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Solar surface convection

By R.F. Stein f, A. Nordlund } J. F. Ripoll AND A. A. Wray

1. Introduction

The dynamics of the solar surface is driven by turbulent convection, magnetic fields and
the escape of radiation. Convection transports energy upward through the outer third
of the Sun and radiation carries it away to space. Convective motions transport angular
momentum and produce differential rotation and the subsurface shear layer (Brummell
et al. 1998;Miesch et al. 2000;Robinson & Chan 2001). Convection builds magnetic fields
by dynamo action and transports it downward (Nordlund et al. 1992;Tobias et al. 1998;
Cattaneo 1999;Tobias et al. 2001;Emonet & Cattaneo 2001). Magnetic flux tubes which
emerge through the surface are shuffled around by the convective motions (Berger &
Title 1996;Martinez Pillet et al. 1997;Berger et al. 1998; Lin & Rimmele 1999;Stolpe &
Kneer 2000). This stresses the field whose subsequent relaxation heats the chromosphere
and corona and controls their structure (Parker 1988;Galsgaard & Nordlund 1996;Judge
et al. 1998). Convective motions generate the waves that produce the enhanced emission
observed from the chromosphere (Carlsson & Stein 1997;Ulmschneider & Musielak 1998;
Skartlien et al. 2000;Musielak & Ulmschneider 2001). Convection excites the p-mode
oscillations and modifies their eigenfrequencies (Goldreich et al. 1994;Rosenthal et al.
1999;Stein & Nordlund 2001). Magnetic fields, oscillations and rotational shearing all
alter convection itself (Hurlburt et al. 1996;Weiss et al. 1996; Brummell et al. 1998;Steiner
et al. 1998;Tao et al. 1998). The interaction of these various processes controls the flux
of radiation received by the Earth.

Convection is inherently three-dimensional, non-linear and non-local. As a result, most
progress in understanding convection has come from analyzing numerical simulations.
The computational challenge is to compute at high enough Reynolds number to include
interactions of very disparate scales of motion. This requires simulations with very large
3D computational grids. We cannot hope to model the extremely large dynamic range
and high Reynolds number that occur in the Sun. We can hope that our limited numerical
capabilities will provide insight into what actually occurs in the Sun.

2. Large Scale and High Resolution Simulations

Recent observations with the Swedish 1-meter Solar Telescope have resolution of 70
km on the solar surface and the proposed Advanced Technology Solar Telescope will
have a resolution of 30 km. With each new improvement in resolution new phenomena
are discovered on the solar surface. The most recent has been the existence of striations
in the bright side walls of granules observed toward the limb. To understand these high
resolution observations, even higher resolution simulations of the solar surface convection
are needed.

Local helioseismology can resolve structures as small as 30 Mm stable over 8 hour time

t Michigan State University
i NBIfAFG, University of Copenhagen, DK



22 Stein, Nordlund, Ripoll, & Wray

intervals. The proper interpretation of such observations requires a simulated testbed on
which the inversion techniques can be applied and compared with the actual properties.
This requires simulating regions of 50 Mm width by 20 Mm depth to contain the observed
short wavelength modes within the computational domain.

The horizontal velocity spectrum at the solar surface is a nearly featureless power law
(x wavenumber) with a peak at granular scales and a subsequent decline at still smaller
scales. Yet the eye picks out “supergranulation” scale structures and there is controversy
over their nature. Again this can be clarified by 50 Mm wide by 20 Mm deep simulations.

Such large scale simulations will also reveal the cause of the surface shear layer as well
as provide insight into the emergence and dispersal of magnetic flux at the solar surface.

High resolution magneto-convection simulations have very small time steps because of
the high Alfven speed in the upper photosphere and therefore require long simulations
to mimic the behavior of the solar surface. Large scale simulations require a long time to
relax the thermal structure at large depths and the dynamic structures at the large scales.
To undertake both projects therefore requires an MHD code that can run efficiently on
very many processors.

3. MHD Code

Our existing magneto-hydrodynamic code was modified to include a tabular equation
of state and radiative transfer. Parallelization was implemented using Open MP with
parallelization in as large blocks of code as possible, rather than individual loops. This
avoids the overhead of repeated creation and destruction of multiple threads.

3.1. Radiation

Radiation from the solar surface produces the low entropy, high density fluid whose
buoyancy work drives the convective motions. Observing the radiation from the solar
surface provides us with our only information on what is occurring there. In the layer
from which photons escape their mean free path is of order unity, so neither the diffusion
approximation appropriate at large optical depths nor the optically thin approximation
appropriate at very small optical depths is appropriate. To model radiative heating and
cooling accurately requires solving the radiation transfer equation. A method is needed
accurate enough to determine the radiative heating and cooling and efficient enough to
calculate the 3D radiative transport for thousands of time steps on very large meshes. A
balance between accuracy and speed is required. One project during the workshop was
to test some of the approximations made in the convection simulation code in calculating
the radiative transfer.

Radiative heating/cooling is the integral over wavelength of the difference between the
opacity x the angle averaged intensity and the emission, or as it is usually written,

Qraa = 47?/)\'% (Jx=5x)dr, (3.1)

where k) is the opacity or inverse of the photon mean free path, Jy is the angle averaged
intensity, and Sy, the source function, is the ratio of the emissivity to the opacity. In the
solar simulation code, to avoid roundoff errors from taking the difference between two
comparable large numbers, we solve directly for the difference Jy —S) using the Feautrier
method (Feautrier 1964). We assume Local Thermodynamic Equilibrium (LTE), so the
source function is the Planck function. Two further approximating are made to greatly
speed up the calculation. First, the number of wavelengths for which the transfer equation
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FIGURE 1. Divergence of the radiative flux for a 1D solar atmosphere comparing piecewise
constant with second order Taylor expansion approximations for the source function and
opacity.

is solved is drastically reduced by binning the opacity at each wavelength into four bins
according to its magnitude and binning the source function the same way. Second, the
transfer equation is solved along only 5 bi-directional rays — one vertical and four slanted
rays through each point on the surface. (For details see Nordlund 1982; Stein & Nordlund
2003.)

Three issues were investigated: the spatial quadrature along a ray, the angular quadra-
ture for the mean intensity, and alternate solution schemes used to solve for the radiation.

First consider the spatial quadrature along a ray. Fig 1 shows the radiative heating and
cooling, for a one-dimensional mean solar atmosphere, calculated by the integral method,
comparing a piecewise constant approximation with a second-order Taylor expansion
for the opacity and source function. A piecewise constant approximation is inadequate
unless a large number of depth points is used. In the solar code, both a piecewise linear
approximation (trapezoidal rule) and a third order approximation for spatial integrals
have been used. Accurate results further require an accurate calculation of the optical
depth scale. With a third order integration scheme a spacing of 10 per decade in optical
depth, or ~ 15 km near optical depth unity, is needed. Note, in the solar photosphere,
the source function is nearly linear in optical depth (Stein & Nordlund 1998, Fig 15).

Next, consider the angular quadrature needed to obtain the net heating/cooling or the
mean intensity. Fig 2 shows the horizontally averaged radiative heating in a 3D snapshot
from a solar convective simulation for 8 rays (2 polar and 4 azimuthal angles) and 48 rays
(4 polar and 12 azimuthal angels) on the left. On the right is shown the horizontal rms
of the radiative heating and the difference in the rms for 8 and 48 rays. The difference
is less than 3%. Even though the optical depth surface has an rms variation of 35 km,
so that hot and cold regions adjoin one another, most of the radiative cooling occurs
vertically. However, when magnetic fields are present there is a larger variation (~ 300
km) in the optical depth unity surface and horizontal radiation transfer has a noticeable
effect on the emergent intensity. However, even here the temperature at unit optical
depth varies only slightly because of the high temperature sensitivity of the dominant
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FIGURE 2. Radiative cooling. Left: average heating/cooling for 8 and 48 rays. Right: rms
heating/cooling for 48 rays (solid) and difference between 8 and 48 rays (dashed).

opacity source (H™ ions). In the solar simulation code, one vertical and one non-vertical
angle with 4 azimuthal angles are used, which provides approximately 1reason such few
angles provides sufficient accuracy in the solar photosphere (more rays are needed in the
chromosphere) is the small temperature variation at unit optical depth from which the
radiation emerges (see Stein & Nordlund 1998 Fig. 22).

The vertical extent of the photosphere (500 km) is small compared to the radius of the
Sun, which therefore appears as an infinite planar source. The radiative anisotropy, is
nearly zero below the surface, increases through the photosphere, reaching a maximum
of ~ 0.6 at the transition to the chromosphere. Farther away the anisotropy is larger,
approaching one as the Sun recedes to a point source.

An alternative method of calculating the radiation is the moment model, in which four
conservation equations for the radiation energy density and the three components of the
radiative flux vector are solved at every point in the computational domain (Mihalas &
Mihalas 1984). To use such a method, the system of moment equations must be closed by
relating the radiation stress tensor to the radiation energy density and flux. This is done
by means of so called “Eddington factors”, which express the degree of anisotropy and act
as a flux limiter(Levermore 1984). If the Eddington factor could be accurately determined
analytically, this would be a useful method to obtain the radiative heating/cooling with-
out the necessity of solving the radiative transfer equations. The radiative heating/cooling
from several moment models, applied to a one-dimensional, horizontally averaged, solar
atmosphere is shown in Fig. 3 (left). Two flux-limited moment models, derived using the
maximum entropy closure (Minerbo 1979) the M; model (Levermore 1984;Fort 1997)f
and the M;" model (Ripoll & Wray 2004), are compared to integral RTE solvers. Both
models are computed with the second order scheme used in Ripoll et al. (2002). They
rather accurately capture the cooling near optical depth unity. However, both moment
methods overestimate absorption in the atmosphere, for unknown reasons. Equilibrium
is approached for z > 0 1.

The anisotropy and the Eddington closure factor are shown in Fig. 3 (right). It can

1 see Ripoll (2004) for more references concerning this model, and, Jensen et al. in this volume.

1 The source term of both moment models has been truncated to zero when the difference
between the temperature and the radiative temperature is less then 1K. This is done in order
to avoid numerical wiggles which are generated by the subtraction of two large numbers, the
emission and absorption terms, which should almost cancel to give equilibrium.
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FIGURE 3. Left: radiative cooling computed with 4 different methods. Right: anisotropy and
Eddington factor computed by the M1 model and a RTE solver.

be seen that the anisotropy is below 0.6 §, and that the moment methods underestimate
this value in the atmosphere. The Eddington factor found by the RTE solver is below
1/3 near the surface, which cannot be reproduced by any existing moment model (for
which the lower bound is 1/3, the equilibrium value). The M;" model is only flux-limited
for anisotropies larger than 1/2 (to avoid non-physical results and to guarantee numer-
ical stability) and is otherwise equivalent to Py ||. Since f < 1/2 everywhere for this
particular solar profile, the M;" Eddington factor is simply 1/3 (like P;), but this may
not hold for all solar profiles. It should be noted that the anisotropy is always lower
for one-dimensional atmospheres than for three-dimensional ones. In an evolving three-
dimensional configuration, different hydrodynamic states may produce larger anisotropies
and the flux will need to be limited. The fact that the anisotropy and the Eddington fac-
tor from the moment models are not equivalent to the RTE values on the whole domain
yet the average radiative cooling/heating is similar, leads to the conclusions that, first,
only a small transition region around the surface matters for the escape of radiation,
and second, that radiation is primarily determined by its emission and absorption rather
than by its direction of propagation, for our one-dimensional atmosphere.

4. High Resolution, Small Scale Simulations

We have simulated a small patch near the surface of the Sun with horizontal size 6 x 6
Mm and a height range from the temperature minimum at 0.5 Mm above - down to 2.5
Mm below - the visible surface, on a grid of 253 x 253 x 163 zones. Initially we imposed a
uniform vertical magnetic field of 250 G on a snapshot of well established hydrodynamic
solar convection. The magnetic field is rapidly swept by the granular and mesogranular
flows into the mesogranular scale downflow lanes and concentrated to kiloGauss strength.

We have used these simulation results to synthesize center-to-limb G-band images
(Fig. 4). Towards the limb the simulations show “hilly” granulation with dark bands on
the far side, bright granulation walls and striated faculae, similar to observations. At
disk center G-band bright points are flanked by dark lanes. The increased brightness in

q for 1D configurations, the upper limit of f is around 1
|| The P; closure assumes isotropic propagation and has no flux limiter.
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FIGURE 4. G-band images synthesized from magneto-convection simulation. Four images at 30
sec intervals have been combined (UL,LL,UR,LR) to make the patterns more obvious.



Solar surface convection 27

0 2 4 6 8 10 12

FIGURE 5. Observed G-band intensity at g = 0.63, from the Swedish 1-m Solar Telescope (June
2003). Data reduction using Multi-Frame-Blind-Deconvolution performed by Luc Rouppe van
der Voort. Note “hilly” granulation with dark bands on the far side, bright granulation walls
and striated faculae.

magnetic elements is due to their lower density compared with the surrounding inter-
granular medium. One thus sees deeper layers where the temperature is higher. At a
given geometric height, the magnetic elements are cooler than the surrounding medium.
In the G-band, the contrast is further increased by the destruction of CH in the low
density magnetic elements. The optical depth unity surface is very corrugated. Bright
granules have their continuum optical depth unity 80 km above the mean surface, the
magnetic elements 200-300 km below. The horizontal temperature gradient is especially
large next to flux concentrations. When viewed at an angle, the deep magnetic elements’
optical surface is hidden by the granules and the bright points are no longer visible,
except where the “magnetic valleys” are aligned with the line of sight. Towards the limb,
the low density in the strong magnetic elements causes unit line-of-sight optical depth
to occur deeper in the granule walls behind, than for rays not going through magnetic
elements, and variations in the field strength produce a striated appearance in the bright
granule walls (Carlsson et al. 2004). An observed G-band image is shown is Fig. 5.

We would now like to perform similar simulations at still higher resolution because
we believe that magnetic instabilities will show up at small scales and contribute to the
striated appearance of the granule walls, and because the ATS Telescope will provide
images of higher resolution than reliably obtainable from our current 25 km horizontal
grid size simulations.

5. Large Scale Simulations

Large scale simulations require a long time to develop the large scale dynamical struc-
tures because the ratio of velocity to size is small. Large scale simulations require a long
time to relax the thermal structure at large depths because the ratio of energy flux to
energy density is small. As a first step, we have begun a simulation of 24 Mm x 24 Mm
horizontal size and 9 Mm depth. A time span comparable to a few turnover times of the
largest flows in the computational domain is required. This run was started from a 12
Mm wide simulation doubled in each of the periodic horizontal directions with a small
perturbation added to break the symmetry (Fig. 6). This relaxation is proceeding. We
expect it to develop structure on the computational box (24 Mm). When this domain is
relaxed, it will be doubled in size both horizontally and vertically, to reach 48 Mm x 18
Mm deep.



28 Stein, Nordlund, Ripoll, & Wray

FIGURE 6. Vertical velocity at the surface (UL), 3 Mm (UR), 6 Mm (LL) and 9 Mm (LR) depth.
It is clear that the initial structures still need to evolve and larger scale structures need time to
develop.

6. Convection Spectrum

The spectrum of solar convection is not separable into spatial and temporal components
because the temporal spectrum varies with the spatial wave number. It can be best fit
by an analytic expression of the form

Py (w,k) = a/(w® +w?)P®

Both the exponent, p, and width, w, increase with increasing spatial wave number
(Fig. 7). In the past analytic studies have assumed that the turbulent convective energy
spectrum is separable into independent spatial and temporal factors. The more compli-
cated actual situation may explain some of the difficulties that these overly simplified
models experience.
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FIGURE 7. Analytic fit to temporal spectrum of vertical velocity in a high resolution convection
simulation. Both the exponent of the power law and the width of the low frequency plateau
increase with increasing spatial wave number.
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