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Mode interaction in a forced homogeneous
jet at low Reynolds numbers

By I. Danaila1 AND B. J. Boersma

The near-field evolution of a forced axisymmetric jet was investigated by means of
Direct Numerical Simulation (DNS). The numerical configuration simulated a low
Reynolds number jet (ReD = 1500) issuing from a circular orifice in a solid wall.
Periodic streamwise velocity disturbances were applied at the nozzle. Four modal
distributions of forcing were studied. The first and the second type of perturbation
contained only one of the two fundamental instability modes of the round jet: the
axisymmetric m = 0 mode and the helical m = 1 mode. A ‘classical’ evolution of
the jet flow was obtained for these cases. This provided a reference to the third
case, which consisted of forcing simultaneously the counter-rotating helical modes
m = ±1 with the same amplitude and the same frequency (flapping mode). The jet
split into two branches, taking a distinct ‘Y’ shape characteristic of the bifurcating
jets (cf. Lee & Reynolds, 1985). A different evolution of the bifurcating jet is
observed when superposing the axisymmetric mode, at the most amplified unstable
frequency, with the flapping mode, with the same amplitude but with subharmonic
frequency. This combination led to resonant growth of the jet with a spectacular
increase of the spreading angle up to 90o.

1. Introduction
Considering the many practical applications of round jets (aeroacoustic, combus-

tion, propulsion, mixing), numerous attempts have been made to control jet mixing
and entrainment. A full listing of the proposed control approaches would easily
exceed one hundred references.

All the control techniques use active or passive devices to alter the vortex dy-
namics close to the nozzle. From a theoretical point of view, the large coherent
structures characterizing the near field evolution can be assimilated with instability
modes, described by their azimuthal wavenumber m. Several fundamental results
derived from linear stability analysis and experimental observations offer a complete
picture of the mode selection in the near field of a natural (unforced) axisymmetric
jet:

(i) The two linearly dominating modes are the axisymmetric (or varicose, m =
0) and first helical (m = 1) modes. For jets with thin initial shear layer, the
linear amplification characteristics of these two fundamental modes are similar (e.g.
Batchelor & Gill 1962, Michalke 1982). This has been confirmed in experiments
(e.g. Cohen & Wygnanski 1987, Corke et al. 1991).
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(ii) Higher helical modes (m ≥ 2) are always less amplified than the fundamental
modes (Mattingly & Chang 1974, Plasko 1979) and were rarely (if ever) observed
in experiments.

(iii) Although the linear characteristics of the fundamental modes are almost
identical, only one mode (m = 0 or m = 1) will dominate at the early stages
of the near field evolution. The dominant mode is selected by amplification of
coherent initial perturbations such as the pressure field at the lip (Morris 1976). In
most laboratory jets, only planar disturbances are emanating from the nozzle and,
consequently, the axisymmetric mode plays the dominant role (Cohen & Wygnanski
1987b). If the disturbances at the jet exit lip are stochastic, the switch from one
mode to the other can occur, but the two fundamental modes never exist together
(Corke et al. 1991).

(iv) Since the linear stability characteristics of the counter-rotating helical modes
m = 1 and m = −1 are indistinguishable (Batchelor & Gill 1962, Danaila et al.
1998), there is a greater likelihood to observe both m = ±1 modes in the flow rather
than a single helical mode. The nonlinear interaction of these two modes lead to
characteristic flow patterns (Dimotakis et al., 1983, Danaila et al. 1997). When
the m = ±1 modes have the same frequency and amplitude, the so-called flapping
mode is obtained (see, for example, Morrison & McLaughlin 1980). In conclusion,
the linear superpositions of the m = ±1 modes (in particular the flapping mode)
can also be considered as fundamental modes.

In the light of these results, the jet control techniques can be watched as at-
tempts either to control the dynamics of a single fundamental mode or to force
simultaneously several of these modes:

(1) The evolution of the axisymmetric mode characterized by vortex ring roll-
up offers many possibilities of control. Many researchers have investigated the
effects of axial acoustic forcing on the vortex ring generation (Crow & Champagne
1971, Bouchard & Reynolds 1982), spacing and pairing (Hussain & Zaman 1980,
Hussain & Clark 1981, Ho & Huang 1982). The amplitude and frequency of the
forcing excitation can determine the number of pairings and their locations and,
consequently, the spreading rate of the jet. The azimuthal instability of rings and the
formation of streamwise vortex filaments were reported as an important entrainment
mechanism in jets (Liepmann & Gharib 1992). When combined with axial acoustic
disturbances, passive azimuthal forcing (obtained by using corrugated nozzles) could
be very effective in mixing and entrainment enhancement (Lasheras et al. 1991).

(2) The helical modes m = ±1 can be generated by controlled acoustic excitation
(Parekh & Reynolds 1988, Corke & Kusek 1993) or triggered by passive devices
which break the axial symmetry (e.g. tabs - Bradbury & Khadem 1975, sawtooth
nozzles - Longmire & Duong 1995). Although less studied than the axisymmetric
mode, the helical modes showed some interesting mixing properties. Mankbadi &
Liu (1981) showed that helical modes are more efficient than the axisymmetric one
in pumping energy into turbulent small scales due to its shorter streamwise lifespan.
The subharmonic resonance of the m = ±1 modes can lead to a net increase (300%)
of the jet momentum thickness compared to the unforced jet (Corke & Kusek 1993).
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(3) The most interesting mixing and entrainment properties are obtained when
combined axial and helical forcing are used. Lee & Reynolds (1985) used axial
acoustic excitation to generate vortex rings and moved the nozzle in a circular path
perpendicular to the jet axis (orbital excitation). Neighboring generated rings are
radially shifted in different azimuthal planes and induce one another to move on
distinct branches. The ratio R between the axial and the orbital forcing frequency
set the number of branches. Bifurcating (R = 2), trifurcating (R = 3), and blooming
(1.6 < R < 3.2 and non-integer) jets are obtained with a spectacular increase of
the spreading angle (from 18o for the unforced jet up to 80o for the bifurcating jet).
Parekh, Leonard & Reynolds (1988) obtained high Reynolds bifurcating jets using
axial and flapping acoustic excitation produced by four speakers placed around
the perimeter of the nozzle exit. The bifurcation occurred above a critical forcing
amplitude, increasing with the Reynolds number. Higher forcing frequencies yielded
bifurcating jets with larger spreading angles.

Similar (albeit more distorted) bifurcating jets were reported in jet experiments
using axial forcing and passive control devices. Stepped or sawtooth trailing edges
attached at the nozzle exit (Longmire & Duong 1995) or inclined nozzles (Webster &
Longmire 1997) generated complex helical structures which altered the downstream
evolution of vortex rings. The bifurcating effect was found to be strongest when
low forcing frequencies were used, a trend opposite to that seen by Lee & Reynolds
(1985). Zaman, Reeder & Samimy (1996) used a combination of two diametrically
opposed tabs placed at the nozzle exit to obtain bifurcating supersonic jets. Further
work (Zaman & Raman 1997) showed that, in low Mach number jets, tabs and axial
excitation independently increased jet spreading while a combination of the two had
an opposite effect.

This study was especially inspired by the experiments of Parekh et al. (1988), who
studied the effects on the round jet evolution of four types of acoustic excitation:
axisymmetric, helical, flapping, and bifurcating (i.e. axial + flapping). The spectac-
ular increase in spreading of the bifurcating jet was compared to the reference cases
provided by the axially and helically excited jets. One of the main conclusions of this
study was the independence of the bifurcation phenomenon of the Reynolds num-
ber. For the explored range of high Reynolds numbers (10 000 < Re < 100 000), an
optimum set of parameters (frequency and amplitude of excitation) can be found in
order to obtain bifurcating jets similar to those reported by Lee & Reynolds (1985)
for low Reynolds numbers (2 800 < Re < 10 000).

This observation suggests that bifurcating phenomena can be approached by Di-
rect Numerical Simulation (DNS). Recent DNS of spatially evolving low Reynolds
number jets proved very effective in investigating properties of the transitional
(Danaila et al. 1997) or turbulent (Boersma et al. 1998) regimes of free incom-
pressible jets. In this work we make use of DNS to assess the influence of the four
abovementioned excitations on the jet evolution. Although the vortex dynamics of
some bifurcating jets can be simulated by simpler numerical approaches, as the vor-
tex filaments method (see Parekh et al. 1988), DNS is expected to offer a complete
description of the underlying mechanisms involved in such flows.
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Figure 1. Computational domain and boundary conditions.

2. Numerical details
The numerical solver simulates a free round jet issuing from a circular orifice

of diameter D in a solid wall. The solver solves the incompressible Navier-Stokes
equations in a spherical coordinate system with (r, θ, φ) denoting the radial, az-
imuthal, and tangential directions. Details of the numerical scheme can be found
in Boersma et al. (1998). The computational domain shown in Fig. 1 results from
the intersection between the shell defined by the surfaces r = 5D and r = 15D
and the cone starting from the center of the sphere with an opening angle of 36o.
The obtained geometry covers a domain with a streamwise extent of 15D and a
spanwise diameter of 3D for the inflow section and 10D for the outflow section.
Such a discretization is able to follow the streamwise spreading of the jet and al-
lows a well-balanced resolution of the flow field with a reasonable number of grid
points. For convenience, the cylindrical coordinates (rc, θc, z) with rc the radial, θc
the azimuthal, and z the axial directions will be used to analyze the results.

The boundary conditions are also illustrated in Fig. 1. At the inflow section, the
mean streamwise velocity profile is imposed as initial and boundary condition. We
used the ‘classical’ hyperbolic tangent (tanh) profile, which matches very well with
profiles measured in experiments (see Michalke 1984). In cylindrical coordinates it
reads:

Vz0(rc)/V0 = 0.5{1 + tanh[0.25D/Θ0(D/(4rc)− rc/D)]}, (1)

where V0 is the centerline velocity (at rc = 0) and Θ0 the initial momentum thick-
ness. At the lateral boundary, traction-free boundary conditions are used (see, for
example, Gresho 1991): σij · nj = 0, where σij is the stress tensor and nj the
unit normal on the boundary. The main advantage of this traction-free condition
over the largely used free-slip or no-slip boundary conditions is that fluid exchange
across the boundary is allowed. This appeared to be very useful to properly simulate
the entrainment of ambient fluid in the spreading jet flow. A so-called convective
boundary condition (Orlanski 1976, Lowery & Reynolds 1986) was used to evac-
uate the vortex structures through the downstream boundary. This condition is
numerically stable but physically not very realistic in elliptic flows. However, the
convective nature of the homogeneous jet flow (Huerre & Monkewitz 1990) allows
it to eventually evacuate spurious reflections at the outflow boundary.
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3. Selection of physical parameters
The guidelines for the selection of physical parameters used in our spatial simula-

tion were found in Parekh et al. (1988). In their experiments, the Reynolds number
was varied in the range 104 < ReD = V0D/ν < 106. The measured ratio between
the jet diameter and the momentum thickness of the inflow mean velocity profile
was D/Θ0 = 66 for ReD = 104 and about seven times larger for ReD = 106. The
acoustic excitation was characterized by the axial Strouhal number Sta = faD/V0

when the axisymmetric mode was forced at the frequency fa. The corresponding
helical Strouhal number Sth = fhD/V0 was defined for the helical or flapping mode
excitation. The dual-mode excitation was characterized in terms of the frequency
ratio Rf = fa/fh and the axial Strouhal number Sta.

The bifurcating jet was obtained only if Rf = 2 and for a well defined range of
axial Strouhal numbers: 0.4 < Sta < 0.7. Nevertheless, the maximum jet spreading
occurred around Sta = 0.55 for all investigated Reynolds numbers. The same
optimum value for Sta was reported by Lee & Reynolds (1985) for the bifurcating
jet at ReD = 3700. No satisfactory explanation of this phenomenon was provided.
We believe that the invariance of Sta with the Reynolds number can be connected
to another unexplained phenomenon reported in free jets, which is the locking of the
jet preferred Strouhal number for large ratiosD/Θ0 (see Ho & Huerre 1984). Indeed,
it is well known that the most amplified frequency at the end of the potential core is
independent of the Reynolds number and results from nonlinear interactions (Crow
& Champagne 1971). The value of the Strouhal number based on this preferred
frequency and the jet diameter varies from one experiment to another between
0.2 and 0.5 (Gutmark & Ho 1983). The preferred Strouhal number scales with
the shear-layer frequency for small D/Θ0 and ‘locks’ at a constant value of 0.44
for D/Θ0 ≥ 240 (Ho & Huerre 1984). A similar phenomenon can occur in high
Reynolds bifurcating jets, where collective interactions of vortex rings at the end of
the potential core cause the jet to split in two distinct branches. Consequently, the
value Sta = 0.55 can be considered as the preferred axial Strouhal number of the
bifurcating jets characterized by large ratios D/Θ0.

In view of these experimental observations, we chose the following physical pa-
rameters to define the inflow velocity profile given by Eq. (1): D/Θ0 = 60 and
ReD = 1500. For this low Reynolds number, a uniform mesh of (192 × 128 × 96)
grid-points in the (r, θ, φ) directions is sufficient to resolve the smallest scales of the
motion in the considered computational domain (see Boersma et al. 1998). As a
result of this discretization, 12 grid-points are situated in the initial shear region at
the nozzle, offering a correct resolution of the instability waves.

The simulated jet is forced by superposing oscillating components on the mean
nozzle exit velocity. Only streamwise velocity disturbances are used. The analytical
form of the resulting inflow velocity profile is:

Vz(rc, t) = Vz0(rc)

[
1 +

∑
m

Am sin
(

2π
StmV0

D
t−mθc

)(
2rc
D

)|m|]
, (2)

where Vz0 is given by Eq. (1) and m is the azimuthal wavenumber of the excitation.
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Figure 2. Three-dimensional representation of the streamwise velocity profile at
the nozzle. Evolution during one cycle of excitation.

Four types of excitation were considered, as in experiments. The time evolution of
the inflow velocity profile during one cycle of excitation can be followed in Fig. 2.

[(A)-jet] Axisymmetric excitation (m = 0); Sta = 0.55; Aa = 0.15.
The up and down ‘movement’ of the velocity profile around the mean value

(Fig. 2) mimics the perturbation introduced by a speaker placed in the plenum
chamber of a laboratory jet. The excitation parameters (Sta, Aa) were fixed in
order to provide a reference case for the bifurcating jet (see below).

[(H)-jet] Helical excitation (m = 1); Sth = 0.55; Ah = 0.15.
This perturbation approaches the disturbances produced by an azimuthal array

of acoustic drivers placed close to the jet lip and controlled by a helical input
(Parekh et al. 1988, Corke & Kusek 1993). The asymmetric velocity profile makes
a complete rotation during one period of excitation.
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[(F)-jet] Flapping excitation [(m = 1) + (m = −1)]; Stf = 0.55; Af = 0.15.
The flapping excitation results from the superposition of the counter-rotating

helical modes with the same amplitude and frequency. An equivalent form of the
inflow velocity profile (Eq. 2) is in this case:

Vz(rc, t)
Vz0(rc)

=
[
1 +Af sin

(
2π
StfV0

D
t

)
cos(θc)

(
2rc
D

)]
(3)

Compared to the helical excitation, the time evolution of the velocity profile (Fig. 2)
is phase locked in the plane θc = 0.

[(BF)-jet] Bifurcating excitation [(m = 0) + (m = 1) + (m = −1)]; Sta = 0.55;
Stf = Sta/2; Aa = Af = 0.15.

The bifurcating perturbation is obtained by imposing a dual-mode (axisymmetric
+ flapping) and dual-frequency (Rf = Sta/Stf = 2) excitation. Since both the ex-
periments of Lee & Reynolds (1985) and Parekh et al. (1988) indicated a maximum
spreading of the bifurcating jet for an axial Strouhal number of 0.55, the same value
is considered here. The large excitation amplitude (15%) is close to that used by
Lee & Reynolds (1985). Along with the amplitude, the relative phase (Φ) between
the axial and the flapping excitations is very important. Bifurcation occurs only if
the peak of the axial signal is approximately aligned with the peak of the flapping
signal (Parekh et al. 1988). The measured values were Φ = 47o±15o at ReD = 106

and Φ = 31o±15o at ReD = 50 ·103. In our simulations, we imposed the theoretical
value Φ = 45o to obtain the peak alignment (see the last frame of Fig. 2, with the
dashed line representing the flapping component of the perturbation). The final
form of the velocity profile can be written as:

Vz(rc, t)
Vz0(rc)

=
[
1 +Aa sin

(
2π
StaV0

D
t

)
+Af sin

(
2π
StfV0

D
t+ Φ

)
cos(θc)

(
2rc
D

)]
(4)

4. Results
The response of the jet flow to the excitations described above is analyzed both

instantaneously and statistically. As in experiments, flow visualization is empha-
sized. For this purpose, a passive scalar conservation equation with Fickian diffusion
assumption is solved with the same numerical scheme. Two different types of scalar
injection are considered. The first scalar (S1) has the same mean inflow profile as
the injection velocity (Eq. 1). This tracer marks all the jet fluid and provides a
qualitative estimation of the entrainment through the interface between ambient
and jet fluid. The second tracer (S2) is injected with a mean profile corresponding
to the vorticity profile of the initial shear-layer (derivative of Eq. 1). This is useful to
mark the vorticity-bearing jet mixing-layer and to track large coherent structures.
For our numerical tracers, a very small diffusivity was chosen in order to avoid
rapid contamination of all the computational domain. This is good assumption for
water flow visualization, where the viscous diffusion of the (fluorescein) dye can be
neglected.
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Figure 3. (A)-jet (left) and (H)-jet (right). Instantaneous cross-section (θc = 0)
in the (S1) passive scalar field.

4.1 Axisymmetric and helical excitations

Instantaneous cross-sections in the scalar field (S1) are displayed in Fig. 3 for
the axially (left) and helically (right) excited jets. The large forcing amplitude
expedites the transition of the the initially laminar jet mixing layers. In both cases
the transition consists of formation of coherent structures of Kelvin-Helmholtz type
(cat-eyes). These structures are spatially organized in toroidal vortex rings in case
(A) and helical patterns in case (H).

It should be noted that, for the hyperbolic tangent velocity profile (1) with
D/Θ0 = 60, the linear stability analysis (Michalke 1984) showed that the axisym-
metric and the helical modes have almost the same ‘most amplified’ (or ‘natural’)
frequency (fn). In terms of Strouhal number based on the momentum thickness, its
theoretical value is: StΘ0 = fnΘ0/V0 = 0.017. The corresponding Strouhal number
based on the jet diameter will be StD = 1.02. As a result, the forcing frequency
(Sta = Sth = 0.55) is very close to the subharmonic ‘natural’ frequency and will
cause ‘collective interactions’ of vortex structures (Ho & Huang 1982). Figure 3
also captures the vortex rings pairing process in the axially excited jet. For the he-
lically excited jet, the coalescence of two neighboring vortex loops of the helix can
be observed (Fig. 3). This phenomenon was never reported in experiments with a
single helical mode input. A similar ‘helical pairing’ process was reported by Corke
& Kusek (1993) in their jet, simultaneously forced with m = ±1 modes.

In both jets, vortex amalgamations generate larger coherent structures and in-
crease the local momentum thickness of the shear layer. The streamwise wavelength
is doubled by pairings as illustrated in Fig. 4 presenting a snapshot of the (S2) tracer
evolution near the nozzle. The vortex cores are easily identified by high tracer
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Figure 4. (A)-jet (left) and (H)-jet (right). Instantaneous cross-section (θc = 0)
in the (S2) passive scalar field. Zoom in the region close to the nozzle.

concentrations. From this visualization, the instability wavelength is estimated to
λa/D ≈ 1.03 for the case (A) and λh/D ≈ 0.86 for the case (H). As the forcing
frequency is higher than fn/2, the response frequency of the shear will be equal to
the forcing frequency (Ho & Huerre 1984). With this assumption, the convection
velocity of the unstable modes can be calculated as Vc/V0 = λ/DStD. The ob-
tained values (Vc/V0)a = 0.56 and (Vc/V0)h = 0.47 are very close to the theoretical
value of 0.5.

Different azimuthal sections offer similar images for both cases. Figure 5 presents
a three-dimensional picture of the large coherent structures dominating the near-
field. The fundamental (m = 0) and (m = 1) unstable modes are clearly identified
by means of iso-surfaces of low pressure (see Jeong & Hussain 1995).

However, the azimuthal symmetry of the axially forced jet is broken downstream
of the pairing location. Stretched lateral ejection of the passive scalar (Fig. 3) sug-
gests that secondary azimuthal instability develops and forms side-jets (see Liep-
mann & Gharib 1992). The azimuthally distorted structure of the last vortex ring
displayed in Fig. 5 confirms this observation. Subsequent simulation of the axially
forced jet with additional low amplitude (2%) white noise disturbances at the noz-
zle showed a more rapid breakup of the vortex rings into turbulent puffs beyond
z/D ≈ 5 (pictures not shown here). On the other hand, the helical structure is less
stable and breaks up in small eddies without any additional disturbances (Fig. 3).
This observation matches the results of Mankbadi & Liu (1981), showing that he-
lical modes have a shorter streamwise lifespan than the axisymmetric mode. This
property makes the helical modes more effective in transferring energy into small
turbulent scales.
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Figure 5. (A)-jet (left) and (H)-jet (right). Identification of large coherent
structures by instantaneous iso-surfaces of low pressure (p = 0.2 · pmin).

4.2 Flapping and bifurcating excitations

The structure of the simulated jet changes dramatically when flapping or bifurcat-
ing excitation are applied at the nozzle. A spectacular increase of the jet spreading
angle is observed in the bifurcating plane. This plane of maximum spreading is
fixed by the azimuthal position where the flapping perturbation locks (θc = 0 in
our case). The plane perpendicular to the bifurcation plane is also called bisecting
plane. Figure 6 depicts instantaneous pictures of the (S1) scalar evolution in the
bifurcating plane for the jet with flapping (left) and bifurcating (right) perturba-
tion. The same picture taken in the bisecting plane is presented in Fig. 7. Both
jets exhibit different behavior in the two planes.

In the bifurcating plane, the flapping excitation causes the jet to split into two
distinct branches (Fig. 6-left). Approximately at the same downstream location
(z/D ≈ 5), the jet with bifurcation excitation spreads in a wide-angle turbulent
structure (Fig. 6-right). In the bisecting plane, the scalar evolution is similar for
both jets. The tracer, organized in large axisymmetric structures, seems to disap-
pear downstream of z/D ≈ 5 (Fig. 7). Practically no spreading is observed in this
plane.

This different evolution in two perpendicular planes is a characteristic of ex-
perimentally observed bifurcating jets. Nevertheless, only the (F)-jet displays the
Y-shaped structure, reported as the most striking feature of bifurcating jets at
low Reynolds numbers (ReD ≤ 10 000). On the other hand, the (BF)-jet shares
features of the higher Reynolds number experimental bifurcating jets (see Lee &
Reynolds 1985 and Parekh et al 1988). This is a surprising result, suggesting that
new mechanisms are involved in our simulated jets.
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Figure 6. (F)-jet (left) and (BF)-jet (right). Instantaneous snapshot of the (S1)
passive scalar field in the bifurcating plane (θc = 0).

Figure 7. Same caption as in Fig. 6. Evolution in the bisecting plane (θc = 90).

In experimental bifurcating jets, the combined axial and flapping forcing created
a periodic array of vortex rings, which were alternatively shifted in the radial direc-
tion. The helical disturbances reached their maximum amplification at the end of
the potential core. As a result, the rings tilted and propagated along two different
trajectories. In our simulated jets, different ‘bifurcating’ mechanisms are revealed
by the analysis of the space-time evolution of vortex structures.
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Figure 8. (F)-jet (left) and (BF)-jet (right). Instantaneous snapshot of the (S2)
passive scalar field in the bifurcating plane (θc = 0). Zoom near the nozzle.

Figures 8 and 9 offer a more detailed image of the large structures dominating the
simulated jet flows. The near-field evolution of the (S2) tracer shows that flapping
excitation delays the roll-up of the jet shear layer (Fig. 8-left). The first cat-eyes
are formed at z/D ≈ 2.25, compared to z/D ≈ 1.2 for the (H)-jet. A greater per-
centage of the tracer is captured at azimuthal locations corresponding to maxima
of the local velocity profile. At the diametrically opposite locations, weaker tracer
filaments connect the staggered vortices at the azimuthal maxima. This observation
is supported by the three-dimensional image of the coherent structures identified
by means of iso-surfaces of low pressure (Fig. 9-left). Ring-like vortical structures
roll up up in alternatively tilted planes every half-period of excitation. The core
of these structures progressively diminishes towards the region of minimum pertur-
bation amplitude. At this azimuthal location, the vortex ends do not merge in a
toroidal loop. They bend downstream and merge with the next vortex, generating
a large intertwined structure. This continuous structure breaks-up at z/D ≈ 5.
As a result, vortex structures similar to distorted rings propagate along two dis-
tinct branches. This last phase of vortex evolution is similar to that observed in
experiments. However, the initial stages of formation of the involved ‘ring’ struc-
tures is different since we never observed the usual (see Fig. 5) toroidal rings in our
simulation.

The shear-layer of the (BF)-jet rolls up into coherent vortex rings (Fig. 8-right)
similar to those characterizing the axially excited jet (Fig. 4-left) except for the
slight tilt of the vortices. The vortex pairing occurs at approximately the same
downstream location. Farther downstream, the vortex ring undergoes strong az-
imuthal instabilities and finally break up into small and irregular vortex structures
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Figure 9. (F)-jet (left) and (BF)-jet (right). Identification of large coherent
structures by instantaneous iso-surfaces of low pressure (p = 0.2 · pmin).

(Fig. 9-right). As observed from Figs. 6 and 8, the flow abruptly spreads in the
bifurcating plane before the complete destruction of the vortex rings. The tracer
is ejected directly from the vortex sheet connecting the rings (braid region). This
phenomenon can be explained by the excessive growth of streamwise filaments in
the braid region (see Liepmann & Gharib 1992). The streamwise filaments are
stretched by the high field strain and pulled outward from the jet by the moving
vortex rings. The streamwise component of the vorticity vector is dominant in these
regions (pictures not shown) and generates strong expulsion of passive tracer. In
conclusion, the ‘bifurcating’ mechanism for the (BF)-jet concerns mainly the evo-
lution of secondary streamwise vortice, rather than that of primary vortex rings.
It should also be noted that the phase difference (Φ) between the axial and the
flapping excitation (see Eq. 4) is essential to obtain bifurcation. The simulation
with Φ = 0 revealed small spreading in the excitation plan similar to that obtained
for the (A)-jet.

4.3 Mean flow evolution
To assess if the behavior observed in the instantaneous pictures is highly repeat-

able, the mean flow fields were calculated. The statistical analysis is conducted
within the same time period T = 2D/(Sta · V0) for all the simulated cases. This
period corresponds to the lowest forcing frequency (∼ Sta/2) used in the (BF)-case.
The average procedure uses the information at every time step in the considered
time interval. A converged mean flow field is obtained by averaging the mean data
calculated for 2T time periods in the (A) and (H)-case and 4T time periods in the
(F) and (BF)-case.

Figures 10 and 11 depict the mean fields of the (S1) scalar variable for all the
simulated cases. The (A) and (H) jets display a very small spreading rate in all
of the azimuthal planes. A dramatic increase of jet spreading in the bifurcating
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Figure 10. (A)-jet (left) and (H)-jet (right). Mean (S1) passive scalar field.

Figure 11. (F)-jet (left) and (BF)-jet (right). Mean (S1) passive scalar field in
the bifurcating plane.

plane is observed for the (F) and (BF) cases. The Y-shaped structure of the (F)-jet
(already observed in Fig. 6) is clearly displayed in this picture. Note the similarity
with the pictures provided by the product visualizations in the bifurcating jets of
Lee & Reynolds (1985). The (BF)-jet shows the greatest spreading rate. Although
two distinct branches can be identified, the tracer concentration near the jet axis
has a great value. The complicated tree-structure of the (BF)-jet can be generically
described as Ψ-shaped. Based on these visualizations, we can speculate that the
rapid breaking of the large structures in this jet enhances mixing and entrainment.
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Figure 12. Mean streamwise velocity profiles for the (F) and (BF) jets.

Therefore, the (BF)-jet can be very interesting for practical applications.

The trends observed in the evolution of the (F) and (BF) jets can be summarized
by plotting the mean streamwise velocity profiles (Fig. 12). In the far-region of the
(F)-jet (z/D ≥ 5), double-peak profiles can be observed in the bifurcating plane
and very flat profiles in the bisecting plane. This evolution indicates that the jet
flow splits into two distinct jets in the bifurcating plane and gradually vanishes
in the perpendicular plane. The splitting of the jet main column in two branches
directed in a well-defined azimuthal plane was reported as the most sticking feature
of experimental bifurcating jets. The (BF)-jet displays a different evolution of the
mean velocity. Bell-shaped profiles are observed in both bifurcating and bisecting
planes. Nevertheless, the wider profiles in the bifurcating plane demonstrate the
increased total momentum thickness and jet spreading in this plane.
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5. Summary and final discussion

The evolution of a low Reynolds number round jet under periodic forcing was
examined by means of DNS. The selection of the physical parameters of the spa-
tial simulation was guided by the experimental studies of Lee & Reynolds (1985)
and Parekh, Leonard & Reynolds (1988). The periodic forcing was numerically
modeled by superposing streamwise velocity perturbations on the mean inflow ve-
locity profile. The four considered types of perturbations represented linear com-
binations of the fundamental unstable modes in jets: (A) axisymmetric [m = 0],
(H) helical [m = 1], (F) flapping [(m = 1) + (m = −1)], and (BF) bifurcating
((m = 0) + (m = 1) + (m = −1)].

The evolution of the axially and helically forced jets is in very good qualitative
and quantitative agreement with previous theoretical and experimental studies. The
flapping and the bifurcating perturbations generate jets with a spectacular increase
of the spreading rate in the plane where the excitation locks (from 16o for the (A)-jet
to approximately. 90o for the (BF)-jet).

In their attempt to semantically define bifurcating jets, Parekh et al (1988) em-
phasized that a jet which spreads more rapidly in one plane than in the perpen-
dicular plane is not necessarily a bifurcating jet since elliptic jets exhibit the same
characteristic. Based on flow-visualizations, they proposed two criteria to define a
bifurcating jet: the jets split into two separate jets and/or the far-field streamwise
velocity profiles consist of two separate peaks. The first criterion is fulfilled when
the jet fluid disappears as one moves downstream in the plane perpendicular to the
excitation plane.

The surprising result displayed in our simulations was that only the (F)-jet ful-
filled the two criteria. The involved bifurcating mechanism was similar to that
experimentally reported except for the formation of coherent ring-like structures.
The (BF)-jet showed some similaritie, but also some clear differences when com-
pared to experimental bifurcating jets. A new bifurcating mechanism based on
the growth of secondary streamwise vortices was proposed to explain the observed
behavior. Consequently, we propose a more general definition classifying a jet as
bifurcating jet if it spreads rapidly in one plane but not in the perpendicular plane,
without axis switching. This definition will exclude jets with non-circular nozzles
(elliptic, triangular) and will include indeterminate-origin bifurcating jets.
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