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Anisotropy of MHD turbulence at low magnetic
Reynolds number

By O. Zikanov and A. Vorobev {, A. Thess { P. A. Davidson § AND
B. Knaepen ||

Turbulent fluctuations in MHD flows are known to become dimensionally anisotropic
under the action of a sufficiently strong magnetic field. We consider the technologi-
cally relevant case of low magnetic Reynolds number and apply the method of DNS of
forced flow in a periodic box to generate velocity fields. The analysis based on differ-
ent anisotropy characteristics shows that the dimensional anisotropy is virtually scale-
independent. We also find that, except for the case of very strong magnetic field, the flow
is componentally isotropic. Its kinetic energy is practically uniformly distributed among
the velocity components.

1. Introduction

Magnetohydrodynamic (MHD) turbulent flows are ubiquitous in the universe, occur-
ring in numerous astrophysical, geophysical, and technological applications. It is known
that in the presence of a sufficiently strong magnetic field the turbulent fluctuations
become anisotropic, which implies important consequences for the properties of the tur-
bulence and possibly requires modification of numerical models. Specific manifestation
of the anisotropy may vary but the principal mechanism is always the elongation of flow
structures (turbulent eddies) along the lines of the magnetic field.

The main difference between the kinds of MHD turbulence is due to different values
of the magnetic Reynolds number
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where 7 = (o) " is the magnetic diffusivity, o and uo being the electric conductivity of
the liquid and magnetic permeability, and u, L are the typical velocity and length scales
of the flow. If Re,,, > 1, there is a two-way coupling between fluctuations of magnetic field
and velocity. This happens in astrophysical applications (stars, interstellar medium, etc.),
where Re,, > 1, and in geophysical applications (Earth dynamo), where Re,, is smaller
but still significantly larger than 1. Discussions of anisotropy effects at large magnetic
Reynolds number can be found, for example, in the recent review by Cho et al. (2002).
The opposite case of Re,;, < 1 occurs in a majority of technological processes, where
a strong steady magnetic field is imposed on an electrically conducting liquid. Exam-
ples of such applications include continuous casting of steel and aluminum, growth of
semiconductor crystals, and lithium cooling blankets for fusion reactors. In this case, the
low-Re,, (so-called quasi-static) approximation can be applied (see, e.g., Moreau 1990 or
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Davidson 2001). It can be assumed that the fluctuations of the magnetic field b associ-
ated with fluid motions adjust instantaneously to the velocity fluctuations and that their
amplitude is negligible in comparison with the amplitude of imposed magnetic field B.
The rotational part of the Lorentz force reduces to the linear functional of the velocity

oB? | 0%
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(1.2)
where p and u are the density and velocity of the fluid, A~ is the reciprocal Laplace
operator, and we assumed that the imposed magnetic field is uniform and purely vertical
B = Be,.

The flow transformation under the impact of force (1.2) has been actively studied in
analytical (Moffatt 1967, Sommeria & Moreau 1982, Davidson 1997, 1999), experimen-
tal (Votsish & Kolesnikov 1976, Alemany et al. 1979) and numerical (Schumann 1976,
Zikanov & Thess 1998) works. The papers mentioned above represent only a fraction of
the literature on the subject, more references being available therein. Far from the walls,
the action of the magnetic field was identified as two-fold. First, the induced electric cur-
rents result in additional dissipation of kinetic energy, the Joule (magnetic) dissipation.
Second, the flow becomes anisotropic, its structures being elongated along the magnetic
field lines.

The reason for the anisotropy becomes especially transparent if one assumes that
the flow is unbounded and uniform and uses the Fourier representation.f The Fourier
transform of (1.2) is

2 2
Fs] = —% (Bk;‘) (k1) = —%?(k, ) cos26, (1.3)
where k is the wavenumber vector and @ is the angle between k and B. The rate of Joule
dissipation of a Fourier mode with the wavenumber vector k is
2
() = “ k1) 7, 1) cos”, (14)
so the dissipation is anisotropic. It attains maximum for the Fourier modes with B || k
and zero for modes with B L k, i.e., for modes independent of the z-coordinate. The
dissipation tends to eliminate the velocity gradients in the direction of B and elongate the
flow structures in this direction. The limiting case is the two-dimensional state completely
independent of the z-coordinate. The Joule dissipation is equal to zero in this state.

This picture of the flow transformation was first given by Moffatt (1967) and later
beautifully illustrated by Sommeria & Moreau (1982), who introduced the image of *Joule
cone’ in the wavenumber space around the B-direction, in which the magnetic dissipation
takes place. A remarkable feature of the picture is that, according to (1.4), the relative
rate of the dissipation p(k)/@” depends on the angle 6 but not on the wavenumber k.
One can, thus, assume that the anisotropy would develop equally on all length scales of
the flow.

The situation, however, looks much more complicated if one takes into account the
non-linearity of the Navier-Stokes equations and the resulting energy transfer between
the modes and tendency to restoration of isotropy. The ratio between the Lorentz force

t The process of development of anisotropy can be viewed from a different angle. In partic-
ular, Davidson (1997) proposed a scenario based on the fact that the Lorentz force conserves
momentum component parallel to the magnetic field.



Anisotropy of MHD turbulence 37
and non-linear term is evaluated by the magnetic interaction parameter (Stuart number)

2
N=IBL (1.5)
pU
It is clear that the linearized picture of the flow development discussed above is true only
in the limit of N > 1. At finite N, one can expect a more complex scenario, probably
with scale-dependent anisotropy. In particular, the analogy with stratified, rotating, or
strained turbulence (see, e.g., Smith & Moum 2000) suggests that smaller scales are
more isotropic than large scales. Another way to arrive to the suggestion is to notice
that, while the Joule damping time 7 = p/oB? is scale-independent, the eddy turnover
time T' = L/u is not. The magnitude of the scale-related Stuart number N = T'/7 can
vary with the scale and so is the flow’s anisotropy.

The question of anisotropy at different length scales is particularly important in the
view of recent attempts to apply the traditional LES models to the low-Re,, MHD
turbulence (Knaepen & Moin 2004). The a-posteriori evaluation of the dynamic model
(Germano et al. 1991) showed good accuracy for decaying turbulence at moderate hy-
drodynamic Reynolds number and N < 10. This result is counter-intuitive since one
expects LES models developed in assumption of local isotropy to perform poorly in the
case of strongly anisotropic flow. One can not guarantee that equally good results will
be obtained at higher Reynolds numbers.

In this paper, we investigate the anisotropy of low-Re,, MHD turbulence using the DNS
of forced flow in a box with periodic boundary conditions. The model and the numerical
experiments are described in section 2. Various measures of anisotropy are discussed and
evaluated in section 3. Possible implications for LES subgrid-scale modeling are discussed
in section 4. Finally, summary and concluding remarks are provided in section 5.

2. Model and numerical experiments

We solve MHD equations for viscous, incompressible and electrically-conducting fluid
in the quasi-static approximation. The Lorentz force term is given by (1.2). After apply-
ing (Vx)x operation to eliminate pressure and taking Fourier transform, the governing

equation become
B: (k.\°
e (2 I 2.1
e =2 %) | (2.1)

where v is the kinematic viscosity and q is the Fourier transform of the nonlinear term.
The incompressibility condition used in derivation of (2.1) can be applied to recover the
modified pressure field. A statistically homogeneous flow is calculated within a rectangu-
lar box with periodical boundary conditions. Since we expect axial anisotropy of turbulent
flow, and elongation of turbulent vortexes along the z-axis, the elongated box of dimen-
sions 27 x 27 X 47 is used. The equation (2.1) is solved by the standard pseudo-spectral
technique.

In order to generate a statistically steady flow over long period of time, an artificial
forcing is applied at large length scales. A constant amount of energy is added at each
time-step. When equilibrium is reached the amount of energy added is on average equal
to the energy dissipated. The external force

H(k) = a(k)¥(k) (2.2)

o ) = = olkox (kx &) -
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FIGURE 1. (a), Evolution of total energy. (b), Evolution of rates of total viscous (
magnetic (— — —) dissipation.

) and

is applied to modes with 1.5 < k < 3.1. The time-dependent coefficients « are determined
so that the net work by forcing is equal to the prescribed total (viscous and magnetic)
rate of dissipation €y and the work is equally divided among the forced modes

€0
0 = N s 09 ) 23)
where Nforceq is the number of forced modes and * stands for complex conjugate.
Simulations are performed with numerical resolution 256 x 256 x 512. The param-
eters g = 0.5 and v = 2.2- 102 are chosen so as to guarantee the accuracy criterion
kmazn > 1.5, where k4, is the maximum resolved wavenumber and 7 is the Kolmogorov
dissipation scale. The microscale Reynolds number is Re) &~ 94 in the non-magnetic run.
The numerical experiments are staged as illustrated in figure 1. First, a developed
turbulent flow is calculated starting with random, isotropic, and homogeneous field and
continuing simulations without magnetic field for sufficiently long period. The complete-
ness of the transitional period is judged by stabilization of the values of the total kinetic
energy, viscous and magnetic dissipation rates defined as
1 * 2 * UBg kg *
E= 5Z(V(k) VK), e=v) (k) -v'(k), p= Tzk_?(v(k) -vi(k)).
k k k
(2.4)
The flow field computed at the moment ¢y = 9.72 is used as an initial condition for
three simulations with different strength of the magnetic field. At ¢ = to, the integral
length scale is L = 0.73 and the rms turbulent velocity is v = 0.71, which gives the
turbulent eddy turnover time of about 1. The strength of magnetic field in each run can
be identified by the values of magnetic interaction parameter (1.5) at ¢ = to. The cases
with no magnetic field (Ny = 0), moderate magnetic field (Ny = 1), and strong magnetic
field (Ng = 5) are consideredf.
A comment must be made regarding the limitations of the traditional DNS approach
that can affect the accuracy of our results. First, at moderate Re)y, the artificial forcing
can have some impact on a significant portion of the resolved length scales. Second

1 The flow evolution caused by magnetic field leads to significant increase of N during the
runs (to about 1.2 in the second case and 10 in the third case).
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FIGURE 2. Anisotropy coefficients G1 (

) and G2 (— — —) given by (2.6).

(perhaps less important for us here), the integral length scale is relatively large (about
1/5 of the box size at t = ty). The periodic boundary conditions can, therefore, affect
the flow behavior at largest scales.

The evolution of total energy, viscous and magnetic dissipation is shown in figure 1.
It can be seen that the period of adjustment after the introduction of magnetic field
lasts several turnover times, after which the flow behavior is statistically steady. In the
flows with magnetic field, the Joule dissipation is responsible for major part of the total
dissipation rate €9 = €(t) + u(t).

Zikanov & Thess (2004) proposed using anisotropic Taylor microscales

(v7)
(1 +6i5)((9v;/Oxi)?)

1/2
/\z' =

(2.5)

as global measures of anisotropy of velocity gradients. Here, any velocity component v;
can be used and (---) stands for volume averaging. For isotropic turbulence, A; are all
statistically equal to the usual Taylor microscale X = [15vu?/€]'/2. The ratio (A1 /X|)? of
length scales measured in the directions transverse and parallel to the magnetic field is
equal to often used anisotropy coefficients (see, e.g., Schumann 1976 or Zikanov & Thess
1998) shown in figure 2

o <(6v2/62)2> e 2<(6v3/82)2>

2((0v2/9y)° ) ((@vafom)*)

Figure 3 shows skewness and flatness of longitudinal derivatives of the velocity com-
ponents

(2.6)

o\ 3/2 2\ 2
((@vi/0z:)?") ((0vi/om)”)

In the isotropic flow at Ny = 0, all three components of skewness and flatness are approx-

imately equal to S = 0.5 and F' = 5.4. In the presence of magnetic field, the components

measured across and along the magnetic field differ considerably. For skewness, the trans-
verse components remain close to the isotropic value, although some drop can be seen in
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FIGURE 3. Skewness (a) and flatness () coefficients (2.7) measured across ((S1 + S2)/2 and
(F1 + F3)/2 shown as ) and along (Ss and F3 shown as — — —) magnetic field. For Ny = 0,
solid lines show (S1 + S2 + S3)/3 and (F1 + F> + F3)/3 .

FIGURE 4. Modified pressure fields in developed flows.

the case of Ny = 5. The parallel component decreases significantly at Ny = 1 and even
more so at Ny = 5. This clearly indicates suppression of nonlinear energy transfer and
dissipation of strong longitudinal velocity gradients by the magnetic field. For flatness,
we also observe significant reduction in the case of Ny = 5, more pronounced for the
transverse component.

The internal structure of flow field is illustrated in figure 4, where we show snapshots of
modified pressure field made in developed flows at different magnetic field. The tendency
to anisotropy is clearly seen, although even at Ny = 5 the flow is far from approaching
two-dimensional form.

The last issue to be discussed in this section is that of componental anisotropy, which
is understood as anisotropy of the Reynolds stress tensor or velocity field (Kassinos et al.
2001). As the Joule dissipation directly affects only velocity gradients along the magnetic
field lines, the componental anisotropy is a secondary effect, which existence and strength
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FIGURE 5. Invariant maps for componental anisotropy of velocity (a) and vorticity (b) fields.
Squares, triangles, and circles are for Ny = 0, 1, and 5, correspondingly.

is far from being obvious. The componental anisotropy of field v is traditionally evaluated
with the help of the traceless tensor (Lumley & Newman 1977)
_ (o) 1

v (Ukvk> § KA

(2.8)

which has two nontrivial invariants 6n? = bi;b;; and 663 = bi;bjkbr;. The magnitude of
7 represents the degree of anisotropy, with n = 0 for an isotropic flow, and the upper
boundary n = (1 /22 4+ 253)1/ K corresponding to a purely two-component, case. The type
of the anisotropy is determined by the sign of £. If £ > 0, the flow is dominated by
the velocity component parallel to the axis of symmetry (so-called prolate axisymmetric
flow). Negative values of £ mean domination of two perpendicular components (oblate
axisymmetric flow).

We calculated the invariants at several time moments separated by few eddy turnover
times. The results presented on the invariant map in figure 5a show that the velocity fields
at Ng = 0 and Ny = 1 are fairly isotropic. The flow with strong magnetic field at Ng = 5
demonstrates a degree of anisotropy. It is interesting that the velocity field migrates
from being dominated by two velocity components perpendicular to the magnetic field
to being dominated by one parallel component. This behavior can be associated with
slow transformation of the large-scale structures of the flow.

We also calculated tensor (2.8) and invariants ) and ¢ for the vorticity field. The results
shown in figure 5b are easy to explain. As the vertical gradients of velocity are eliminated
in flows with higher IV, the vorticity field becomes dominated by the vertical component.

3. Anisotropy at different length scales

In this section we analyze the calculated flow fields to determine how and whether
at all the dimensional anisotropy varies with the length scale. We start with the power
spectra shown in figure 6. The steepening of the energy spectrum and accompanying
decrease of viscous dissipation are well known phenomena, associated with the anisotropy
(see, e.g., experiments by Alemany et al. 1979 or simulations by Zikanov & Thess 1998).
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FIGURE 6. Spectra of (a) kinetic energy, (b) rate of viscous and (¢) magnetic dissipation, and
(d) spectra of anisotropy coefficient (3.1).

More interesting is the fact that the slope of Joule dissipation curves in figure 6¢ closely
follows the slope of kinetic energy curves. This behavior detected earlier by Zikanov &
Thess (1998) and confirmed here for larger Reynolds number gives, at least, a partial
answer to our question. The ratio

3Ty p(k) _ 3y gpi-i" _ 3Dss(k)

1N =5 B T e w  2B()

m|« S

(3.1)

can be considered as a measure of dimensional anisotropy at the wavelength k. In (3.1),
the sum is over all wavenumber vectors in the shell k—1/2 < k| < k+1/2, Ty = p/oc B>
is the Joule dissipation time, and D33 is the component of the dimensionality tensor
considered by Kassinos et al. (2001). The scaling factor is chosen so as to provide g = 1
in an isotropic flow. It can be seen in figure 6d that, outside of the forced region, g(k)
varies only slightly with k& both at moderate and strong magnetic field. Even this slight
decrease can be attributed to the effect of forcing. The magnitude of g(k) is close to that
of the global anisotropy coefficients G; and G2 shown in figure 2.

The use of Fourier wavenumbers is arguably not the best way to consider the length
scale decomposition of the flow properties. In the following we concentrate on analyzing
the flow anisotropy in the physical space. First, figures 7 and 8 show the two-point
velocity correlations along the direction perpendicular and parallel to the magnetic field.
For the correlations in figure 7 we assume axial symmetry and calculate, for example,



Anisotropy of MHD turbulence 43

a) b)
1 1
0.75 L 0.75 L
I i 5 i
'\;\O 5 [ 1 i 1 5
205}k 051
&t nOoT
* I Ng=0 (o4
21
0.25 o2sp |
L I N=
0 L ok
[ 1 1 L 1 : 1 1
0 1 ; 2 3 0 1 , 2 3

FI1GURE 7. Correlations of velocity field in the direction perpendicular to the magnetic field.
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F1GURE 8. Correlations of velocity field in the direction parallel to the magnetic field.

Qe = (u(x)u(x + rey))/(u?), where (---) now stands for space averaging in x and
averaging over all horizontal directions of e .

One can see in figures 7 and 8 that imposing a magnetic field leads to growth of corre-
lations not only in parallel but also in perpendicular direction. This is in agreement with
the development of larger coherent structures in this case (see figures 4). Interestingly,
as can be seen from comparison of plots (a) and (b) in both figures, the vertical velocity
component experience much smaller increase than the horizontal components.

Figure 9 can be considered a physical-space analog of figure 6d. We calculate the
second-order structure functions T;(r) = ((v;(x+re;)—v;(x))?) and evaluate the anisotropy
at the physical scale r as the ratio

273

R(r) = T T, (3.2)

One can see that, again, the anisotropy is virtually scale-independent.



44 A. Vorobev, O. Zikanov, A. Thess, P. Davidson, € B. Knaepen

l,
+ N,=0
0.8F 1
0.6F
o |
04—
I 5
0.2F
O:w TR I S ST N [N R N |

[EEN

-
N
w

FIGURE 9. Anisotropy coefficient R(r) given by (3.2).

4. Anisotropy of stress and strain tensors

One of the goals of this work is better understanding of properties of MHD flows
related to the subgrid-scale turbulence modeling in LES. One can assume that the tra-
ditional SGS closures developed under the assumption of local isotropy are not suitable
for strongly anisotropic MHD flows at high N. The opposite conclusion was made by
Knaepen & Moin (2004) who performed LES of decaying turbulence at moderate Re and
N up to 10. They found that the dynamic Smagorinsky model (Germano et al. 1991)
is not less accurate for the MHD flows than for isotropic flows without magnetic field.
Whether such a good performance is specific to the dynamic model and whether it is
related to the scale-independence of anisotropy discussed above requires further investi-
gation. So far, we have analyzed the computed data by calculating root-mean-squares of
components of the Reynolds stress and rate of strain tensors of filtered velocity field

dij L
Tij — %Tkk; where Tij = ViVj — ViVj (41)
and
1 /0v; @ 00;
S.. == J ). 4.2
! 2 (65[3] + 8%’1) ( )

Here, the -~ stands for Fourier cut-off filtering at a wavenumber k. The results are pre-
sented as functions of & in figure 10. We assume the axial symmetry and take the averages
of statistically equal quantities. It can be seen that the rate of strain tensor becomes in-
creasingly anysotropic with growing N. There is a significant and consistent difference
between the amplitudes of, say, S12 and Si3. On the other hand, the components of the
Reynolds stress tensor are virtually indistinguishable for any NV and for any filter cut-off
k.

5. Conclusions

We performed simulations of forced homogeneous turbulence in a low-Re,,, MHD flow.
Three numerical experiments with equal constant energy input but different strength of
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FIGURE 10. Spectra of root-mean squares of components of stress (top) and rate-of-strain (bot-
tom) tensors of filtered velocity field as function of the filter cut-off k. Here 7y = <7'121 + 7'222> /2,
T2 = <7'323>, T3 = <7'122 +T221> /2, T4 = <7'123 +TH + 1 +T§2> /4. Similar notations used for
rate-of-strain tensor. For Ny = 0, 71 and 7» curves coalesce, as well as 73 and 74.

applied magnetic field were performed. The dimensional and componental anisotropy of
the flow was analyzed both in the global sense and as a function of length scale. The
main conclusions are as follows.

e While the flow develops strong dimensional anisotropy under the action of the Joule
dissipation, its componental anisotropy remains insignificant. The kinetic energy remains
approximately equally distributed over the velocity components.

¢ The analysis performed both in spectral and physical space showed that the dimen-
sional anisotropy is virtually scale-independent. We can not exclude the possibility that
different behavior can be observed at small scales of flows with much higher Reynolds
numbers. On the other hand, the extent of the range of constant anisotropy was found
to be quite significant in our simulations (about 2 orders of magnitude). We can consider
the constancy a robust feature of low-Re,, MHD turbulence.
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