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Evaluation of the statistical Rayleigh-Ritz
method in isotropic turbulence decay

By G. L. Eyink 1 AND A. Wray

A Rayleigh-Ritz method for calculating the statistics of nonlinear dynamical systems
is tested against LES data for homogeneous and isotropic decay of turbulence. The
comparisons in this work are of 2-point, 2-time Eulerian velocity correlators. At
this level, the Rayleigh-Ritz predictions are formally realized by a linear Langevin
model for the fluctuation variables. We study how well standard K-ε models that
are adequate to describe the decay of ensemble means can also predict the decay
of fluctuations. In addition to such standard RANS closures, we also consider
some spatially nonlocal and temporally non-Markovian models, which include scale-
dependent eddy viscosities and convective sweeping in Fourier space.

1. Introduction
This work investigates a Rayleigh-Ritz variational method to solve for the statis-

tics of nonlinear dynamics, which was earlier proposed (Eyink, 1996). Formally,
the method provides an approximate solution of the Liouville-Hopf equation for the
time-evolution of probability distributions in phase-space by the method of weighted
residuals (Finlayson, 1972). The Rayleigh-Ritz method can be understood most
simply as the classical moment-closure method extended to give a description, not
merely of averages, but also of fluctuations. The ordinary moment-closure equation
for a set of ensemble-averages mi(t) = 〈ψi(t)〉, which we may write as

ṁi(t) = Vi(m, t), (1)

can be obtained as an Euler-Lagrange equation in a variational solution of the
Liouville-Hopf equation by the method of weighted residuals. On the other hand,
the Euler-Lagrange equation for a constrained variation under a constraint on the
mean moment histories is a perturbed closure equation of the form

ṁi(t) = Vi(m, t) +
∑
j

Cij(m, t)hj(t). (2)

Here, hj(t) is a Lagrange multiplier function to incorporate the constraint. The
function C(m, t) represents the statistical covariance matrix of the closure vari-
ables at a single time t, or Cij(m, t) := 〈ψ′i(t)ψ′j(t)〉m, given as a function of the
moment averages m. As usual, ψ′i = ψi − mi represents a fluctuation variable.
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Any of the closure schemes ordinarily applied to the modeling of Eq. (1) for the
averages can also be applied to Eq. (2), providing thereby predictions for fluctu-
ations. Intuitively, the imposition of constraints should give information about
fluctuations by the principle that the probability of a fluctuation is determined by
the cost to produce it under a constraint. This may be called the “Cramér princi-
ple”, see (Frisch, 1995). In fact, it may be shown (Eyink, 1996) that the solution
of Eq. (2) contains complete information about the statistical distribution of the
random histories ψ′i(t). In particular, it can be shown that the 2-time covariance
matrix Cij(t, t0) := 〈ψ′i(t)ψ′j(t0)〉 is obtained in the Rayleigh-Ritz method from a
simple fluctuation-response relation:

Cij(t, t0) = Rij(t, t0) +Rji(t0, t) (3)

where R(t, t0) is the response Rij(t, t0) := δmi(t)
δhj(t0)

∣∣∣
h=0

of the solutionmi(t) of Eq. (2)

to an infinitesimal change of the control field hj(t), see (Eyink, 1998).
It is the purpose of this work to investigate the success of standard closures to

predict fluctuations when employed in the constrained variational equation (2). We
shall consider here only the simplest situation for a turbulent fluid governed by the
Navier-Stokes equations, namely, homogeneous, isotropic decay at high Reynolds
number. It is well-known that RANS closures such as the standard K-ε model are
adequate to reproduce the ensemble-averages in such an equilibrium turbulence.
The main issue to be addressed here is the success of such closures to predict the
lowest-order statistic for the fluctuations, the 2-time covariance matrix of the clo-
sure variables. The Rayleigh-Ritz method also gives predictions for all higher-order
multi-time statistics, e.g. transition probabilities, but we shall confine ourselves
here to a check only at the lowest-order. The 2-time correlations already have some
direct interest in terms of the predictability problem for meteorology and climatology
since they give the statistical correlation between successive states, e.g. the corre-
lation between the weather today and weather tomorrow. In addition, information
about fluctuations is essential in engineering problems such as the turbulence control
problem or the LES-RANS matching problem for wall-bounded flows.

The method of our investigation is to compare the Rayleigh-Ritz predictions with
those of an Ensemble LES calculation for isotropic decay. The use of LES rather
than DNS allows our study to be made, in principle, at infinite Reynolds number
and, hence, to avoid the issue of viscous corrections to the closures. The Ensemble
LES method is discussed in detail in (Carati, 1997). Our study uses a dynamical
Smagorinsky subgrid stress model with the dynamical coefficient calculated for a
sharp spectral filter by an average over 64 different ensemble realizations on a 643

lattice. The single-time spectrum is obtained for the resolved velocity field v(x, t)
by averaging over the space domain as well as the ensemble realizations. In addition
to the single-time statistics, we obtain the 2-time cospectra of the velocities v(x, t)
at each time t with the velocities v(x, t0) at the initial time t0. This allows us to
make a direct check on the Rayleigh-Ritz predictions. To avoid issues of modeling
the single-time correlations, we directly input the LES results for the single-time



Rayleigh-Ritz in isotropic decay 211

correlations at the initial time t0. Then, the Rayleigh-Ritz method is used to
integrate these input correlations forward in one time variable to obtain the 2-time
correlations at the pair of times t, t0. These predictions are finally compared with
the LES results for the same quantities as the basic check on the method. The
Rayleigh-Ritz calculations are carried out primarily for the K-ε closure. It is a
main objective of this work to determine what temporal statistics may be correctly
predicted with such a standard 1-point closure. However, based upon the results of
the comparison of those predictions with the LES results, improved Rayleigh-Ritz
approximations are also developed exploiting more refined closure assumptions.

2. Comparison of Rayleigh-Ritz with LES

2.1 The single-time LES results

Let us first describe the results of our LES calculations for the velocity spectrum
E(k, t), which is graphed in Fig. 1 for several times t over the LES run, including
the initial time t0 = 0.2295. As may be seen, the peak wavenumber at the initial
time t0 is approximately kP = 9, but this decreases in time to a value of about
kP = 6 at the end of the run. At each time t, the spectrum beyond the peak is an
inertial-range power-law. Graphing compensated spectra reveals that the power-
law is, to a reasonably good approximation, given by the Kolmogorov 5

3 law. As
time advances, the spectra are degraded rapidly in the high wavenumber range,
while at wavenumbers well below the peak the spectrum is nearly unchanged in
time. The low-wavenumber range can also be reasonably well fit by a power-law
∝ km with m ≈ 6. This power-law is transient due to backscatter of energy into
the low-wavenumbers, which leads to a slow decrease in the effective m value over
time.

2.2 Comparison of the K-ε Rayleigh-Ritz with LES

The most popular engineering closure for the ensemble-averages is vi, K, and ε is
the K-ε RANS model. As a reminder, its equations have the form:

∂tvi + (v · ∇)vi = −∇ip−∇jτij + ν 4 vi, (4)

∂tK + (v · ∇)K = −τij∇jvi − ε−∇iJi + ν 4K, (5)

∂tε+ (v · ∇)ε = ν 4 ε+∇iDi + P − Φ. (6)

Here, τij = v′iv
′
j is the Reynolds stress. Ji is the space transport of kinetic energy

by turbulent diffusion and molecular viscosity. Likewise, Di is the space transport
of dissipation, and P,Φ are production and destruction of dissipation, respectively.
The equations are exact as written, but the terms τij, Ji,Di,P, and Φ are all higher-
order moments that must be modeled. In the standard K-ε closure, the Reynolds
stress is modeled as:

τij =
2
3
Kδij − νT (∇jvi +∇ivj), (7)
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Figure 1. Velocity spectrum E(k, t). • : t=0.2295, �: t=0.3299, �: t=0.4183,
N: t=0.5262, J: t=0.6407, H: t=0.7647, I: t=0.8940

where the eddy viscosity is given by νT = Cµ
K

2

ε , with Cµ = 0.09 the conventional
value of the constant. Similar gradient-diffusion models are made for the other
transport terms in the K-ε closure equations, but these do not concern us here.

As reviewed in the Introduction, the Rayleigh-Ritz method gives predictions for
statistics of the fluctuations v′i by means of a perturbation of the moment-equations
(4)-(6). At the level of 2nd-order statistics, the predictions are the same as those of a
linear Langevin model (Eyink, 1998). For the K-ε Rayleigh-Ritz, the corresponding
Langevin equations are obtained by linearizing (4)-(6) around the homogeneous
state vi ≡ 0, K(t), ε(t) and by then adding suitable white-noise forces. In the
case of isotropic decay, the Langevin models for the two sets of variables v′i and
K ′, ε′ are completely uncoupled, and they can be analyzed separately. Results
on the K-ε fluctuations will be given elsewhere. The equation for the velocity
fluctuations is ∂tv′i = νT 4 v′i + qi. Because all of the coefficients in the Langevin
model are independent of space, it is advantageous to take a Fourier transform. The
fluctuations at distinct wavenumbers then also completely decouple. In the Fourier
representation

d

dt
v̂i(k, t) = −νT k2v̂i(k, t) + q̂i(k, t), (8)

It is clear that this equation cannot be accurate at all wavenumbers. In particular,
K-ε modeling is not intended to apply to inertial-range wavenumbers and higher.
The principle that the dynamics of fluctuations should be governed by the same
equations which determine the evolution of the mean values is known in statistical
physics as the “Onsager regression hypothesis” (Onsager, 1931). For the hydrody-
namic variables of molecular dynamical systems, the hypothesis is asymptotically
exact in the limit of wavenumbers small compared to the inverse mean-free-length
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and frequencies small compared to the inverse mean-free-time. Likewise, we antic-
ipate here that a K-ε Rayleigh-Ritz can be accurate—at most—for some range of
low wavenumber modes.

In general, one should expect that a model superior to standard K-ε will allow
for a wavenumber- and time-dependent dynamics as in the velocity sector

d

dt
v̂i(k, t) = A(k, t)v̂i(k, t) + q̂i(k, t). (9)

Without loss of generality, this may be represented by a scale-dependent eddy-
viscosity as A(k, t) = −νT (k, t)k2. Standard Kolmogorov dimensional reasoning
would give νT (k, t) ∝ ε1/3(t)k−4/3 in the inertial range. In fact, we may note that a
Langevin model for the velocity of the form of (24) was proposed by Kraichnan in his
“Distant-Interaction Algorithm” (DSTA) (Kraichnan, 1987). However, Kraichnan’s
model was proposed for Lagrangian time-correlations rather than the Eulerian ones
considered here. There is nothing that prevents the Rayleigh-Ritz method being
applied to Lagrangian variables of the fluid system. However, for the moment we
wish to study the ability of the standard K-ε closure to make correct predictions
for Eulerian statistics within the variational apparatus.

Our basic test of theK-ε Rayleigh-Ritz scheme is to calculate the 2-time spectrum
E(k; t, t0). Although the predictions are the same as those of the Langevin model in
Eq. (8), we shall not calculate the 2-time correlations directly from that stochastic
equation. Instead, we make use of the fluctuation-response relation (3). A direct
application would involve calculating a numerical derivative with respect to the
h-field of the solution of the perturbed closure equation, for h(t) = hδ(t − t0).
However, this algorithm turns out to be numerically unstable, and its accuracy
degrades rapidly in time. Instead, our numerical procedure, for each wavenumber
k, is to solve in conjunction with the ODE for the ensemble-means a linearized
K-ε closure equation for the 2-time cospectra with the LES 1-time cospectra at
time t0 as initial data. Although the Langevin equations are not directly employed
to calculate the 2-time cospectra, it is still important to determine whether these
Rayleigh-Ritz predictions have a model realization. To investigate this we have also
calculated the noise spectra of the Langevin white-noise forces Q(k, t). These are
obtained from a fluctuation-dissipation relation (Eyink, 1998)

Q(k, t) = νT k
2E(k, t) +

1
2
Ė(k, t), (10)

by inputting for each time t the single-time spectra discussed in Section 2.1. Real-
izability requires that Q(k, t) be nonnegative for each wavenumber k.

In Fig. 2 the 2-time spectra E(k; t, t0) are graphed as functions of wavenumber k,
for both the LES and the K-ε Rayleigh-Ritz, at a sequence of times t starting with
t0. Several points of comparison become immediately apparent. At wavenumbers
much less than the peak, the LES and Rayleigh-Ritz spectra are almost indistin-
guishable. Around the peak wavenumber there is a close agreement for a short time,
but later on the Rayleigh-Ritz spectrum decays slower than the LES. At wavenum-
bers higher than the peak, the opposite is initially true: the LES spectrum decays
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Figure 2. Comparison of 2-time velocity cospectra E(k; t, t0). t=0.2295: • - LES,
◦ - KεRR; t=0.3299: �- LES, �- KεRR; t=0.4183: �- LES, �- KεRR; t=0.5262:
N- LES, M- KεRR; t=0.6407: H- LES, O- KεRR.

slower initially and persists at larger magnitude than the Rayleigh-Ritz spectrum.
However, as time passes, the decay rate of the LES spectrum increases, and it first
equals in magnitude and then dips below the Rayleigh-Ritz spectrum.

These observations are reasonably explained. At the low wavenumbers, the rate
of change of both spectra is very slight so that the close agreement is automatic.
The agreement at early times near the energy peak is presumably an indication
that the K-ε model with the standard choice of constants is an excellent model of
the intrinsic dynamics at those scales. This is the range of wavenumbers in which
the “regression hypothesis” appears to be valid. In other words, for early times
the decay of correlations is due primarily to the space diffusion of fluctuations by
turbulent viscosity, well-described by the standard K-ε model. However, since we
are dealing with Eulerian time-correlations, this decay mechanism is overwhelmed at
later times by convective dephasing (Kraichnan, 1964b). The phase shift e−iv·k(t−t0)

in Fourier amplitudes due to advection by a random velocity v leads to a decay rate
of correlations which goes roughly as ∼ v2

0k
2(t − t0), where v0 is an rms velocity.

This grows faster in k than an eddy-damping rate such as appears in Eq. (9), which
goes as ν(k, t)k2 ∼ k2/3 in the inertial range. At the same time, the decay rate
from convection grows in time proportional to t − t0. Hence, it is negligible at
short times but rapidly grows to dominate the intrinsic decay from eddy-damping.
This leads to the later overestimation of the spectrum around the peak wavenumber
by K-ε Rayleigh-Ritz since the latter incorporates no such convective effects. The
same physical considerations explain the observations in the high wavenumber range
beyond the peak. At early times when convective effects are negligible, the constant
eddy-viscosity in the standard K-ε model overestimates the eddy-damping in the
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higher wavenumbers. Hence, the early decay of the Rayleigh-Ritz spectrum is too
rapid. At the same time, the K-ε modeling includes no convective dephasing effects,
which rapidly grow to dominate the decay of the Eulerian time-correlations. Hence,
the early decay of the LES 2-time spectra lags behind the Rayleigh-Ritz predictions,
but at later times it exceeds the Rayleigh-Ritz decay.

We do not have space here for a complete discussion of the realizability of the
K-ε Rayleigh-Ritz, but it is important to make a few remarks. The noise spec-
trum Q(k, t) of the Langevin force in Eq. (12) calculated from the FDT Eq. (10)
is not strictly realizable. Indeed, it takes on negative values for large wavenumbers
k > 36 and also slightly negative values for a range of small wavenumbers k = 5−8.
The breakdown at large wavenumbers is not really a great surprise because the
K-ε modeling is not expected to be valid there. However, the breakdown for the
wavenumbers k = 5− 8 is more serious. The reason for the realizability violation,
as we shall see below, is the K-ε model’s underestimation of the eddy-viscosity
in those wavenumber modes. On the other hand, the wavenumber which corre-
sponds to the spectral peak at the initial time, k = 9, has a marginally realizable
noise covariance. That is, to within numerical precision, the noise vanishes at that
wavenumber initially. This is not an accident, as we see below.

2.3 Improved Rayleigh-Ritz and comparison with LES
We now consider various strategies to develop an improved Rayleigh-Ritz. As a

first step, we shall carry out a POP analysis, which, as described in (Penland, 1989),
is a technique to obtain models for A(k, t0) and Q(k, t0) directly from empirical 2-
time data. The time-dependent POP method we use is a “zero-lag” prescription
discussed in (Eyink, 1998). In principle, the POP analysis gives the best possible
such linear Langevin model although there is an important issue about the “opti-
mum lag” to be used in this analysis. If it is realizable, then the best one could
hope is that the Rayleigh-Ritz Ansatz should reproduce the POP model. This
is always possible if the the Rayleigh-Ritz Ansatz goes beyond the standard K-ε
model by allowing a wavenumber and time-dependent eddy-viscosity νT (k, t), as in
Eq. (9). In addition to the POP analysis, we shall also determine a “zero-lag K-ε
model” by insisting that the Rayleigh-Ritz produce Q(k, t) ≡ 0 for all k, t. We may
enforce in this way some agreement with the zero-lag POP result since the latter
always has vanishing noise initially when the input 2-time covariance is continu-
ously differentiable (Eyink, 1998). Thus, we may use this condition as a means to
extract k, t-dependent values of the K-ε closure constant Cµ(k, t). This “zero-lag”
Rayleigh-Ritz procedure differs from POP in using only single-time LES data.

We shall determine below both zero-lag POP models and “zero-lag”K-ε Rayleigh-
Ritz models and compare these to one another. From the discussion in Section 3.2,
we may anticipate that these models should give a good short-time description of the
Eulerian 2-time correlations but a much better long-time description of Lagrangian
2-time correlations. Of course, there is nothing to prevent application of both the
POP and Rayleigh-Ritz methods to Lagrangian dynamical variables. Furthermore,
one should not expect the zero-lag POP models to differ substantially between the
two cases. The reason has to do with the physics of the convective dephasing.
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We have seen above that the decay rate from convective dephasing should vanish
∝ (t − t0) for short times. In that case, any difference in the time derivative of
Eulerian and Lagrangian correlators should vanish in the zero-lag limit t → t0.
Needless to say, while the POP models are not expected to differ for the two sets of
variables, the validity of the POP models will depend upon the choice. In agreement
with earlier workers such as (Kraichnan, 1987), we expect the POP Langevin models
to give a much better representation of the Lagrangian dynamics.

In principle, therefore, we should compare the predictions of our POP and “zero-
lag” Rayleigh-Ritz models to Lagrangian 2-time data from the LES. We hope to
do so later on, but, at the moment, such data are not available. Below we have
attempted instead to add into the Rayleigh-Ritz equations the “convective dephas-
ing” in order to make a more meaningful comparison with the Eulerian 2-time data
at our disposal. We have added the convection effects in a relatively crude way by
supplying to the derivative of the 2-time correlations in each wavenumber shell a
new term

∂tE(k; t, t0) = · · · −
[
2Cηk2

∫ t

t0

ds

∫ k

0

dq E(q, s)

]
E(k; t, t0). (11)

Note that 2
∫ k

0
dq E(q, t) represents the mean-square velocity v2

rms(k, t) of all the
wavenumbers smaller than the given wavenumber. This is natural for a term to
represent advection by the larger eddies. The constant Cη represents the “efficiency”
of the dephasing. Clearly, this should in reality be wavenumber dependent. Because
the smaller eddies are more random and more rapidly evolving, the phase shifts
they induce in Fourier amplitudes will suffer much destructive interference before
averaging over the ensemble of velocities. Hence, their contribution to correlation
decay will be reduced. On the contrary, the larger eddies are much more coherent
and slowly evolving so that there will be mostly constructive addition to the Fourier
phase shift. The constant value Cη ≡ 1 would hold for perfect “efficiency” of the
dephasing, as is true for a frozen-in-time, uniform Gaussian velocity, with perfect
coherence in space-time (Kraichnan, 1964b). Thus, we adopt a value, somewhat
arbitrarily, of an order of magnitude less than unity: Cη = 0.1. This is likely to be
an overestimate at high wavenumbers and an underestimate at low wavenumbers.
The above crude model can be regarded as a simplified form of the DIA model for
the convection effects as discussed in (Kraichnan, 1959), Section 5, and (Kraichnan,
1964a).

Our POP results are presented in the form of a “dimensionless eddy-viscosity”
Cµ(k, t0) := νT (k,t0)

K
2
(t0)/ε(t0)

.

In agreement with our earlier observations, there is a “negative eddy-viscosity”
in the lowest wavenumbers k = 1−3, the most negative value −1.9333 occurring at
k = 1. Thereafter, the eddy viscosity grows to a maximum 1.1760 at wavenumber
k = 6 and beyond the maximum decays in a roughly power-law fashion, consistent
with expectations for an inertial range. The value at the energy peak wavenumber
k = 9 is 0.0858, remarkably close to the standard K-ε value of Cµ = 0.09. We
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Figure 3. Dimensionless eddy-viscosity spectrum Cµ(k, t) at several times.
t=0.2295: • , t=0.3299: ◦ , t=0.4183: �, t=0.5262: �, t=0.6407: �, t=0.7647:
�, t=0.8940: N, t=1.0318: M, t=1.1788: H, t=1.3354: O.

emphasize that this value is obtained here from the decay of fluctuations and not,
as usual, from the diffusive decay of mean values. The close agreement supports the
idea that something like the “regression hypothesis” should hold for wavenumbers
around the energy peak.

The results of the “zero-lag” Rayleigh-Ritz analysis are entirely consistent with
those for the zero-lag POP. In fact, the results for Cµ(k, t0) are so close numerically
that a plot of them together would show no difference between them. The “zero-
lag” Rayleigh-Ritz values Cµ(k, t) are plotted in Fig. 3 for the low wavenumbers
k = 2−10 at a sequence of times. There is seen to be a slight drift to the left in time.
Remarkably, this is consistent with the slow decrease of the energy peak wavenumber
kP over that same time from kP = 9 initially to kP = 6 at the final time. The
wavenumber at which Cµ(k, t) ≈ 0.09 tracks along with the peak wavenumber kP
over the whole period of the decay. This a further verification of the “regression
hypothesis” for the energy peak wavenumbers.

A realizability check on the POP model helps to explain the close agreement
of the POP and “zero-lag” Rayleigh-Ritz results at early times. Shown in Fig. 4
are the POP noise spectral values for the first fourteen nonzero wavenumber modes,
k = 1−14, plotted as a function of time up to t = 1.4. It may be seen that the noise
spectra all start at zero at the initial time t0, to numerical precision, and thereafter
rise to positive values. Most importantly, this result establishes the realizability
of the Langevin model with the POP coefficients. In agreement with the results
of the previous section, the standard value Cµ = 0.09 leads to a noise spectrum
indistinguishable from zero initially at the peak wavenumber.

We are now in possession of a fully realizable Langevin model of the form of Eq. (9)



218 G. L. Eyink & A. Wray

no
is

e
co

va
ri

an
ce
Q

time t
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.000

0.010

0.020

0.030

Figure 4. POP noise covariance Q(k, t) in low wavenumbers. k=1: • , k=2: ◦ ,
k=3: �, k=4: �, k=5: �, k=6, �, k=7: N, k=8: M, k=9: J, k=10: C, k=11: H,
k=12: O, k=13: I, k=14: B.

2-
ti

m
e

co
sp

ec
tr

um
E

wavenumber k
0.0 8.0 16.0 24.0 32.0

0.000

0.006

0.012

0.018

0.025

0.031

0.037

Figure 5. Comparison of 2-time velocity cospectra E(k; t, t0). t=0.2295: • - LES,
◦ - RRC; t=0.3299: �- LES, �- RRC; ; t=0.4183: �- LES, �- RRC; t=0.5262: N-
LES, M- RRC; t=0.6407: H- LES, O- RRC;



Rayleigh-Ritz in isotropic decay 219

with the coefficients therein determined either from POP or “zero-lag” Rayleigh-
Ritz. The model is very similar in form to the DTSA model (Kraichnan, 1987). As
has been discussed earlier, the same model will presumably arise for either Eulerian
or Lagrangian variables. However, it is probably a much more accurate, long-term
predictor for Lagrangian time-correlations than it is for Eulerian. Unfortunately, we
have no such Lagrangian data with which to compare. Instead, we shall correct the
“zero-lag” Rayleigh-Ritz model to include convective dephasing effects as described
previously. In Fig. 5 we show plotted together as functions of wavenumber k the
LES results for the 2-time velocity spectrum E(k; t, t0) and those obtained from
the “zero-lag” Rayleigh-Ritz with the convective correction in Eq. (11), for several
times over the run. As may be seen, there is a much improved agreement for all
times. The only defect is at the later times when the Rayleigh-Ritz calculation gives
a slightly too great decay at high wavenumbers and a slightly too slow decay at low
wavenumbers. This is in agreement with our earlier remark that the “efficiency”
Cη = 0.1 we used in the convective correction is likely too large at high wavenumbers
and too small at low wavenumbers.

4. Conclusions

The results of this work allow us to draw the following tentative, general conclu-
sions:

(i) The standardK-εmodel gives a very good quantitative account of fluctuations
at the energy peak wavenumber and a rather good one at lower wavenumbers. This
supports the idea that a proper application of Onsager’s “regression hypothesis”
for turbulent flow is to fluctuations in the peak wavenumber range. Presumably,
an “optimal” POP analysis would recover something very close to the standard
K-ε model in that regime. Because this range of wavenumbers makes a dominant
contribution to integrations over k, the single-point, 2-times statistics will be rather
well captured by such modeling.

(ii) However, the agreement of the predicted and measured statistics is restricted
to a short time for Eulerian correlations. The success in reproducing those correla-
tions at longer time separations by making a simple convective correction suggests
that much better long-term predictability will be obtained for Lagrangian variables
with a standard RANS-type model.

(iii) Further improved predictions can be obtained in the Rayleigh-Ritz frame-
work by going beyond the K-ε modeling. Even the simple expedient of taking the
RANS model coefficients to be functions of wavenumber k—and thus nonlocal ker-
nels in physical space—can give much better results. In the case of the velocity
sector, a “zero-lag” model of this type is very similar to the DSTA model of Kraich-
nan (1987). Such models can presumably give good long-term predictions for La-
grangian variables. To predict Eulerian time-correlations at large time-separations
seems to require a non-Markovian or history-dependent Ansatz in the Rayleigh-Ritz
formalism to properly capture the convective dephasing effects.

The final verification of these conclusions will require some more work. In particu-
lar, a POP analysis based upon a complete set of 2-time correlation functions ought
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to be performed. This would allow a systematic investigation of lag-dependence,
which is particularly important in the K-ε sector. Furthermore, a proper com-
parison of the predictions with LES or other data would require Lagrangian time-
correlations.
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