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Approximate lateral boundary
conditions for turbulent simulations

By J. Jiménez AND C. Vasco1

Several synthetic lateral boundary conditions are tested on a direct numerical
simulation in which only half of a turbulent channel is computed, with the boundary
conditions being imposed at the central plane. This is motivated by the problem
of matching large-eddy simulations to wall models. When the boundary contains
no turbulent structure, a thin layer is created which decorrelates it from the flow,
and the mean and fluctuating velocities are poorly represented. Introducing more
structure, obtained by modifying velocity planes copied from the interior of the
flow, improves the fluctuations, but the mean velocity profiles are still poor. This
is traced to spurious pressure fluctuations which induce artificial energy fluxes, and
can be partially avoided by approximately taking into account continuity in the
generation of the boundary conditions. This third boundary condition gives good
results for the velocity fluctuations, but some pressure and the mean velocity errors
persist.

It is argued that the problem is related to that of imposing boundary conditions
along characteristics in a hyperbolic system, and possible avenues for improvement
are suggested.

1. Introduction
One of the problems of large-eddy simulations of complex flows is the high resolu-

tion required in the proximity of walls. The Reynolds shear stresses that determine
the mean velocities are carried by the non-universal large turbulent scales. Sub-grid
stresses in LES should be provided by the sub-grid model, but most present models
do not reproduce the shear stresses well (Jiménez & Moser 1998). The simulations
should therefore be designed so that most of the shear stresses are carried by the re-
solved eddies, and this implies that the filters should not be wider than a fixed small
fraction of the local integral eddy scale. As the wall is approached the integral scale
decreases and so does the necessary filter width. Baggett, Jiménez & Kravchenko
(1997) estimated that the number of points required for a grid satisfying those
requirements scales as N ∼ Re2

τ , and increases without limit with the Reynolds
number. Most of those points are concentrated in the near-wall region, and the
resulting resolution requirements have for some time been the main roadblock for
the practical application of LES (Chapman 1979).

To decrease the number of points, one possibility would be to use fully anisotropic
subgrid models correctly representing the Reynolds stresses in all the regions of the
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flow, but, as mentioned above, such models are not available at present. Another
possibility is to compute the wall region by some separate technique, usually RANS,
while solving the LES equations only in an interior domain away from the wall.
Variants of this approach are the various proposals to use subgrid models which
smoothly merge into RANS near the wall (Schumann 1975, Sullivan et al. 1994,
Spalart et al. 1997).

In implementing this second class of approximations, two problems arise. The first
is to provide a good model for the wall region, while the second is to transfer to the
outer simulation the information obtained in this way. This implies synthesizing
instantaneous boundary conditions for which only a few low-order statistics are
known, but which are realistic enough to minimize the formation of spurious layers
as the simulated flow adapts to the synthetic boundary. Both problems are different
and essentially independent of one another. Only the second one is addressed in
this paper.

To separate our investigation as completely as possible from the particular re-
quirements of modeling wall turbulence, we restrict our computations to the lower
half of a plane channel and impose our boundary conditions at the central plane,
trying to mimic the information coming from the other half of the channel. Within
the limits of the summer program we also restrict ourselves to direct numerical sim-
ulations, thus making our conclusions independent of the particular sub-grid model
used in real LES computations.

Our problem is then to find boundary conditions that can be imposed at a fully
turbulent domain boundary, using only low order statistics of the flow outside the
domain, such that a direct numerical simulation approximates the statistics of the
turbulent flow within. Well-known subsets of this problem are the formulations of
inflow and outflow boundary conditions for turbulent flows, which have been treated
often. The techniques used are different for each of them and, while outflows are
usually treated by advective boundary conditions in which information is allowed to
leave the domain as smoothly as possible, inflows require information coming from
outside, and therefore Dirichlet conditions. A general discussion of the boundary
conditions required for incompressible viscous flows is Kreiss & Lorentz (1989), and
examples of particular techniques used to generate synthetic incoming turbulence
at inflows are Lee, Lele & Moin (1992), Le, Moin & Kim (1997), and Na & Moin
(1998).

By choosing as our boundary the center of the channel we focus on the harder
problem of lateral conditions, in which the average normal velocity is either zero or
small with respect to the intensity of the turbulent fluctuations, and where weak
inflows and outflows coexist at locations which are not known a-priori. This is also
the problem relevant to imposing conditions near walls, where information, be it
provided by a separate model running in the wall layer or by the smooth merging
of LES and RANS, has to flow in both directions.

Baggett (1997) studied the same problem and tried several types of boundary
conditions in which the three velocity components were prescribed at an off-wall
plane in a channel. The information contained in his velocities ranged from purely
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random numbers to fairly complete sets of structures corresponding to real channel
turbulence at the same location. His experiments were in general not successful, but
the location of his boundary plane was inside the near-wall region, where turbulence
dynamics is known to be most complicated, and his numerical scheme was a low-
order finite-difference scheme. It was not clear whether his lack of success was due
to inappropriate boundary conditions or to any of those complicating factors. In
this note we largely repeat, and extend, his experiments using higher order numerics
and staying away from the wall region, in order to clarify the reasons for any failure.

The note is organized as follows. The numerical technique is described first,
followed in §3 by a description of the results of three different synthetic boundary
conditions. That section also contains a discussion of the errors introduced in the
pressure field, and of their influence on other errors in the simulation. Finally the
results and their relation to the general theory of hyperbolic equations are briefly
discussed and suggestions for future work are offered.

2. Simulations

2.1 Flow description
The flow simulated is the lower half of a plane turbulent channel, between the

lower wall at y = 0 and the central plane at y = 1. The Reynolds number is
Reτ = 190, based on the friction velocity and on the half channel width. Since the
full channel is nominally symmetric, all of the energy and momentum fluxes (i.e.
the mean shear stress) should be zero at the central boundary. Other properties
at the boundary, when needed, are taken from the comparable simulation by Kim,
Moin & Moser (1987). Wall units are defined in the usual way in terms of the
friction velocity at the wall, uτ , and used throughout the paper.

2.2 Numerical scheme
The numerical method is essentially the one used by Kim, Moin & Moser (1987).

The equations are integrated in a box which is doubly periodic in the streamwise
and spanwise directions, of size Lx × Lz = 2.7 × 1.58, and bounded by the cen-
ter of the channel and by one wall. The spatial discretization is Fourier spectral
in x and z, and fourth-order B-splines in the wall-normal direction y (Jiménez,
Pinelli & Uhlmann, 1998). The nonlinear terms are dealiased in the two Fourier
directions by the 2/3 rule, but there is no dealiasing in y. Time discretization is
third-order Runge-Kutta for the nonlinear convective terms and implicit Euler for
the dissipative ones.

The numerical resolution in x, y, and z is 48 × 97 × 64 before dealiasing, and
the viscosity coefficient is ν = 1/3250. The grid is stretched in the wall-normal
direction according to the mapping

yj =
1
2

+
tanh[2πκ(2j/N − 1)]

2 tanh(2πκ)
,

where j = 0 . . .N and κ = 0.22. This grid is stretched both at the wall and at
the central plane, which was found necessary to accommodate the spurious thin
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viscous layers generated by the boundary conditions. The stretching at the central
boundary could probably be relaxed if better boundary conditions are found.

The equations are written in terms of the wall-normal vorticity ω2 and of the
Laplacian of the wall-normal velocity, Φ = ∇2v. The evolution equations to be
solved are

∂Φ
∂t

= hv +
1
Re
∇2Φ, (1)

∂ω2

∂t
= hg +

1
Re
∇2ω2, (2)

where hv and hg are the nonlinear terms, as defined by Kim, Moin & Moser (1987).
Continuity is imposed when obtaining the velocities from the evolution variables.
Pressure is not used in the evolution of the flow and is obtained only as a post-
processed variable. Nonlinear terms are discretized in the y-direction by means of
a collocation method, and the linear ones by Galerkin projection.

The boundary conditions in the non-periodic direction are imposed at each time
substep in the elliptic dissipative substep,(

1− ∆t
Re
∇2

)
ωn+1

2 = ωn2 + ∆t hng , (3)

(
1− ∆t

Re
∇2

)
Φn+1 = Φn + ∆t hnv , (4)

∇2vn+1 = Φn+1. (5)

At the wall, y = 0, the non-slip boundary conditions can be reduced to

v =
∂v

∂y
= ω2 = 0. (6)

We give the boundary conditions at the center of the channel in the form of instan-
taneous planes of the three velocity components, which can be reduced to v, ∂v/∂y,
and ω2 using continuity. The boundary conditions for (3) are therefore Dirichlet
but, for (4)-(5), they are given in terms of v and ∂v/∂y rather than Φ. They are im-
posed by expressing the solution as a linear combination of the following Helmholtz
problems, which refer only to the boundary condition at y = 1.

1) A particular solution (Φp, vp) of the full system (4)-(5), with homogeneous
Neumann boundary conditions for Φp and vp at the central plane.

2) A solution Φ1 of (4) with a homogeneous right-hand-side and Φ1 = 1 at
y = 1, plus the associated solution for v1, with Φ1 as the right-hand side of (5) and
∂v1/∂y = 1 at y = 1.

3) A solution v2 of (5) with Φ1 in the right-hand-side and v2 = 1 at y = 1.
The solution of (4)–(5) is then

v = vp + a1v1 + a2v2, (7)
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Figure 1. Validation of the code. , full channel; , half channel.
Statistics taken over 2, 000 time steps (t+ ≈ 22).

Φ = Φp + (a1 + a2)Φ1, (8)

where a1 and a2 are chosen to satisfy the boundary conditions.
Pressure is obtained, whenever statistics are needed, by solving (Kim, 1989)

∇2p = −∇ ·H, (9)

where H is the nonlinear term of the Navier-Stokes equations. The boundary con-
ditions for (9) are obtained from the y component of the momentum equation. At
y = 0

∂p

∂y
=

1
Re

∂2v

∂y2
, (10)

and at the center of the channel

∂p

∂y
= −Dv

Dt
+

1
Re

∂2v

∂y2
. (11)

These manipulations are done in Fourier space, where each coefficient is a function
of two wavenumbers and of the physical location, y. To simplify the notation
the dependence on the wavenumbers will not be made explicit in the following.
Subindices refer to position in y and superindices to the time step.

The boundary condition for the mean streamwise velocity U at the center of the
channel is either Dirichlet, taken from the full-channel DNS velocity profiles, or
homogeneous Neumann, which uses the condition of symmetry. In all cases the
mean spanwise velocity is set to zero.
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The code was validated by running first a full channel, storing a time sequence
of velocities at the central plane, and then running the half-channel code, using the
previously saved planes as boundary conditions at y = 1. Very good agreement was
obtained as shown in Fig. 1, even if the grids used in both cases were very different.

3. Approximate boundary conditions
The “exact” boundary conditions at the center of the channel were then replaced

by several synthetic approximations.

3.1 Case A
The first approximate boundary condition was constructed as follows. We gen-

erated a plane of the velocity component u, with the same power spectrum and
intensity as those in the interior plane y ≈ 0.9 but with random phases. The v
velocity component was generated using its own power spectrum from the same
plane with phases such that the shear stress |uv∗ + u∗v| vanished for each Fourier
mode. The asterisk stands for complex conjugation. The third velocity component
was generated in a similar way, satisfying |vw∗ + v∗w| = 0. This velocity plane
was computed once at the beginning of the simulation and used at each time step
after applying a translation by Ut where U is the mean velocity at the center of
the channel, fixed through a Dirichlet boundary condition, and set equal to the
constant mean value obtained in full-channel simulations.

Unsurprisingly, the results are bad (Fig. 2a). This case is similar to the severely
scrambled one of Baggett (1997). The phases of his velocity fields were also random,
and a linear combination was used to obtain the correct shear stress. The main
difference was that his velocities were obtained from a full-channel run and then
modified, thus maintaining the correct time scales. In both his and our cases the
boundary conditions are completely uncorrelated from the rest of the domain, and
a strong boundary layer is created between them and the first interior plane. This
is due to the lack of turbulent structure of this boundary condition as will be shown
by the next experiment.

Similar results were obtained in a previous test in which the boundary condition
was built in the same way, but in which the phases of the velocities were regenerated
independently for each time step.

3.2 Case B
In order to provide some turbulent structure for the boundary velocities, we used

a velocity plane copied directly from the previous time step in the plane y ≈ 0.9.
The velocity u was rescaled to have the same r.m.s. fluctuation u′ as in the statistics
of the complete channel, and the other two velocities were linearly combined to have
the correct intensities v′, w′ and shear stresses uv = 0 and vw = 0,

un+1
bc = γ00u

n
y=0.9, (12)

vn+1
bc = γ11u

n+1
bc + γ12v

n
y=0.9, (13)

wn+1
bc = γ21v

n+1
bc + γ22w

n
y=0.9. (14)
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Figure 2. R.m.s. velocity fluctuations. ◦ , u′; + , v′; , w′. (a) Case A. t+ ≈ 72.
(b) Case B. t+ ≈ 280. , full channel.

The same constants γik were used for all of the Fourier modes. A Dirichlet boundary
condition with the correct average velocity was used for U .

In this case (Fig. 2b), the strong boundary layer disappears as the boundary con-
dition becomes correlated with the turbulent field. Nevertheless, u′, v′, and w′ are
not well reproduced, and the mean velocity profile (Fig. 4a) changes considerably,
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increasing its slope in the vicinity of the center of the channel. This experiment
was not run long enough to achieve fully converged statistics since it was clear that
it was evolving in the wrong direction, especially for the mean velocity profile.

3.3 Pressure fluctuations
An interesting observation was that, in the last two cases, the structure of the

pressure fluctuations was very different from that in a regular turbulent channel. A
large peak appears near the center line (Fig. 3a), while the fluctuations of the full
channel are minimum there (Kim, 1989). This was traced to large values of ∂v/∂y
near the boundary, which enter the right-hand side of (9) as random delta-function
pressure sources. Essentially this is a failure of continuity, which was not taken into
account in any way in the previous experiments.

While it is clear that continuity cannot be imposed on a single plane and that the
flow will react to any combination of boundary conditions for u and w by adjusting
∂v/∂y, this derivative can conflict with the one implied by our boundary condition
for v, resulting in very large values for the effective ∂2v/∂2y, and in large pressures.
The problem can be visualized by thinking of the boundary condition as an artificial
wall, moving randomly and forcing the flow at the boundary. Whenever the moving
wall and an interior eddy collide, high pressures are generated.

To further clarify the origin of the spurious pressure fluctuations, we present in
Fig. 3b the pressure for an instantaneous flow field computed in three different
ways. First we use the full equation, next we zero the right-hand side of (9) in the
first eight planes near the center of the channel, and finally we keep the right-hand
side but zero the boundary condition (11). The main contribution to the spurious
pressure is seen to be the peak of the right-hand side of (9), and once it is removed
the pressure fluctuations become consistent with those of a natural channel.

Since the spurious pressure derives from the solution of a Poisson equation, it
permeates the channel to a depth which is of the order of the size of the largest
eddies and has a global effect on the velocity profile.

Consider the integrated equation for the kinetic energy k of the velocity fluctua-
tions

φ(y)− φ(0) =
∫ y

0

(P − ε+ ν∂2k/∂y2) dy, (15)

where P = −uv∂U/∂y is the turbulent production, ε is the dissipation, and

φ(y) = v(p+ k), (16)

is the diffusion energy flux. If an error ∆p is made in the estimation of the pressure
fluctuations at the boundary, it induces an error in the energy flux which is of order
∆φ = O(v∆p) = O(uτ∆p). This extra energy has to be compensated in (15) by a
change in the production since the dissipation is controlled by the turbulent cascade
and is difficult to change. Since the stress uv is fixed by the momentum equation,
only the velocity gradient S = ∂U/∂y is available to compensate the extra energy
and its error is determined by the balance

|uv|
∫

∆S dy = u2
τO(∆U) = O(∆φ). (17)
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Figure 3. R.m.s. pressure fluctuations. (a) , full channel; , case A;
• • • , case B; , case C. (b) Single field, case C. , r.h.s. clipped and b.c.
removed; • • • , r.h.s. clipped; , b.c. removed; , full equation.
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Figure 4. (a) Mean streamwise velocity. (b) Energy fluxes in the wall-normal
direction. , full channel; , case A; • • • , case B; , case C.
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The result is that ∆U+ = O(∆p+). Note that the effect on the mean profile can be
expected to be largest near the center of the channel where the mean shear stress
vanishes.

In case A where ∆p+ ≈ 20, this gives errors comparable to the maximum velocity,
as observed in Fig. 4a. In case B the errors in the pressure and in the mean profile,
while milder, are still considerable. Note that in this figure as well as in Fig. 3,
the different simulations have different values of Reτ , both because of the errors
introduced by the boundary conditions and because cases A and B were not run to
full statistical convergence.

3.4 Case C
In an effort to decrease the velocity gradients at the boundary and, therefore,

the magnitude of the spurious pressures and fluxes, a new condition was tried in
which v at the boundary was obtained using an approximate continuity equation
involving the velocities from the previous time step,

vn+1
0 − vn1

∆y
= −∂u

n
1

∂x
− ∂wn1

∂z
, (18)

where the subindex j = 0 refers to the boundary plane and j = 1 to the first interior
one. In this test u and w were copied from the plane j = 1 and then modified in the
same way as in (12)-(14), using v in place of u and vice-versa. Previous tests had
shown that the behavior of the boundary conditions was not very sensitive to the
exact location of the plane from where the velocities were extracted. In this case
the absolute values of the r.m.s. fluctuations were not given, and the intensities
were forced to be equal in j = 1 and j = 0. This has the advantage that the correct
intensities do not have to be known a-priori and is approximately equivalent to
imposing zero derivatives for the intensities at the central plane and, therefore, to
the condition of symmetry, but it should be emphasized that a Neumann condition
was not imposed on individual Fourier components. A symmetry condition was also
used for U , and the case was run to statistical equilibrium.

The results given in Fig. 5 are better than in the previous cases, with an agreement
in the fluctuations which is particularly impressive given that their absolute values
were not explicitly used at the boundary. The spurious peak pressure is also lower
than before, but it is still substantial, and the Kármán constant of the mean velocity
(Fig. 4a) is too low.

Figure 4b includes the energy flux for this case, which, contrary to the previous
ones, is underestimated and becomes negative near the center. This means that
energy is drained from the flow by the boundary condition rather than being injected
as in the previous cases. It is interesting that, corresponding to this, the velocity
overshoots the maximum near the central plane and then decreases slightly as the
flow loses energy to the boundary. Note that the energy diffusion flux at the center
of a full channel should be zero by symmetry.

4. Discussion and conclusions
We have tested several synthetic lateral boundary conditions at the central plane
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Figure 5. R.m.s. velocity fluctuations for case C. ◦ , u′; + , v′; , w′; , full
channel. ∆t+ ≈ 2134

of a channel flow with variable success. All of them are Dirichlet conditions for the
three velocity components.

Conditions with no structure, even if they have an approximately correct power
spectrum but random phases, develop a sharp boundary layer and become uncor-
related with the rest of the channel. Introducing information about the turbulent
structure, which was done in our case by processing data from a different plane of
the same computation, considerably decreases the intensity of the spurious bound-
ary layer and leads to reasonably good results for some of the low order statistics,
namely the r.m.s. intensities of the fluctuations of u, v, and w. This is especially
true when the boundary conditions are tailored to take approximately into account
the continuity constraint among the three velocity components.

Nevertheless the mean velocity profiles are poorly represented. This was traced
to large errors in the pressure field and in the associated energy fluxes which, even
if not explicitly used in our simulation code, have fluctuations near the boundary
that are an order of magnitude larger than in regular channels. This is the result
of a sharp peak in the right-hand side of the Poisson equation for the pressure, and
derives from the attempts of the boundary conditions to locally violate continu-
ity. Artificially removing that local peak restores the pressure fluctuations to their
proper value. The peak in the source term is confined to the first few planes near
the artificial boundary (∆y ≈ 0.04), and can be approximated as B(x, z)δ(y − 1),
where δ is Dirac’s delta function. The Poisson equation for the pressure sees this
forcing as a spurious boundary condition for ∂p/∂y, which overwhelms the real
boundary condition (11). The errors in the pressure decay exponentially away from
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the boundary with a scale length which is of the order of the energy-containing
scales of the intensity B. That the scale length here is of the order of the chan-
nel width shows that the errors in the boundary condition are associated with the
representation of the largest eddies.

The mathematical basis for the difficulty is easy to understand. For fully tur-
bulent boundaries away from walls, viscosity can be neglected, and it is enough to
analyze the problem for the Euler equations. Note that this would also be true in
LES since the eddy viscosity of the subgrid terms would in that case be at most
O(u′∆x), and the Reynolds number based on it and on the macroscopic scales would
still be large. The incompressible Euler equations, except for the pressure term, are
hyperbolic with characteristics which coincide with the streamlines, and this fact is
widely used in the design of inflow and outflow boundary conditions (see e.g. the
discussion in Kreiss & Lorentz, 1989). Incoming flow needs Dirichlet conditions be-
cause the information is brought by the characteristics entering the domain, while
outgoing flow does not for similar reasons. Lateral boundaries such as the one which
occupies us here coincide with characteristics implied by the mean flow, and in that
approximation no boundary conditions are needed or allowed along them.

Consider for example a two-dimensional flow in which the velocity is (U+u1, v1),
where |u1|, |v1| � U , and where the mean velocity U is constant. The equation for
the perturbation is

∂u1

∂t
+ U

∂u1

∂x
+
∂p

∂x
= O(u2

1/L), (19)

where L is a characteristic eddy size, with a similar equation for v1. Continuity
is preserved automatically to lowest order, and in that approximation the pressure
satisfies Laplace’s equation and can be set to zero. The resulting equation for u1

is hyperbolic and has no explicit dependence on y. Along boundaries on which y
is constant, the solution is fully determined by the inflow at x = 0, and no further
boundary condition is needed. In fact, a Galilean transformation to a frame of
reference moving with the constant velocity U reduces (19) to

∂u1

∂t
+
∂p

∂x
= O(u2

1/L). (20)

This is an interesting equation which shows at once that the pressure fluctuations
are O(u2

1) and that the Lagrangian accelerations are of the same order. It suggests
that better boundary conditions for the general case could be constructed in the
form

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= u2

τgu, at y = 1, (21)

where uτ acts simply as a scale for the velocity fluctuations. The information in the
boundary condition, including the external statistics and length scales, is contained
in gu, which should be O(1), and it is easy to see that it can be interpreted as an
applied stress. Such boundary conditions are presently being tested.
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