Center for Turbulence Research 133
Proceedings of the Summer Program 1998

An approach to systems modeling
for real-time control of jet flows

By A. B. Cain!, T. Bewley?, J. B. Freund?, AND T. Colonius*

1. Introduction

The past 25 years have seen many examples of open-loop control of jet flows with
significant practical importance. During the same time, there have been tremen-
dous developments in the area of closed-loop feedback control strategies for linear
and nonlinear systems. It has been seen in many applications that coordination of
control application with state measurements in the closed-loop setting is essential
for optimum system performance. Thus, the possibility of feedback control of flow
systems such as turbulent jets should be carefully examined. However, such control
problems also pose technical difficulties as turbulent flow systems are multi-scale
and difficult to compute with a high degree of fidelity. Thus, the present work ex-
plores the development of low-order system models for use in the feedback control
framework for the jet control problem. The present work is part of a collabora-
tion involving Georgia Tech, Stanford University, UCLA, UCSD, and The Boeing
Company under the support of the Air Force Office of Scientific Research.

To design feedback control algorithms, it is very useful to have a simple model
that accurately captures the relevant physics of the phenomena under consideration.
Such a model, which should have sufficient simplicity to enable real-time state
estimation, is developed in the present work using linear stability theory to model
the initial development of the instabilities leading to the turbulent breakdown of
a jet. Direct numerical simulations of turbulent jets carried out by Freund et al.
(1998) will be used as validation for these models; when performed properly, such
simulations can capture the relevant flow physics “exactly”, albeit at a very large
computational expense.

System identification techniques may also be used (instead of linear stability
theory) to develop input-output system models of jets for use in the feedback control
setting, as explored by Ikeda (1998). Such models may be constructed without any
reference to the equations which govern or approximate the flow physics. The
present work is an intermediate-level approach that uses inviscid linear stability
theory to approximate the jet system. A key feature of the present work is a
piecewise quadratic approximation of the mean flow that permits rapid solution of
the equations. The authors acknowledge the careful work of Pal (1998) in deriving
the stability equations used.
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2. Large scale structures in inflectionally-dominated flows

It is well established that the inviscid inflectional instability characterized by
Kelvin and Helmholtz dominates the large-scale development of inflectionally-dominated
flows even into non-linear turbulent regimes. An excellent review discussing many
important aspects of this problem is given by Ho and Huerre (1984). Supporting
articles covering other aspects of the problem (including the nature of nonlinear
interaction and wall effects) are described in Cain and Thompson (1986) and Cain,
Roos, and Kegelmen (1990). The dominance of the inviscid inflectional instability in
the present flow motivates the use of the incompressible inviscid stability equations
as the system model.

A comparison between the prediction of linear theory and the nonlinear evolution
of the jet shear layers is given by Morris et al. (1990) and Viswanathan & Morris
(1992) for planar and round jets respectively. These works derive systems comprised
of parabolic equations for the mean flow development that depend upon the local
instability eigenproblem for the forcing. Solution of this eigensystem is generally the
most computationally-intensive aspect of generating the solution to the evolution
model for the jet. The need for very rapid solutions for real-time systems modeling
motivates our new approach to approximate solution of the disturbance eigenvalue
problem.

3. Linear stability analysis

Motivated by the need for rapid evaluation, piecewise linear and quadratic approx-
imations of the velocity profiles are used to simplify the inviscid linear disturbance
equations. In addition, mathematical solutions are somewhat easier to obtain for
the temporal evolution problem. All the work described here will use the temporal
analysis combined with Gaster’s relation to approximate the behavior of the spa-
tially evolving problem. The approach so describing an inflectionally dominated
flow is given by Drazen and Reid (1981). A few examples of the piecewise linear
analysis for planar flows will be presented before describing a piecewise quadratic
approximation that will be used as an approximation in the round jet geometry.

3.1 The piecewise linear approrimation for planar geometries

The simplest example of the piecewise linear approach is a three-segment rep-
resentation of the plane shear layer. This approach has been shown to provide
consistent and reasonable characterization of the stability behavior of this flow, and
it compares well with a more accurate (but more time consuming) analysis with a
hyperbolic tangent representation of the mean velocity profile. The characterization
of the disturbances is given by the exponential coefficient for temporal disturbance
growth rate and phase speed and is a function of the disturbance wavenumber. As
shown in Fig. 1, the phase speed computed using such an approach varies from U
to 3U, where U is the velocity of the slow stream. The complex wave speed comes
as complex conjugate pairs, and the actual phase velocity is the mean of the two
branches plotted. The imaginary part of the wave speed (which in product with the
wavenumber gives the exponential growth rate) vanishes at a wavenumber slightly
greater that 0.3.
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FIGURE 1. Phase speed and growth rate -—-- for piecewise linear planar
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FIGURE 2. Phase speed
piecewise linear planar jet.

The next piecewise linear flow considered is the planar jet. Figure 2 shows the
Gaster transformed and scaled spatial growth rate and phase speed versus wavenum-
ber for the sinuous mode of a planar jet having a potential core of 18 jet radii (r,)
long, a shear layer of 1 unit width, and a free-stream velocity equal to 1/3 of the
jet velocity 1.5U,, where U, is the average of the jet and co-flow velocities. Note
that in this case the long wavelength (low wavenumber) disturbances have a phase
speed of the free-stream speed while shorter disturbances have a phase speed of the
mean shear layer speed. Figure 3 shows the behavior of the varicose mode. Note
that the varicose mode has a phase speed equal to that of the jet centerline for long
wavelength disturbances and the same phase speed as the sinuous mode for shorter
wavelength disturbances. When the shear layers are thin and separated by a large
region of potential flow, the stability of the planar jet is nearly the same as that
of the planar shear layer except at very long wave lengths. At smaller separation,
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Ficure 3. Phase speed and growth rate —--- of a varicose mode in a

piecewise linear planar jet.
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FIGURE 4.  Phase speed and growth rate ——-- of a varicose mode in a

piecewise linear planar jet.

disturbances of the two shear layers exhibit a strong coupling. These behaviors for
both the varicose and the sinuous modes are characteristic of the actual physical
system.

3.2 The piecewise quadratic approrimation for cylindrical geometries

A piecewise representation of the mean velocity profile simplifies the round jet
stability problem to Bessel’s equation. The solutions are constrained by requiring
finite levels in the inner potential region and solutions that vanish at infinity in
the outer potential region. These inner and outer solutions (in terms of Bessel
functions) are coupled by matching conditions. The matching is achieved by a
combination of the inner and outer Bessel solutions (a linear combination of Bessel
functions is a valid solution within the finite thickness shear layer). This problem
was formulated by Pal (1998). This approach results in an involved complex-valued
quadratic dispersion relation that was solved using Mathematica.

The behavior of the axisymmetric disturbances for a round jet with a potential
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FIGURE 5. Inner and outer shear layer edges.

3L
25 [
2+
S .
Sg 15
1 [
05 |
sescecssccennee,,, ,,,, sescscsea.,
1 2 3 4 5 6
xr

FIGURE 6. Locally dominant instability wave number.

core diameter of 18r, and jet velocity U; with zero free stream velocity is given in
Fig. 4. Note that the appropriately-scaled growth rate and phase speed behave in a
manner which is qualitatively similar to the varicose mode of the analogous planar
jet.

4. Prediction of jet spreading

The formulation of Viswanathan and Morris (1992) was implemented using the
piecewise quadratic stability formulation. An example of the predicted evolution
of the shear layer edges using only the n = 0 axisymmetric disturbance is shown
in Fig. 5. Figure 6 shows the locally dominant wavenumber versus downstream
distance in jet radii. It is assumed that, when a disturbances saturates (due to the
thickening of the shear layer), the sub-harmonic will become dominant and evolve
until saturation, and so on. The results shown in Figs. 5 and 6 are for an initial
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shear layer thickness of 1% of the jet radius.

5. Conclusions

An approximate analytic solution to the appropriate linear stability problem,
and the role of this solution in the evolution of the round jet, has been investigated.
When fully implemented, such a formulation may model the physical behavior of
the jet with sufficient accuracy to be used as a state model in a feedback control
setting. Once programmed in an efficient manner, the computational expense of
this model should be manageable. The use of such a model as a state estimator in
a feedback control framework thus appears promising though the “real” problem
prediction must include at least the n = +1 modes in addition to the n = 0 mode
given here. In the case of a thin shear layer, the n = 1 modes behave similarly to
the n = 0 mode and may be analyzed with the n = 0 analysis. However, the solution
for n = +1 is required as the shear layer thickness becomes significant relative to
the jet radius. For the mixing problem it is likely that the solution near the end
of the potential core will need to be calculated. A transformation analogous to
the Squire reformulation (of the three-dimensional planar stability problem into an
equivalent two-dimensional problem in the transformed variables) will be pursued
in the round jet problem.
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