M2p? + O (M?) . Bracketed, superscripted numbers are used to index
the terms in a given expansion. The second step is to decompose the convective flux
terms into motions defined on two length scales: inertial scales x = (z y)T and acoustic
scalesn = (& 0)T , €=Mz, 0 = My. The convective derivatives appearing in the Navier-
Stokes equations are consequently expressed as (in the case of the non-dimensionalised
Z derivative (Klein 1995))

d ) )
— = — 4+ M—. 2.4
8|y, 0w BE (24)

The expansions are inserted into the primitive equations and the associated characteris-
tics. By appropriate matching of terms, revised treatments for time dependant boundary
conditions can be derived that better satisfy the demands of mass, momentum and energy
conservation.

For the choice of conservative vector U = (p pu pv pE)T, the dimensionless form of
the equation system for a viscous, conducting, single species flow is written as

%+6%k(puk)=0
2 1 o (o) + 373 5 = e g
2+ e 0P pyw) = TS B G
ﬁ;ﬁ (A(‘%). (2.5)

In the previous equations, z; represents the dimensionless distance. Re is the flow Reynolds
number. F is the stagnation internal energy, 7 is the viscous stress tensor and M is a
flow Mach number (defined below). Pr is the Prandtl number and X is the thermal con-
ductivity. The equations are closed by the thermal and caloric equations of state;

p = pRT (2.6)
h=h+ /c,, (T")dT". (2.7)

In equations 2.5a-c, the variables have been non-dimensionalised with respect to a length
scale characterising the domain size ly, a density po and a velocity ug, which is assumed
to be small with respect to the local sound speed. Under these assumptions, the flow
Mach number wuq (fyRoTo)*% appearing in equations 2.5b and 2.5c is small. The ther-
modynamic quantities ¢p, ¢y, and R, (which henceforth will be assumed to be constant)
are non-dimensionalized with respect to (c,), = c,. The pressure is non-dimensionalized
with respect to a thermodynamic pressure ypoRTy, where Tj is an absolute temperature
and ~y is introduced to simplify the subsequent algebra. Using these variables, the local
sound speed in dimensionless coordinates is a = M~ (yp/ p)% . Finally, we introduce a
supplementary equation for the pressure as this is will be useful in the later development;
Op Op (auk)_(fy—l)M2 Ou; 1 9 ( 6T)

(2.8)

Re %37, T RoProm, \" 07
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equation 2.8 can be derived from equations 2.5a-c, 2.6 and 2.7, and can be used in place
of equation 2.5¢ if desired (Majda & Sethian 1985).

For definiteness, we consider a two dimensional domain whose boundaries are aligned
with the Z and y axes. We assume that the left hand (inlet) boundary will be located
at T = 0, the right hand (outlet) boundary will be located at T = 1. Using the methods
outlined above, the governing equations are consequently replaced on the boundaries by

op p op ov
5 T(L1+L4) pL2+v6~+p6§>

u _ (1 [p,. Ou i Otz | Omsy

v Ov 1 0Op 1 (97;;5 OTyy
- \Ie gy T M2ag>+Re< +

Op _
ot

8 oy

ov Op
Ly+ L I P
— | pep (La + 1)+7p8~+v8y)

e o (5 0%) 5 05))
R CtRen\3m Vo) T Vo (2.9)

in which ® = 7 : Vu > 0, and the dimensionless specific heats ¢, (= 1) and ¢, (E 7_1)
are kept explicitly to help clarify the algebra when the equations are re-expressed in their
dimensional form. The amplitudes are

_ 1 1 [yp) (Op
L1_2pcp<u M p)(@x M”pa)

ov
La=upz
1 1 /[4p Op ou
Ly = — — 4+ M — 2.1
by, (“+ M p) <65+ VPP 5% (2.10)

At the inlet boundary, conditions must be specified for the unknown incoming amplitudes;
Ly, Ls, Ly. For the outlet boundary, the only incoming amplitude requiring specifica-
tion is L;. Traditional non-reflecting boundary conditions (Hedstrom 1979; Thompson
1987) are obtained by setting all incoming amplitudes to zero. A range of other practical
boundary conditions can be specified by appropriate matching of incoming or outgoing
amplitudes (Poinsot & Lele 1992; Baum et al. 1994). It has been previously demonstrated
(Prosser 2004) that these older boundary conditions produce spurious pressure oscilla-
tions that propagate into the computational domain at the local speed of sound. This is
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because, for low Mach number flows, the non-linear amplitudes have the expansions

Li=L + MLV + ...

1 (71)(0) ou® Y (717(0) <au(0) N ou® N ou(®) (1% B % ))
p p

~ 2,00, Oz 13 Oz oz
0 (op)  Hp2) ou®
P p P (0), (0) 2
PO { o€ + g T } + 0 (M?) (2.11)

Li=L + ML + ..

1 9u© u®  au®  9u© [p® M)
(0) (0) p’_pr’
(W M (W ( - * (p(o) Pl ))

~ 2500, Ox 313 Oz Ox
©) (op(V)  §p2) ou®
0 { o€ + 5 TP } +0(M?). (2.12)

By comparing the leading order terms of Ly and L4 with the leading order expansion of
equation 2.8, it can be seen that the amplitudes control the value of the global thermo-
dynamic pressure (via the maintenance of a divergence free velocity field). Similarly, the
momentum equation—which appears in the above equations as an O (M) term—must
also be retained for correct treatment of the momentum at the boundary. Consequently,
we seek a new treatment for L; and/or L4 that retains these essential features, but still
keeps the non-reflecting behaviour.

3. Revised viscous outflow boundary conditions

A natural first step towards a revised outflow is to generalise the LODI/NSCBC bound-
ary condition of Poinsot et al. (Poinsot & Lele 1992; Thevénin et al. 1996; Baum et al.
1994) to flows with transverse inertial structure and viscosity. We re-write equation 2.9b
in terms of the leading orders of a low Mach number expansion and rearrange to obtain

© (1 (859 a9\  u®  §u©
Ly =Ls— MT®,[ 2L = Lye w | _ - 0 (M?). (3.1
L=l 0 \Re \ 32 T 3y o Vg ) TOMM). (B

There are two difficulties with equation 3.1: the specification of du(® /0t, and the reflect-
ing nature of the resulting boundary condition. There are a number of ways to deal with
the temporal term. For the purposes of this paper, we use a simple frozen turbulence
approximation:
ou(® ou©®

= —Uup —
at " or
where u; is the mean speed of the flow. To deal with the reflection, we realise that the
boundary is reflective because L; should contain only left-going acoustic waves, while
L4 contains only right going waves (c.f. equations 2.11 and 2.12). Equating the two
directly leads to L; inheriting a wave propagating in the wrong direction (Prosser 2004).
The non-reflecting condition translates to the absence of incoming acoustic waves at the
boundary and hence, equation 3.1 should have all acoustic behaviour removed from it.

(3.2)
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This is achieved explicitly by subtracting the acoustic component of L4 to obtain

(0) (0) (0) (0) (0)
Ly =L, — MTO 14 (i (671190 + Otyy +u,,8“ _vau

vp©® \ Re \ 0z dy oz Jy
1 fyp(o) ou® 6[)(1)
— [ /yp0)p(0) - M?). .
25, \| o (V1P g+ =5 ) T O (M) (3.3)

An alternative non-reflecting condition can then be written by applying the non-reflecting
condition of Hedstrom (Hedstrom 1979) to the acoustic components of the characteristic
amplitudes (Prosser 2004);

©  gpm)
( ROME 6g£ _ 325 ) =0. (3.4)

Substituting this equation into equation 3.3, leads to

(0) (0) (0) (0) (0)
Li=L4— MT(O) p (i <6Tyz + aTyy + 'Uzbau— - Uau

vp©® \ Re \ Oz Oy Oz Oy

oul®
(1) 7@
(v—=11I € (3.5)

Thus, the problem applying the non-reflecting condition devolves into one of calculat-
ing Ou(® /0¢; the flow divergence on the acoustic scales. This may be accomplished in
practical terms by considering the leading order equation for pressure:

W 0w @ =

op _ -~ v .(\o $-T(O)). _

o OV, = =, (xov (3.6)

6u(0)/8£ can thus be calculated by a two step process. The first step is to calculate
numerically Vj - u, the as-is flow divergence. Then, from equation 3.6, the constancy of
the thermodynamic pressure imposes V, - u® = Relpr Ve - ()\(O)Vm -T(O)). Hence the
numerically calculated divergence satisfies

1 ou©® 9@
s u————V, - (A© -T(O)):M ki oM?). (3.7

vuRePrva( Va 3§+30 +0 (M?) (3.7)
The second step is to assume that all acoustic waves incident on a boundary approach
normally, implying dv(®) /88 = 0. This step is consistent with the spirit of the original
LODI/NSCBC and other characteristic approaches; future work will concentrate on gen-
eralising the treatment to include acoustic waves approaching the boundary obliquely.

Recalling the definition a = M~ (yp/ p)%—and with a slight abuse of notation—the
required boundary conditions in fully dimensional form can be written as

_ (v-1)T B_U_ 6_u_ OTys = OTyy
Li=Li+ a ”ay L ox + Oy

oul®
a¢

ou(® Ou Ov ] oT 3] oT
€ (6_:n * 6_y) - (% </\0_w) "oy (Aﬁ_y» ' (39)

- (=0T

where
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If the flow is cold, then it is straightforward to show that T(®) = const., and the thermal
conduction term can be dropped from the preceding equaition for du(® /0&. We note that
the molecular viscosity does not have an influence in calculating the du(®) /9¢ term; this
is due to viscosity only having a second order effect in the pressure transport equation.

4. Non reflecting viscous inflow conditions

The treatment of the inflow boundary conditions depends very much on the complexity
of the field on the inlet plane. If the flow field is steady and has an analytic structure,
the methods of the previous sections may be used to define non-reflecting conditions in
a straightforward manner. If the incoming flow is turbulent, then a more sophisticated
treatment is required.

For the turbulent inflow case, we have retained the method outlined in (Prosser 2004).
We suppose that the simulation can be broken into two components: The active solution
(for which we are seeking boundary conditions), and the precomputed frozen solution.
The incoming characteristics required for the active solution are derived from the frozen
solution, and convected across the inflow boundary.

In the precomputed solution, the periodic boundary conditions are usually employed,
and these preclude the requirement for explicit conditions on the viscous fluxes (or in-
deed, any other terms). For open flow problems, we usually require the specification of
some condition on the viscous fluxes. Hence, there is an inconsistency in the balancing
of characteristics between the frozen solution and the active solution. We have as yet
been unable to find a consistent way of matching the viscous effects between the two
solutions. For a cold flow problem, the resulting pressure disturbances arising from this
discrepancy should be small, as all momentum transport effects are of O (M 2) in the
pressure transport equation. If there are significant conduction effects—such as may be
found when a flame approaches an inflow—then this error could grow to O (1) . Future
work will concentrate on achieving a better consistency between frozen and active solu-
tions, and will also examine methods of allowing evolving precomputed solutions to enter
the active domain.

5. Results
5.1. The code

The boundary conditions described in this paper have been implemented in a code orig-
inally developed at UMIST. The code is parallel and is able to deal with any given
chemical reaction mechanism. The code has been designed to work with a suite of numer-
ical schemes, ranging from compact and explicit finite differences, to Chebyshev spectral
methods and non-uniform high order discretisations. For this work, a uniform explicit
fourth order approximation was used for spatial derivatives, and a minimal storage third
order Runge-Kutta method developed by Wray (Wray 1990) was used for temporal in-
tegration. For all of the results that follow, the discretisation was based on a grid of
128 x 128 grid points, and ran on two processors on a SGI Origin 2000.
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F1GURE 1. Sectional elevation of the flow field, showing the evolution of the acoustic pressure
with time.
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FIGURE 2. 2—norm of the evolving dynamic pressure field—laminar flow

5.2. Non-reflecting behaviour

Figure 1 shows the evolution of a pressure pulse in a domain 10mm square, comprising
a steady flow of air with a uniform motion of 2m/s. The initial pressure field is given by

1 2
P (x,t) — p = 2exp (- (0.13(.7: - 5)) ) —5x10 % <zy<5x1073 (5.1)

The simulation uses the boundary conditions developed above and incorporates the ef-
fects of viscosity and thermal conduction. This test is designed to demonstrate the non-
reflective character of the boundary condition treatment. As can be seen, the pressure
waves leave both the inflow and outflow boundaries smoothly. Figure 2 gives the time
history of the 2-norm of the acoustic pressure: ||p(x,1) —p(0)||2 /llp (x,0)]|,. We note
that after 1 acoustic transit time (O (lo/ao) ~ 30us, here), the magnitude of the acous-
tic mode has dropped to 0.1% of the initial condition. After subsequent multiples of the
acoustic transit time, the magnitude of the acoustic mode drops to 0.001%, and 0.0001%,
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FIGURE 3. Evolution of the normalised pressure difference for the turbulent, acoustically
perturbed solution.

respectively. The initial 0.1% reflection arises from the second order influence of the mean
convection speed. The inclusion of a second order term in the non-reflecting criteria im-
proves the performance of the boundary conditions further. This will be further explored
in a future paper.

5.3. Cold turbulence

The second problem to be studied using the new boundary conditions is that of cold two-

dimensional, viscous turbulence. The initial conditions for this flow were generated using

the methods described by Rogallo (Rogallo 1981). The turbulent velocity fluctuations

were calculated such that the resultant energy spectrum satisfied
Crrrer k< hmax

E(k):{ T ki46T

0 k> kmax (5:2)

kmax was set for this study at 12, a subsequent normalization of the energy spectrum
produced a turbulence RMS intensity of 0.1m/s (5% of the mean flow speed for this
case). The resultant flow field contains a range of length and time scales characteristic
of turbulence, but one that is readily resolved using a low resolution grid of 128 x 128
grid points. This last comment is particularly aimed at the one sided schemes used at
the inflow/outflow boundaries; these often have a lower formal order of accuracy, and
a much poorer spectral resolution, than symmetric internal constructions. The mean
velocity for this investigation was set at 2.0m/s and the physical size of the domain was
set at 10mmx10mm.

The simulation was run twice. The first simulation evolved from the set of initial
conditions without the pressure pulse, and provided the evolving benchmark pressure
field prey (x,t) . The second simulation shared the same inertial features as the benchmark
solution, but also included the pressure perturbation given by equation 5.1. The idea is
that the two simulations should share the same time dependent inertial behaviour, but
the second simulation should have an additional acoustic component. If the non-reflecting
boundary conditions work correctly, this component should leave the domain after half
an acoustic transit time. The two solutions should thereafter evolve identically, and the
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FIGURE 5. Propagation of spurious acoustic waves into the domain from the NSCBC outflow
boundary. Elapsed simulation time = 16.2us.

difference between them, embodied by a normalised pressure difference

||p (X, t) — Pref (X7 t)||2
[lp (x,0)[], ’

(5.3)

should vanish.

Figure 3 shows a logarithmic plot of the time history of the normalised pressure differ-
ence (equation 5.3). Figures 4a and b show the dynamic pressure surfaces for the reference
solution and the perturbed solution at an elapsed simulation time of 16.2us. In figure
4b, we can see the pressure pulses are just leaving the domain via the inlet and outlet
boundaries. It is at this time that the large reduction in normalised pressure difference,
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FIGURE 6. Pressure contour plots of twin co-rotating vortices approaching a revised
non-reflecting outflow. Centres of vortices are heated to 600K.

visible in figure 3 takes place. Finally, figure 5 shows the pressure field obtained from
a simulation also at an elapsed simulated time of 16.2us, but this time using NSCBC
boundary conditions. As can be seen, spurious pressure oscillations from the outflow
boundary conditions have begun to propagate upstream at the local sound speed, and
are well on their way to swamping the pressure field induced by the dynamics alone.

The simulations using the new boundary conditions were allowed to continue to run
for an additional 45 x 10% time steps, which corresponds to 1 flow transit time (defined
as lg/ug). At the end of this extended run, no significant errors in the pressure field
were observed, and the dynamic pressure variations remained bounded essentially by the
kinetic energy of the turbulence.

5.4. Co-rotating hot vortices

Figures 6a-d show the pressure evolution for 2 co-rotating vortices leaving the compu-
tational domain. This configuration was chosen because there is an inertial evolution
in the flow, as well as acoustic transients arising from the initial conditions. The mean
flow speed is set to 10m/s, and the two vortices are initialised using a stream function
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FI1GURE 7. Pressure contour plots of twin co-rotating vortices approaching a standard
non-reflecting outflow. Centres of vortices are heated to 600K.
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r2 r2
T =300 (1 + exp (— 2:2> + exp (— 21"2)) . (5.4)
v v

C is the vortex strength, up is the mean velocity and r, is a characteristic radius. For
this simulation, C' was set at 0.5m?/s?, r, was set at 8% of the domain size and the mean
velocity up, was set at 10m/s. The physical flow domain is 7.5mm square, and a linear
mapping was used to relate quantities in the physical domain to the initial conditions
calculated by equations 5.4a-f. The pressure was assumed initially to be constant, and
the density was calculated using the thermal equation of state. The thermal conductivity
was calculated using (Echekki & Chen 1996)

T 0.7
A=258x%x107° x ¢, <ﬁ> (5.5)

As the flow field has a simple far field structure, the standard NSCBC treatment was
used for the transverse directions. For the inlet a fixed velocity, non reflecting condition
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FIGURE 8. Dynamic pressure surface for hot vortices crossing NSCBC boundary conditions.
Surface corresponds to contour plot 7c.

was imposed (Prosser 2004). As can be seen from figures 6a-d, there is no appreciable
distortion arising from the boundary conditions. Figures 7a-d show the evolution of the
pressure field for the problem when normal NSCBC boundary conditions are applied.
In figure 7a-d, the contours have been restricted to the same range as those in figures
6a-d. Figure 8 shows the pressure surface corresponding to contour plot 7c. We note the
significant transverse pressure variation across the entire domain, arising as a result of
the pollution induced by the old boundary conditions.

6. Large-Eddy Simulations

In the next step, we want to apply the boundary condition to Large-Eddy Simulations
(LES). In LES, the filtered Navier-Stokes equations are solved, which means in turbulent
flows the large scale motions of turbulence are resolved in space and time on a given
mesh, while the smaller scales are modeled using an eddy viscosity approach.

Here, we are using a structured compressible LES flow solver developed by Pierce
(Pierce & Moin 1998) and Wall (Wall et al. 2002), which uses a second-order finite-
volume scheme on a staggered grid (Akselvoll & Moin 1996). The sub-grid stresses are
approximated by a dynamic procedure (Germano et al. 1991; Moin et al. 1991). The
pressure and density field are determined by solving the Helmholtz equation and the
time-step was set to satisfy the acoustic CFL condition.

Using the LES flow solver, the test-case described in section 5.4 was computed. The
LES mesh size was 128 x 128 x 8 nodes. The discretization in z-direction was intentionally
left coarse in order to compute a quasi-2D flow. The mesh is concentrated near the path
of the vortices. In transverse direction non-slip wall conditions were applied.

Fig. 9 shows the pressure distribution at the outlet cross section at the instant of
maximum distortion. We note that the pressure distortion is much more attenuated
using Eq. (3.8).

We performed additional LES computations without a subgrid model in order to assess
the effect of the additional viscous terms of the subgrid model. The results of these com-
putations were virtually indistinguishable from the previous results, which means that



408 Prosser and Schliter
1-060llllIlllllllllllllllllllllll

P/P

1.040

1.020

Tr 1T [ 111t [rrrT
METEN T BTSSR BT

1.000

0.980

0.960

TTr T [ 111t [rrrT
METEN TS B ST E AT B

0'940llllllllllllllllllllllllllll
-1.5 -1.0 -0.5 0.0 0.5 1.0

=
ol

FIGURE 9. LES computation of co-rotating vortices passing outflow: cross-section pressure
distribution at the instant of maximum pressure distortion.

for the chosen test case, the influence of the subgrid model on the boundary conditions
is neglectable.

7. Conclusions

A procedure to improve the specification of time dependent boundary conditions for
viscous flows has been described. The approach is based on a low Mach number expan-
sion of the governing equations, and is an extension of a method originally developed
for inviscid flows. The incorporation of thermal conduction and viscosity into the new
boundary conditions are shown to have leading and second order effects, respectively.
The new approach provides a significantly better treatment of the pressure field—both
at inflow and outflow boundaries—than the previous characteristics based methods. The
new treatment is able to deal with flows comprising inhomogeneous high temperature
regions without inducing spurious effects. The scheme appears to be stable for long time
integration periods.

A number of areas have emerged during the course of this investigation that require
further analysis. Firstly, it can be shown that a modification to equation 3.3 to include
second order effects provides a less reflective boundary condition. The effects on stability
of this modification has yet to be established for long time scale integrations. Secondly,
no viscous boundary conditions were imposed during the course of these simulations,
other than the explicit coupling of the viscous fluxes to the inertial terms via the char-
acteristics, as seen in equation 3.3. It is not clear at this stage whether the coupling can
be interpreted as a type of viscous condition in the form recommended by Dutt (Dutt
1988), although the practical long term stability of the calculations presented here do
provide grounds for cautious optimism. Thirdly, the extension of the asymptotic meth-
ods to reacting flows is straightforward and will be examined in a forthcoming paper.
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Finally, the new approach still suffers from the thermodynamic pressure drift found in
other characteristics based methods. This drift has been identified with the failure of
the numerical schemes properly to enforce a leading order solenoidal constraint on the
velocity field, when formally the flow should be divergence free. Future work will examine
the improvement of numerical methods and/or boundary conditions to reduce the drift,
without recourse to the pressure-at-infinity condition proposed by Strikwerda (Strikw-

erda 1977), which has a tendency to introduce Nyquist frequency oscillations into the
flow field.
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