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Evolution strategies for parameter
optimization in jet flow control

By P. Koumoutsakos, J. Freund1 AND D. Parekh2

We present results from the application of evolution strategies for parameter opti-
mization in direct numerical simulations and vortex models of controlled jet flows.
It is shown that evolution strategies are a portable, highly parallel method that can
complement our physical intuition in the parameter optimization of such flows.

1. Introduction

For centuries engineers have taken inspiration from nature in designing efficient
aerodynamic configurations. It is no coincidence that the shape of an aircraft’s
wing resembles a bird’s. We wish to approach the problem of flow control, not
from the perspective of imitating existing natural forms, but from the perspective
of developing efficient control algorithms, by employing techniques inspired by bi-
ological processes. These techniques, which we will refer to as “machine learning
algorithms”, are gaining significance in the areas of modeling and optimization for
fluid dynamics problems as a technology that could help reduce cost and time to
market of new designs.

1.1 Evolution strategies
Some of the seminal work in this field (Rechenberg 1971, Schwefel 1974, Hoffmeis-

ter 1991) actually was aimed at improving aerodynamic shapes. As stated in
(Schwefel, 1974):

“In 1963 two students at the Technical University of Berlin met and were soon
collaborating on experiments which used the wind tunnel of the Institute of Flow
Engineering. During the search for the optimal shape of bodies in a flow, which
was then a matter of laborious intuitive experimentation, the idea was conceived of
proceeding strategically. However, attempts with the coordinate and simple gradi-
ent strategies were unsuccessful. Then one of the students, Ingo Rechenberg, now
professor of Bionics and Evolutionary Engineering, hit upon the idea of trying ran-
dom changes in the parameters defining the shape, following the example of natural
mutations. The evolution strategy was born.” (The second student was Hans Paul
Schwefel).

Since this pioneering work, stochastic optimization techniques have gained recog-
nition and popularity in several fields of engineering, but this has not been the case
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in the field of fluid dynamics in the last three decades. Recent work by Rechen-
berg (1994) focuses on the shape optimization approach with the construction and
experimental testing of shapes that have been produced via evolutionary strate-
gies using computer simulations. Evolution strategies have also been implemented
in order to optimize the motions of an artificial tuna (M. Triantafyllou, private
communication).

Here, we report preliminary results from the application of evolution strategies
in the optimization of actuator parameters in active jet flow control and in the
optimization of bifurcating and blooming jets.

1.2 Jet flow control
It is desirable in many circumstances to enhance mixing in the exhaust from

aircraft engines. Applications include lift enhancement, signature reduction, and
temperature reduction on blown flaps. This work focuses on the latter case. The
blown flap on a C-17 (Fig. 1) is currently made out of titanium to avoid melting.
If mixing can be significantly enhanced so that the plume temperature is reduced,
the flap could be constructed from aluminum, a much less heavier and expensive
alternative.

FIGURE 1. Blown flap as on a C-17.

Recently, actuators have been developed and tested on a full-scale engine which
have the control authority to accomplish this objective. The goal of this work is to
optimize their parameters to maximize their effectiveness. This is being undertaken
as a joint experimental, numerical, and control theory effort. The discussion here is
limited to the simulations and the application of evolution strategies to the problem.

1.3 Optimization of bifurcating and blooming jets
The proper combination of axial and helical excitation at different frequencies

generates the unique class of flows known as bifurcating and blooming jets (Lee and
Reynolds 1985, Parekh et al. 1987). The axial forcing causes the shear layer to roll
up into distinct vortex rings at the forcing frequency. The helical excitation perturbs
the rings radially, producing a small eccentricity in the ring alignment. This initial
eccentricity is amplified by the mutual ring interactions leading to dramatic changes
in jet evolution. When the axial frequency is exactly twice that of the helical
excitation, the jet bifurcates into two distinct jets, with successive rings moving
alternately on one of two separate trajectories. This Y-shaped jet spreads at angles
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over 80 degrees, depending on forcing frequency and amplitude. The relative phase,
φ, between the axial and helical forcing signals determines the plane in which the
jet bifurcates. When the ratio, β, of axial to helical excitation frequency is non-
integer, the vortex rings scatter along a conical trajectory. When viewed from
downstream, the vortex ring pattern often resembles a bouquet of flowers, hence
the name“blooming jet.”

In applying the evolution strategies to this class of flows, we are exploring whether
the phenomena discovered experimentally could also be obtained in our simulations
via an “evolutionary process” and whether new phenomena could be found. Here
a vortex model describes the jet dynamics. The optimization algorithm is tuned to
maximize jet spreading by varying the excitation parameters.

2. Evolution strategies for optimization
We discuss first the formulation of evolution strategies for the optimization of

N-dimensional functions:

F (x) = F (x1, x2, ..., xM)

We define a vector in the parameter space as an individual. The whole discrete
parameter space can then be considered as a population of individuals. Evolution
strategies try to identify the best individual from this population based on the fitness
value, prescribed by the function F . The optimization proceeds by following to a
certain extent models of biological evolution.

2.1 Two membered evolution strategies
The simplest (and earliest) form of evolution strategies is based on populations

that consist of two competing individuals (“a two-membered strategy”). The evo-
lution process consists of the two operations that Darwin (1859) considered as the
most important in natural evolution: mutation and selection. Each individual (i.e.
vector in the parameter space) is represented using a pair of floating point valued
vectors:

u = u(x,σ)

where σ is an M-dimensional vector of standard deviations.
Following Rechenberg (1971) and using terminology from biology, the optimiza-

tion algorithm may be described as follows:
a - Initialization: A parent genotype consisting of M-genes is specified initially (x0).

At each generation an individual unp = (xnp ,σ
n
p ) is identified.

b - Mutation: The parent of generation-n produces a descendant, whose genotype
differs slightly from that of the parent. The operation of mutation is then realized
by modifying x according to:

xnc = xnp + N (0,σnp ) 2.1

where N (0,σ) denotes an M-dimensional vector of random Gaussian numbers
with zero mean and standard deviations σ.
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c - Selection: Due to their different genotypes the two individuals of the population
can have a different fitness for survival. This fitness is evaluated by the function
f . Only the fittest of the two individuals is allowed to produce descendants at
the following generation. Hence to minimize F we write:

xn+1
p =

{
xnp , if F (xnp ) ≤ F (xnc );
xnc , otherwise. 2.2

Note that in this two-membered algorithm the vector σ of standard deviations
remains unchanged throughout the evolutionary process.

For regular optimization problems (see Michalewicz, 1996 for a definition) it is
possible to prove the convergence of the method to a global minimum. However,
this theorem does not provide a convergence rate of the method.

In this work we have implemented the 1/5 success rule proposed by Rechen-
berg (1971). According to this rule: During the optimum search the frequency
of successful mutations is checked periodically by counting the ratio of the number
of successes to the total number of trials. The variance is increased if this ratio is
greater than 1/5 and it is decreased if it is less than 1/5. The period over which this
performance is being checked depends on the number of parameters that are being
optimized. We refer to Schwefel (1995) for further details on the implementation of
the two-membered evolution strategies.

2.2 Multi-membered evolution strategies
One of the drawbacks of the 1/5 rule for the two-membered strategy is that it

may lead to premature convergence, as the step lengths can be reduced to zero, thus
not improving the progress towards a global optimum. There are several possible
remedies to this drawback. Of particular interest are those that can be constructed
by further developing the model of evolution to resemble natural processes. In that
context, a higher level of imitation of an evolutionary process can be achieved by
increasing the number of members in a population. Such multi-membered strategies
are usually formulated in terms of µ-parents and λ-descendants. The most common
strategies are then described as (µ, λ) and (µ + λ). In the (µ, λ) case at each
generation the µ-fittest individuals are selected only among the λ children of the
generation, whereas in the (µ+λ) case the parents are also included in the evaluation
process. Schwefel (1995) presents an extensive comparison of multi-membered and
two-membered evolution strategies for a series of optimization problems.

2.3 Handling of constraints
One of the advantages of evolution strategies is the ease and simplicity by which

they can handle problem constraints. Such constraints are usually formulated as
inequalities. For example in the case of q constraints of the parameters x we require
that:

Cj(x) ≥ 0 for all j = 1, ..., q

Descendants of a certain parent that do not satisfy the constraints are accounted as
results of unsuccessful mutations. Occasionally the boundaries of the constrained
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FIGURE 2. Schematic shows the nozzle (a) and actuators (b).

regions are smoothed out in order to facilitate the convergence of the method in
highly constrained problems.

3. Jet flow control
The compressible flow equations were solved with direct numerical simulation

using a combination of sixth order compact finite differences, spectral methods,
and fourth order Runge Kutta time advancement. Further details of the numerical
algorithm and techniques for including actuators into the calculations were recently
reported by Freund & Moin (1998). Naturally, in a direct numerical simulation we
are restricted to highly simplified geometries (Fig. 2); nevertheless, the actuators
were able to reproduce the effects observed in experiments by Parekh et al. (1996).
Figure 3 shows a visualization of a jet forced into a flapping mode and an unforced
jet. Clearly, the mixing is enhanced downstream.

For this preliminary study, only three types actuation parameters were varied:
the amplitude, frequency, and phase. The actuation was a simple waveform sum of
harmonic waveforms:

vr =
N∑
i=1

Ai

(
1 + sin

(
USti
D

t+ φi

)
sgn(cos(θ))

)
, 3.1

where vr is the radial velocity at the actuator exit and Ai are the amplitudes, Sti are
the Strouhal numbers, and φi are the phases of the different modes. The sgn(cos(θ))
causes each waveform to excite a flapping mode in the jet. Note that the phases,
φi, are the relative phases of the different modes setting the two actuators always
at 180o out of phase. The flow rate out of either actuator was constrained to be less
than U/2 where U is the jet velocity. This was accomplished by simply “clipping”
the velocities to be below this level.

The only constraint on Ai was that they be non-negative. Strouhal numbers were
restricted to be 0 ≤ St ≤ 0.8 and the phases were constrained to be φi ∈ [0, 2π].

A very low Reynolds number (Re = 500) jet at Mach 0.9 was simulated in this
preliminary effort to minimize the computational expense. The computational mesh
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FIGURE 3A. Unforced turbulent jet. Visualization of vorticity magnitude.
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FIGURE 3B. Forced turbulent jet. Visualization of vorticity magnitude.

was 112×42×16 in the streamwise, radial, and axial direction respectively and the
computational domain extended to 16 radii downstream and 5 radii in the radial
direction. A stretched-mesh boundary zone was positioned outside of the region to
cleanly absorb fluctuations convecting out of the domain. In each iteration of the
evolution strategy, the jet was simulated starting from an unforced case for several
periods of forcing after the passing of initial transients. Because the flow becomes
quasi-periodic, this was sufficient to provide a measure of the long-time actuator
effectiveness. Each iteration required approximately 10 minutes and in total 200
iterations were made (the best case was found after approximately 150 iterations).

Three wave forms (N = 3) where used and the initial control parameters were
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FIGURE 4A.Jet mixture fraction
for the first guess parameters.

FIGURE 4B. Jet mixture fraction
with the best case parameters af-
ter 200 iterations.

Ai/U Sti φi
0.45 0.5 0.0
0.40 0.2 0.7
0.35 0.5 1.0

The goal set for the evolution strategy was to maximize

Q =
∫ ∞

0

∫ 2π

0

∫ 8ro

4ro

v2
rrdrdθdx.

This metric Q, was increased by over a factor of 10 from the initial case by the best
case parameters:

Ai/U Sti φi
0.04 0.33 0.54
0.42 0.17 0.31
0.07 0.45 1.57

It is interesting to note that the evolution strategy “chose” to reduce the amplitude
of two of the wave modes to a very low level. Effectively, it found the same ad
hoc scheme that was shown to be successful by Parekh et al. (1996) and Freund &
Moin (1998). A forced and unforced case are visualized in Fig. 4. The best case
clearly shows a high amplitude flapping mode which would greatly enhance mixing
downstream.

4. Vortex model of bifurcating and blooming jets
In this work we model a circular jet by the combination of discrete vortex filaments

and a semi-infinite cylindrical sheet of vorticity. The cylindrical sheet models the
nozzle source flow whereas the ring filaments model the vortex rings generated by
the axial excitation of the shear layer.

The semi-infinite sheet of vorticity extends from −∞ to the origin. Its axis defines
the jet centerline, and the end of the sheet is identified with the jet exit. The
helical excitation used in the experiments of Lee and Reynolds (1985) is modeled
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by rotating the axis of the vortex cylinder about the nominal jet centerline. The
displacement, Ah, of the jet centerline from the nominal centerline corresponds to
the amplitude of excitation, and Āh ≡ Ah/R. The rotation frequency is given by:

fh =
fa
Rf

, 4.1

where the orbital frequency is defined as:

fa = Sta
γ

D
, 4.2

The frequency fa is the rate at which filaments are generated at the origin.
The interaction of the vortex sheet with the filaments is assumed to be such that

the sheet influences the motion of the filaments but the filaments do not influence
the sheet. The velocities induced by each filament and by the jet function are
superimposed to determine the trajectory of each filament. The Strouhal number
sets the time between creation of new ring filaments at the origin.

The circulation of each filament is identical and is determined from circulation
conservation constraints. Assuming the thickness of the cylindrical sheet to be
much smaller than its radius, the vorticity flux (per unit of circumference) within
the sheet through any plane perpendicular to the jet’s axis is given by U2/2. By the
assumption of a perfect fluid, the vorticity convected from the cylindrical sheet must
equal the vorticity convected by the discrete filaments. This conservation relation
can be expressed in terms of Γ and γ as

Γ
∆t

=
γ2

2
, 4.3

where Γ is the circulation of each ring filament, γ is the circulation per unit length of
the cylindrical vortex sheet, and ∆t is the time between generation of ring filaments.
By Eqs. 4.8 and 4.9, one obtains

γ = Sta
Γ
R
. 4.4

Further details concerning the applicability of this model and its numerical im-
plementation are reported in Parekh et al. (1988).

4.1 Parameter optimization using evolution strategies
The primary parameters that govern the jet evolution Sta, β (frequency ratio of

axial and orbital excitation), Aa, Ah, and φ. The effect of the axial excitation, Aa,
is approximated by generating distinct vortex rings at the axial forcing frequency.
The sensitivity to axial forcing amplitude is not modeled. In these simulations the
other four parameters are allowed to vary over the following ranges: 0 ≤ Aa ≤ 1,
0.1 ≤ Sta ≤ 1, 0.2 ≤ β ≤ 5, 0 ≤ φ ≤ 2π. Different flow patterns can be observed
with variations in β for fixed values of the other parameters. The simulation is able
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FIGURE 4.1A. Blooming jets: Ex-
perimental Results of Lee and Reynolds
(1985): β = 1.7, Ah = 0.04, Sta =
0.46, Re = 4300.

FIGURE 4.1B. Blooming Jets: Sim-
ulations β = 1.7, Ah = 0.05, Sta =
0.55.

to represent qualitatively the full range of jet phenomena observed in experiments,
including bifurcating and blooming jets (Fig. 4.1).

For the optimization, several metrics for jet spreading angle were considered,
including the average radial displacement of the vortex elements, jet spreading angle,
and ring trajectory angles. We also considered amplitude normalized formulations
of these metrics to account for the cost of excitation. The metrics were evaluated
over a broad range of test cases to check if they would be robust enough to provide
the proper relative rating over the parameter space considered. Some metrics are
artificially biased by the initial displacement of the rings or by normalization with
very small excitation amplitudes. One metric that is both simple and effective for
this simulation is the average angle of the nominal ring trajectories. For each case,
this metric is evaluated after the same number of periods (typically, eleven) of axial
excitation. The nominal ring trajectory angle, θ, is defined as the angle between
the jet centerline and the line that connects the center of the jet exit to the centroid
of the vortex ring nodes.

Starting with an initial guess for each of these parameters and constraints on
the range of values allowable for each parameter, the genetic algorithm searches
to optimize jet spreading. The scope of this work did not allow for an exhaustive
investigation of the parameter space and convergence characteristics, but even these
preliminary simulations yielded promising results. With all four parameters varied
simultaneously, the genetic algorithm selects a blooming jet similar to what has
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FIGURE 4.2A. Hybrid bifurcating
jet with Sta = 0.28, Ah = 0.63, β =
2, andφ = 0 (side view).

FIGURE 4.2B. End view. Each
ring’s 32 nodes are plotted as solid
circle.

been observed in experiments.
The most striking result was found when we constrained β = 2 and kept φ fixed.

Initially we expected the algorithm to select a bifurcating jet similar to Fig. 4.1A
with values of StaandAh that maximize the spreading angle. Instead, a unique jet
flow (Fig. 4.2) was found that had never been observed in previous experiments or
calculations. This jet flow initially resembles a bifurcating jet. Several diameters
downstream, however, the two branches of the jet exhibit a secondary bifurcation
in which the rings change direction along a path with an azimuthal angle about
π/4 different from their original trajectory. This results in a wide spreading angle
as seen in Fig. 4.2B.

The simulation often has difficulty providing valid solutions for Sta > 0.4 since the
initial ring filaments get tangled together and quickly degrade to an unrealistic state.
This constraints were implemented in the evolution strategy by simply considering
these cases as unsuccessful tries for the optimization algorithm.

5. Summary and conclusions

These preliminary results from the application of evolution strategies to the prob-
lem of flow control suggest that stochastic optimization can be a valuable tool that
can complement physical understanding and deterministic optimization techniques.
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As a closing remark, we quote from Schwefel:

Since according to the “No-Free-Lunch” (NFL) theorem (Wolpert and Macready,
1996) there cannot exist any algorithm for solving all optimization problems that
is on average superior to any competitor, the question of whether evolutionary al-
gorithms are inferior/superior to any alternative approach is senseless. The NFL
theorem can be corroborated in the case of EA versus many classical optimization
methods insofar as the latter are more efficient in solving linear, quadratic, strongly
convex, unimodal, separable, and many other problems. On the other hand, EA’s
do not give up so early when discontinuous, nondifferentiable, multimodal, noisy,
and otherwise unconventional response surfaces are involved. Their robustness thus
extends to a broader field of applications, of course with a corresponding loss of
efficiency when applied to the classes of simple problems classical procedures have
been specifically devised for.”

Hence, in the realm of flow control, the key issue is the identification of a suitable
optimization method for the specific problem in hand. The portability, ease of
parallelization, and the results reported herein and in (Müller et al. 1999), suggest
that EA’s present a powerful technique for parameter optimization in problems of
flow control.
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